[1] | Spence, C., 2018, Background colour & its impact on food perception & behaviour, Food Quality and Preference, 68, 156-166. |
[2] | Lee, S.-M., Lee, K.-T., Lee, S.-H., Song, J.-K., 2013, Origin of human colour preference for food, Journal of Food Engineering, 119, 508-515. |
[3] | Markets and Markets, 2017, Agricultural colorants market worth $2.03bn by 2022, Focus on Pigments, 2-3. |
[4] | Feketea, G., Tsabouri, S., 2017, Common food colorants and allergic reactions in children: Myth or reality?, Food Chemistry, 230, 578-588. |
[5] | Martins, N., Roriz, C. L., Morales, P., Barros, L., Ferreira, I. C. F. R., 2016, Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices, Trends in Food Science & Technology, 52, 1-15. |
[6] | Vinha, A. F., Rodrigues, F., Nunes, M. A., Oliveira, M. B. P., 2018, 11 - Natural pigments and colorants in foods and beverages, in: C.M. Galanakis (Ed.) Polyphenols: Properties, Recovery, and Applications, Woodhead Publishing, 363-391. |
[7] | Rodriguez-Amaya, D. B., 2016, Natural food pigments and colorants, Current Opinion in Food Science, 7, 20-26. |
[8] | Z. Berk, Extraction, Food Process Engineering and Technology (Third Edition), 2018, pp. 289-310. |
[9] | Yan, J.-K., Ding, Z.-C., Gao, X., Wang, Y.-Y., Yang, Y., Wu, D., Zhang, H.-N., 2018, Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions, Carbohydrate polymers, 193, 373-382. |
[10] | Bubalo, M. C., Vidović, S., Redovniković, I. R., Jokić, S., 2018, New perspective in extraction of plant biologically active compounds by green solvents, Food and Bioproducts Processing, 109, 52-73. |
[11] | Bitencourt, A. P., Duarte, J. L., Oliveira, A. E., Cruz, R. A., Carvalho, J. C., Gomes, A. T., Ferreira, I. M., Ribeiro-Costa, R. M., Silva-Júnior, J. O., Fernandes, C. P., 2018, Preparation of aqueous nanodispersions with annatto (Bixa orellana L.) extract using an organic solvent-free and low energy method, Food chemistry, 257, 196-205. |
[12] | Lemos, D. A., Sonego, J. L. S., Boschiero, M. V., Araujo, E. C. C., Cruz, A. J. G., Badino, A. C., 2017, Selection and application of nontoxic solvents in extractive ethanol fermentation, Biochemical Engineering Journal, 127, 128-135. |
[13] | Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.-S., Abert-Vian, M., 2017, Review of Green Food Processing techniques. Preservation, transformation, and extraction, Innovative Food Science & Emerging Technologies, 41, 357-377. |
[14] | López, C. J., Caleja, C., Prieto, M. A., Barreiro, M. F., Barros, L., Ferreira, I. C. F. R., 2018, Optimization and comparison of heat and ultrasound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. Fruits, Food Chemistry, 264, 81-91. |
[15] | Thirugnanasambandham, K., Sivakumar, V., 2017, Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities, Journal of the Saudi Society of Agricultural Sciences, 16, 41-48. |
[16] | Martínez, J. M., Luengo, E., Saldaña, G., Álvarez, I., Raso, J., 2017, C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis, Food Research International, 99, 1042-1047. |
[17] | Osorio-Tobón, J. F., Carvalho, P. I. N., Rostagno, M. A., Meireles, M. A. A., 2016, Process integration for turmeric products extraction using supercritical fluids and pressurized liquids: Economic evaluation, Food and Bioproducts Processing, 98, 227-235. |
[18] | Fathordoobady, F., Mirhosseini, H., Selamat, J., Manap, M. Y. A., 2016, Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction, Food Chemistry, 202, 70-80. |
[19] | Chatel, G., 2018, How sonochemistry contributes to green chemistry?, Ultrasonics Sonochemistry, 40, 117-122. |
[20] | D. J. McClements, 1995, Advances in the application of ultrasound in food analysis and processing, Trends in Food Science & Technology, 6, 1995 293-299. |
[21] | Abbas, S., Hayat, K., Karangwa, E., Bashari, M., Zhang, X., 2013, An overview of ultrasound-assisted food-grade nanoemulsions, Food Engineering Reviews, 5, 139-157. |
