Exponential-Gamma Additive Failure Rate Model

B. Srinivasa Rao1,*, R. R. L. Kantam2, K. Rosaiah3, M. Sridhar Babu4

1Department of Mathematics, R.V.R & J.C College of Engineering, Guntur, 522 019, A.P, India
2Department of Statistics, Acharya Nagarjuna University, Guntur, 522 010, A.P, India
3Department of Statistics, Acharya Nagarjuna University, Guntur, 522 010, A.P, India
4Professional Academy for C.A, Hyderabad, 500 038, A.P, India

Abstract The addition of hazard functions of Exponential model and Gamma model with shape 2 is developed. The probability model is considered and an attempt is made to present the distributional properties, estimation of parameters and testing of hypothesis about the proposed model. The findings are described.

Keywords LFRD, EGAFRM, Percentiles

1. Introduction

In reliability studies, combinations of components forming series, parallel, k out of n systems are quite popular. The survival probabilities of such systems are evaluated either by the system as a whole or through the survival probabilities of the components that define the system. It is well known that in a series system of a finite number of components with independent life time random variables, the system reliability is equal to the product of the component reliabilities. If \(f(x), F(x), h(x) \) respectively indicate the failure density, failure probability, failure rate of a component with life time random variable \(X \), then we know that the reliability is given by

\[
R(x) = 1 - F(x) = \int_{0}^{x} h(x)\,dx
\]

If a series system has two components with independent but non-identical life patterns explained by two distinct random variables say \(X_1, X_2 \) with respective failure densities, failure probabilities, failure rates as \(f_1(x), f_2(x); F_1(x), F_2(x); h_1(x), h_2(x) \) then the system reliability is given by

\[
R(x) = e^{-\int_{0}^{x} (h_1(x)+h_2(x))\,dx}
\]

From the above expression we can get the failure density and failure rate of the series system whose reliability is given by (1.1). Such models are already studied in the past with different choices of \(h_1(x) \) and \(h_2(x) \). One such situation is the popular linear failure rate distribution [LFRD]. In this model \(h_1(x) \) is taken as a constant failure rate model, \(h_2(x) \) is taken as an increasing failure rate (IFR) model with specific choices of exponential for \(h_1(x) \) and Weibull with shape 2 for \(h_2(x) \). The failure density, the cumulative distribution function, the reliability and the failure rate of LFRD model are given by

\[
f(x;\alpha,\beta) = (\alpha + \beta x) \exp\left(-\alpha x - \frac{\beta}{2} x^2\right)
\]

\[
F(x;\alpha,\beta) = 1 - \exp\left(-\alpha x - \frac{\beta}{2} x^2\right)
\]

\[
x > 0, \, \alpha, \beta > 0
\]

\[
\bar{F}(x;\alpha,\beta) = \exp\left(-\alpha x - \frac{\beta}{2} x^2\right)
\]

\[
h(x;\alpha,\beta) = \alpha + \beta x
\]

A hazard rate given in (1.5) is in the form of a straight line equation justifying the name “Linear Failure Rate” for this distribution. A number of researchers made an extensive study on LFRD model. Some recent works in this regard are Bain (1974), Balakrishnan and Malik (1986), Ananda Sen and Bhattacharya (1995), Mohie El-Din et al. (1997), Mahmoud et al. (2006), M.E. Ghitany and Kotz (2007), ABD EL-Baset A. Ahmad (2008), Khedhairi (2008), Sarhan and Zaindin (2009), Sarhan and Kundin (2009), Mahmoud and Al-Nagar (2009), Mazen and Zaindin (2010), Kantam and Priya (2011) have worked out an additive life testing model combining a CFR and DFR model with DFR generated from a Weibull model of shape parameter < 1. The rest of the paper is organized as follows:

The distributional properties of our proposed model are given in Section 2. The ML estimations is discussed in Section 3. Discrimination of our model from exponential using likelihood ratio criterion is given in Section 4. Summary and Conclusions are given in Section 5.
2. Distributional Properties

we consider the hazard function of the exponential distribution with parameter \(\lambda \) and a gamma distribution with shape parameter 2 and scale parameter \(v \). Then their respective failure rate functions are

\[
\begin{align*}
\lambda(x) &= \lambda, \quad x > 0 \\
\mu(x) &= \frac{v^2}{1 + vx}, \quad 1 + v > 0
\end{align*}
\]

The corresponding reliabilities are

\[
\begin{align*}
e^{-\lambda x} \quad \text{and} \quad \frac{e^{-vx}}{1 + vx}.
\end{align*}
\]

The series system reliability is

\[
R(x) = e^{-x(\lambda + v)} (1 + vx), \quad x > 0, \quad \lambda, v > 0
\]

We consider the failure density corresponding to (2.3) as our exponential gamma additive failure rate model (EGAFRM). The probability density function, the CDF, failure rate of EGAFRM are respectively given by

\[
\begin{align*}
f(x) &= e^{-x(\lambda + v)} [\lambda (1 + vx) + v^2 x], \\
F(x) &= 1 - e^{-x(\lambda + v)} (1 + vx), \\
h(x) &= \lambda + \frac{v^2}{1 + vx}, \quad x > 0; \quad \lambda, v > 0
\end{align*}
\]

The mean, median, mode and variance of EGAFRM are

\[
\text{Mean} = E(x) = \frac{\lambda + 2v}{(\lambda + v)^2}
\]

The median is calculated by taking

\[
F(x) = \frac{1}{2} \quad \text{and is given by} \ x = 0.5731
\]

\[
\text{Mode} = x = \frac{v(\lambda + v)^2 - \lambda}{(\lambda + 1)v}
\]

The variance is given by

\[
v(x) = \frac{\lambda^2 + 4\lambda v + 2v^2}{(\lambda + v)^4}
\]

The central moments and skewness of EGAFRM are given by

\[
\begin{align*}
\mu_2 &= \frac{\lambda^2 + 4\lambda v + 2v^2}{(\lambda + v)^4} \\
\mu_3 &= \frac{2}{(\lambda + v)^6} [2(\lambda + v)^3 - \lambda^3]
\end{align*}
\]

\[
\beta_1 = 4[2(\lambda + v)^3 - \lambda^3] \quad \text{(2.13)}
\]

3. Maximum Likelihood Estimation

Let \(x_1, x_2, \ldots, x_n \) is a random sample of size ‘n’ drawn from the EGAFRM with pdf \(f(x; \lambda, v) \) then the likelihood function is given by

\[
L = \prod_{i=1}^{n} f(x_i; \lambda, v)
\]

\[
\Rightarrow L = \prod_{i=1}^{n} e^{-x_i(\lambda + v)} [\lambda (1 + vx_i) + v^2 x_i]
\]

\[
\Rightarrow \log L = \sum_{i=1}^{n} \left[-x_i(\lambda + v) + \log [\lambda (1 + vx_i) + v^2 x_i] \right] \quad \text{(3.3)}
\]

The MLEs of \(\lambda, v \) can be obtained by solving the following likelihood equations

\[
\frac{\partial \log L}{\partial \lambda} = 0
\]

\[
\sum_{i=1}^{n} \left[-x_i + \frac{1 + vx_i}{\lambda (1 + vx_i) + v^2 x_i} \right] = 0 \quad \text{(3.4)}
\]

The equations (3.4) and (3.5) have to be solved through iteration only with some well known numerical methods and get the MLEs of \(\lambda \) and \(v \) say \(\hat{\lambda} \) and \(\hat{v} \) respectively. However, by using a simple successive method, the ML equations (3.4) and (3.5) can be further simplified and get the following estimators (not ML estimators) for \(\lambda, v \) say \(\hat{\lambda}, \hat{v} \) are obtained

\[
\hat{\lambda} = \frac{n + \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i^2}{3 \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i^2}
\]

\[
\hat{v} = \frac{2 \sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i^2} - 1
\]