[22] | Ashokkumar, M., 2015, Applications of ultrasound in food and bioprocessing, Ultrasonics sonochemistry, 25, 17-23. |
[23] | Silva, E. K., Rosa, M. T. M. G., Meireles, M. A. A., 2015, Ultrasound-assisted formation of emulsions stabilized by biopolymers, Current Opinion in Food Science, 5, 50-59. |
[24] | Luo, Y., Peng, B., Liu, Y., Wu, Y., Wu, Z., 2018, Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity, Process Biochemistry, 73, 228-234. |
[25] | Monteiro, S. H. M. C., Silva, E. K., Alvarenga, V. O., Moraes, J., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Sant'Ana, A. S., Meireles, M. A. A., Cruz, A. G., 2018, Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage, Ultrasonics Sonochemistry, 42, 1-10. |
[26] | Silva, E. K., Costa, A. L. R., Gomes, A., Bargas, M. A., Cunha, R. L., Meireles, M. A. A., 2018, Coupling of high-intensity ultrasound and mechanical stirring for producing food emulsions at low-energy densities, Ultrasonics Sonochemistry, 47, 114-121. |
[27] | Monroy, Y., Rivero, S., García, M. A., 2018, Microstructural and techno-functional properties of cassava starch modified by ultrasound, Ultrasonics Sonochemistry, 42, 795-804. |
[28] | Jiang, H.-L., Yang, J.-L., Shi, Y.-P., 2017, Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology, Ultrasonics Sonochemistry, 34, 325-331. |
[29] | Albuquerque, B. R., Prieto, M. A., Barreiro, M. F., Rodrigues, A., Curran, T. P., Barros, L., Ferreira, I. C. F. R., 2017, Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques, Industrial Crops and Products, 95, 404-415. |
[30] | Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., Abert-Vian, M., 2017, Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review, Ultrasonics Sonochemistry, 34, 540-560. |
[31] | Bosiljkov, T., Dujmić, F., Cvjetko Bubalo, M., Hribar, J., Vidrih, R., Brnčić, M., Zlatic, E., Radojčić Redovniković, I., Jokić, S., 2017, Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins, Food and Bioproducts Processing, 102, 195-203. |
[32] | Machado, A. P. D. F., Pereira, A. L. D., Barbero, G. F., Martínez, J., 2017, Recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination, Food Chemistry, 231, 1-10. |
[33] | Tiwari, B. K., 2015, Ultrasound: A clean, green extraction technology, TrAC Trends in Analytical Chemistry, 71, 100-109. |
[34] | Cai, Z., Qu, Z., Lan, Y., Zhao, S., Ma, X., Wan, Q., Jing, P., Li, P., 2016, Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes, Food Chemistry, 197, 266-272. |
[35] | Wizi, J., Wang, L., Hou, X., Tao, Y., Ma, B., Yang, Y., 2018, Ultrasound-microwave assisted extraction of natural colorants from sorghum husk with different solvents, Industrial Crops and Products, 120, 203-213. |
[36] | Shirsath, S., Sable, S., Gaikwad, S., Sonawane, S., Saini, D., Gogate, P., 2017, Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters, Ultrasonics sonochemistry, 38, 437-445. |
[37] | Goula, A. M., Ververi, M., Adamopoulou, A., Kaderides, K., 2017, Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils, Ultrason Sonochem, 34, 821-830. |
[38] | Backes, E., Pereira, C., Barros, L., Prieto, M. A., Genena, A. K., Barreiro, M. F., Ferreira, I. C. F. R., 2018, Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques, Food Research International, 113, 197-209. |
[39] | Roriz, C. L., Barros, L., Prieto, M. A., Barreiro, M. F., Morales, P., Ferreira, I. C. F. R., 2017, Modern extraction techniques optimized to extract betacyanins from Gomphrena globosa L, Industrial Crops and Products, 105, 29-40. |
[40] | Pinela, J., Prieto, M. A., Pereira, E., Jabeur, I., Barreiro, M. F., Barros, L., Ferreira, I. C. F. R., 2019, Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants, Food Chemistry, 275, 309-321. |