Accordingly the exact variances of the MLEs are not mathematically tractable. However, the asymptotic variance, covariance of the estimates of the parameters are obtained using the following elements of the information matrix:
The estimated information matrix elements are

\[I_{11} = -E \left(\frac{\partial^2 \log L}{\partial \lambda^2} \right) \]

\[= -E \left[\sum_{i=1}^{n} \frac{-(1 + \nu x_i)^2}{(\lambda(1 + \nu x_i) + \nu^2 x_i)^2} \right] \] (3.8)

\[I_{12} = I_{21} = -E \left(\frac{\partial^2 \log L}{\partial \lambda \partial \nu} \right) \]

\[= -E \left[\sum_{i=1}^{n} \frac{3\nu^2 x_i + 2\nu x_i}{(\lambda(1 + \nu x_i) + \nu^2 x_i)^2} \right] \] (3.9)

\[I_{22} = -E \left(\frac{\partial^2 \log L}{\partial \nu^2} \right) \]

\[= -E \left[\sum_{i=1}^{n} \frac{((\lambda x_i + 2\nu x_i)^2 - (\lambda(1 + \nu x_i) + \nu^2 x_i)^2) 2x_i}{(\lambda(1 + \nu x_i) + \nu^2 x_i)^2} \right] \] (3.10)

The estimated asymptotic dispersion matrix of the MLEs is given by the inverse of

\[\begin{bmatrix} \hat{I}_{11} & \hat{I}_{12} \\ \hat{I}_{21} & \hat{I}_{22} \end{bmatrix} \]

The estimated information matrix elements are

\[\hat{I}_{11} = -\frac{\partial^2 \log L}{\partial \lambda^2} \bigg|_{\lambda = \lambda^*} \]

\[\hat{I}_{12} = \hat{I}_{21} = -\frac{\partial^2 \log L}{\partial \lambda \partial \nu} \bigg|_{\lambda = \lambda^*, \nu = \nu^*} \]

\[\hat{I}_{22} = -\frac{\partial^2 \log L}{\partial \nu^2} \bigg|_{\nu = \nu^*} \]

4. Discrimination between EGAFRM and Exponential Model

We know that the exponential distribution is having a number of preferable properties to be handled for problems of statistical inference. We, therefore are interested in assessing whether exponential distribution is an alternative to our model. In other words given a sample we are interested in studying whether the sample clearly discriminates between our model from that of exponential. Let us designate our distribution EGAFRM as a null population say P_0. We call exponential distribution as alternate population say P_1. We propose a null hypothesis H_0: “A given sample belongs to the population P_0” against an alternative hypothesis H_0: “the sample belongs to population P_1”.

Consider a sample from P_0. Let L_1, L_0 respectively stand for the likelihood function of the sample with population P_1 and P_0. Both L_1 and L_0 contain the respective parameters of the population. The given sample is used to get the parameters of P_1, P_0, so that for the given sample the value of $\frac{L_1}{L_0}$ is now estimated. If H_0 is true, $\frac{L_1}{L_0}$ must be small; therefore for accepting H_0 with a given degree of confidence $\frac{L_1}{L_0}$ is compared with a critical value with the help of the percentiles in the sampling distribution of $\frac{L_1}{L_0}$. But the sampling distribution of $\frac{L_1}{L_0}$ is not analytical, we therefore resorted to the empirical sampling distribution through simulation. We have generated random samples of size 5(1)10, 15, 20, 25, 30 from the population P_0 with various parameter combinations ($\lambda=1,2; \nu=1,2$) and got the value of L_1, L_0 along with the estimates of respective parameters for each sample. The percentiles of $\frac{L_1}{L_0}$ at various probabilities are computed and are given in Table 4.1.

In testing of hypothesis we know that the power of a test statistic is the complementary probability of accepting a false hypothesis at a given level of significance. Let us conventionally fix 5% level of significance. So that the percentiles in Table 4.1 under the column 0.05 shall become the critical values. We generate a random sample of sizes 5(1)10, 15, 20, 25, 30 from the population P_1 namely exponential. At this sample we find the estimates of the parameters of P_1 and P_0 using the respective probability models. Accordingly we got the estimates of L_1, L_0 for the sample from P_1.

Over repeated simulation runs we got the proportion of values of $\frac{L_1}{L_0}$ that fall below the respective critical values of Table 4.1. These proportions would give the value of β, the probability of type II error namely β so that the power $1-\beta$ would be the power. Various power values are given in Table 4.2. We conclude that as long as n is less than 10, a given sample can distinguish between the populations P_1 and P_0 only with a probability of 10%. Hence exponential can be a reasonable alternative to our model in small samples.
Table 4.1: Percentiles of L_1/L_0 for various values of λ and ν

<table>
<thead>
<tr>
<th>n</th>
<th>$\lambda=1, \nu=1$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\lambda=0.990$</td>
<td>0.975</td>
<td>0.950</td>
<td>0.050</td>
<td>0.025</td>
<td>0.010</td>
</tr>
<tr>
<td>5</td>
<td>13.9964</td>
<td>7.4704</td>
<td>3.2650</td>
<td>0.2737</td>
<td>0.1163</td>
<td>0.0038</td>
</tr>
<tr>
<td>6</td>
<td>21.6020</td>
<td>6.4687</td>
<td>3.7101</td>
<td>0.2128</td>
<td>0.1159</td>
<td>0.0027</td>
</tr>
<tr>
<td>7</td>
<td>66.5826</td>
<td>9.3778</td>
<td>4.9507</td>
<td>0.1719</td>
<td>0.1146</td>
<td>0.0025</td>
</tr>
<tr>
<td>8</td>
<td>75.0588</td>
<td>10.7142</td>
<td>5.3353</td>
<td>0.1362</td>
<td>0.1121</td>
<td>0.0021</td>
</tr>
<tr>
<td>9</td>
<td>79.2645</td>
<td>16.3024</td>
<td>7.3426</td>
<td>0.1117</td>
<td>0.0928</td>
<td>0.0020</td>
</tr>
<tr>
<td>10</td>
<td>83.4078</td>
<td>21.984</td>
<td>9.2781</td>
<td>0.0891</td>
<td>0.0815</td>
<td>0.0018</td>
</tr>
<tr>
<td>15</td>
<td>64.5254</td>
<td>37.2427</td>
<td>20.0810</td>
<td>0.0381</td>
<td>0.0299</td>
<td>0.0009</td>
</tr>
<tr>
<td>20</td>
<td>209.2082</td>
<td>68.3498</td>
<td>42.0277</td>
<td>0.0284</td>
<td>0.0168</td>
<td>0.0005</td>
</tr>
<tr>
<td>25</td>
<td>322.0724</td>
<td>162.9943</td>
<td>98.5263</td>
<td>0.0256</td>
<td>0.0110</td>
<td>0.0003</td>
</tr>
<tr>
<td>30</td>
<td>1048.1422</td>
<td>389.7236</td>
<td>210.8025</td>
<td>0.0244</td>
<td>0.0086</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>$\lambda=0.990$</th>
<th>0.975</th>
<th>0.950</th>
<th>0.050</th>
<th>0.025</th>
<th>0.010</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.7616</td>
<td>2.4455</td>
<td>2.2853</td>
<td>0.2791</td>
<td>0.2659</td>
<td>0.2628</td>
</tr>
<tr>
<td>6</td>
<td>3.1786</td>
<td>2.8940</td>
<td>2.7845</td>
<td>0.2127</td>
<td>0.2074</td>
<td>0.2028</td>
</tr>
<tr>
<td>7</td>
<td>3.7943</td>
<td>3.4898</td>
<td>3.2923</td>
<td>0.1713</td>
<td>0.1644</td>
<td>0.1593</td>
</tr>
<tr>
<td>8</td>
<td>4.3771</td>
<td>4.1062</td>
<td>3.8875</td>
<td>0.1408</td>
<td>0.1313</td>
<td>0.1257</td>
</tr>
<tr>
<td>9</td>
<td>5.2401</td>
<td>4.9137</td>
<td>4.5738</td>
<td>0.1126</td>