[41] | Espada-Bellido, E., Ferreiro-González, M., Carrera, C., Palma, M., Barroso, C. G., Barbero, G. F., 2017, Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp, Food chemistry, 219, 23-32. |
[42] | Zhu, Z., Wu, Q., Di, X., Li, S., Barba, F. J., Koubaa, M., Roohinejad, S., Xiong, X., He, J., 2017, Multistage recovery process of seaweed pigments: Investigation of ultrasound assisted extraction and ultra-filtration performances, Food and Bioproducts Processing, 104, 40-47. |
[43] | Koubaa, M., Barba, F. J., Grimi, N., Mhemdi, H., Koubaa, W., Boussetta, N., Vorobiev, E., 2016, Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound, Innovative Food Science & Emerging Technologies, 37, 336-344. |
[44] | de Melo, M. M. R., Silvestre, A. J. D., Silva, C. M., 2014, Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology, The Journal of Supercritical Fluids, 92, 115-176. |
[45] | Cao, L., Xu, X., Chen, S., Ma, H., 2016, Cloning and expression analysis of Ficus carica anthocyanidin synthase 1 gene, Scientia Horticulturae, 211, 369-375. |
[46] | Jackman, R. L., Yada, R. Y., Tung, M. A., Speers, R. A., 1987, Anthocyanins as food colorants—a review, Journal of food biochemistry, 11, 201-247. |
[47] | Heger, M., van Golen, R. F., Broekgaarden, M., Michel, M. C., 2014, The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer, Pharmacological reviews, 66, 222-307. |
[48] | Lupacchini, M., Mascitti, A., Giachi, G., Tonucci, L., d'Alessandro, N., Martinez, J., Colacino, E., 2017, Sonochemistry in non-conventional, green solvents or solvent-free reactions, Tetrahedron, 73, 609-653. |
[49] | J. L. Frestedt, Chapter 16 - Foods, Food Additives, and Generally Regarded as Safe (GRAS) Food Assessments, in: A.M. Holban, A.M. Grumezescu (Eds.) Food Control and Biosecurity, Academic Press, 2018, pp. 543-565. |
[50] | Hamany Djande, C. Y., Piater, L. A., Steenkamp, P. A., Madala, N. E., Dubery, I. A., 2018, Differential extraction of phytochemicals from the multipurpose tree, Moringa oleifera, using green extraction solvents, South African Journal of Botany, 115, 81-89. |
[51] | Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., Ma, H., Luo, X., 2018, Advances in ultrasound assisted extraction of bioactive compounds from cash crops-A review, Ultrasonics sonochemistry, 48, 538-549. |
[52] | Castellar, R., Obón, J. M., Alacid, M., Fernández-López, J. A., 2003, Color properties and stability of betacyanins from Opuntia fruits, Journal of agricultural and food chemistry, 51, 2772-2776. |
[53] | Arruda, H. S., Silva, E. K., Pereira, G. A., Angolini, C. F. F., Eberlin, M. N., Meireles, M. A. A., Pastore, G. M., 2018, Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel, Ultrasonics sonochemistry, 50, 82-95. |
[54] | Guimarães, J. T., Silva, E. K., Alvarenga, V. O., Costa, A. L. R., Cunha, R. L., Sant'Ana, A. S., Freitas, M. Q., Meireles, M. A. A., Cruz, A. G., 2018, Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels, Ultrasonics Sonochemistry, 44, 251-260. |
[55] | Rajha, H. N., Boussetta, N., Louka, N., Maroun, R. G., Vorobiev, E., 2014, A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots, Food Research International, 65, 462-468. |
[56] | Wang, W., Chen, W., Zou, M., Lv, R., Wang, D., Hou, F., Feng, H., Ma, X., Zhong, J., Ding, T., Ye, X., Liu, D., 2018, Applications of power ultrasound in oriented modification and degradation of pectin: A review, Journal of Food Engineering, 234, 98-107. |
[57] | Mamvura, T. A., Iyuke, S. E., Paterson, A. E., 2018, Energy changes during use of high-power ultrasound on food grade surfaces, South African Journal of Chemical Engineering, 25, 62-73. |
[58] | Yahya, N. A., Attan, N., Wahab, R. A., 2018, An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds, Food and Bioproducts Processing, 112, 69-85. |
[59] | Náthia-Neves, G., Meireles, M. A. A., 2018, Genipap: A New Perspective on Natural Colorants for the Food Industry, Food and Public Health, 8, 21-33. |