<td>0.1045</td>
<td>0.0964</td>
</tr>
<tr>
<td>10</td>
<td>6.2404</td>
<td>5.8552</td>
<td>5.0240</td>
<td>0.0897</td>
<td>0.0833</td>
<td>0.0775</td>
</tr>
<tr>
<td>15</td>
<td>15.9772</td>
<td>14.2342</td>
<td>12.9624</td>
<td>0.0397</td>
<td>0.0299</td>
<td>0.0265</td>
</tr>
<tr>
<td>20</td>
<td>38.3442</td>
<td>33.7745</td>
<td>29.4773</td>
<td>0.0273</td>
<td>0.0167</td>
<td>0.0108</td>
</tr>
<tr>
<td>25</td>
<td>97.3105</td>
<td>79.5516</td>
<td>67.9939</td>
<td>0.0251</td>
<td>0.0096</td>
<td>0.0034</td>
</tr>
<tr>
<td>30</td>
<td>251.6332</td>
<td>197.9550</td>
<td>163.6982</td>
<td>0.0238</td>
<td>0.0076</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>$\lambda=0.990$</th>
<th>0.975</th>
<th>0.950</th>
<th>0.050</th>
<th>0.025</th>
<th>0.010</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.4016</td>
<td>2.2721</td>
<td>2.0702</td>
<td>0.2702</td>
<td>0.2655</td>
<td>0.2628</td>
</tr>
<tr>
<td>6</td>
<td>2.9761</td>
<td>2.8032</td>
<td>2.5752</td>
<td>0.2214</td>
<td>0.2064</td>
<td>0.2016</td>
</tr>
<tr>
<td>7</td>
<td>3.5305</td>
<td>3.3076</td>
<td>3.0460</td>
<td>0.1682</td>
<td>0.1633</td>
<td>0.1588</td>
</tr>
<tr>
<td>8</td>
<td>4.2378</td>
<td>3.9290</td>
<td>3.5972</td>
<td>0.1367</td>
<td>0.1278</td>
<td>0.1235</td>
</tr>
<tr>
<td>9</td>
<td>5.2667</td>
<td>4.8739</td>
<td>4.3043</td>
<td>0.1080</td>
<td>0.1023</td>
<td>0.0966</td>
</tr>
<tr>
<td>10</td>
<td>6.0044</td>
<td>5.5127</td>
<td>5.0037</td>
<td>0.0874</td>
<td>0.0801</td>
<td>0.0760</td>
</tr>
<tr>
<td>15</td>
<td>15.3850</td>
<td>13.5629</td>
<td>11.0645</td>
<td>0.0350</td>
<td>0.0272</td>
<td>0.0248</td>
</tr>
<tr>
<td>20</td>
<td>36.2126</td>
<td>30.4878</td>
<td>22.2955</td>
<td>0.0195</td>
<td>0.0137</td>
<td>0.0093</td>
</tr>
<tr>
<td>25</td>
<td>84.3500</td>
<td>66.8563</td>
<td>46.9586</td>
<td>0.0141</td>
<td>0.0066</td>
<td>0.0035</td>
</tr>
<tr>
<td>30</td>
<td>211.5102</td>
<td>152.7887</td>
<td>99.0498</td>
<td>0.0110</td>
<td>0.0043</td>
<td>0.0014</td>
</tr>
</tbody>
</table>
5. Summary and Conclusions

A combination of Exponential model and Gamma model is developed on lines of the well known linear failure rate model. Estimating equations by ML method are also derived. Its validity as a specified model in the presence of a simpler Exponential model as an alternative is established using a likelihood ratio criterion. In some situations the proposed model stood robust against Exponential.

Acronyms

LFRD - Linear Failure Rate Distribution
EGAFFRM - Exponential Gamma Additive Failure Rate Model
CFR - Constant Failure Rate
DFR - Decreasing Failure Rate
IFR - Increasing Failure Rate
MLE - Maximum Likelihood Estimator

REFERENCES

6 B. Srinivasa Rao et al. Exponential-Gamma Additive Failure Rate Model

