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Abstract  In this paper, a  rotation-free isogeometric formulation for static analysis of composite sandwich plates is 

presented. The idea relies on a combination of isogeometric analysis with a classical laminate plate theory (CLPT). 

Isogeometric analysis (IGA) based on non-uniform rational B-spline(NURBS) basic function was recently proposed to 

preserve exact geometries and to enhance very significantly the accuracy of the traditional finite elements. B-splines basis 

functions (or NURBS) is used to represent for both geometric and field variable approximat ions, which provide a flexib le 

way to make refinement and degree elevation. They enable us to achieve easily the s moothness with arbitrary continuity 

order compared with the traditional FEM. CLPT ignores the transvers e shear deformation so it is only applied for thin 

plates. In our formulation, only deflection  variab les (without rotational degrees of freedom (dof)) are used for each control 

point. Essential displacements and rotations boundary conditions can be satisfied strongly by assigning control variable 

values on the boundary and these adjacent to the boundary, respectively. Several numerical examples are illustrated to 

demonstrate the performance of the present method in comparison with other published methods. 
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1. Introduction 

Sandwich structures have been widely  used in various 

engineering such as aircrafts, aerospace, vehicles, build ings, 

etc. Sandwich structures are made of three layers (two face 

sheets and a core) with  different materials stacked together to 

achieve desired properties (e.g. high stiffness and strength- 

to -weight  rat ios , long  fat igue life, wear res istance, 

lightweight, etc). For the analysis of sandwich p late, the 

exact elasticity solution first has been proposed by Pagano[1] 

to predict accurately of static behavior. Elasticity solution 

three-dimensional (3D) can become very  expensive when the 

complex structures are modeled. Generally, computational 

costs are reduced when two -d imens ional model is used. 

Using two-dimensional model, several plate theories using 

equivalent  sing le layer have been  developed  to analyze 

laminated composite sandwich plates. The classical laminate 

plate theory (CLPT)[3] can only give good results to thin 

plates because it ignores the transverse shear deformat ion. 

The first-order shear deformat ion theory (FSDT)[2] can be 

applied fo r both moderately  thick and thin  plates. This theory 

assumes that transverse shear stresses are constant through 

the thickness and a shear correction factor is needed to take  
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into account the non-linear distribution of shear stresses. To 

bypass the limitations of the FSDT, the higher-order shear 

deformation theories (HSDT) have been developed by Kant 

et al.[2] for the static analysis of composite sandwich plates 

based on analytical methods (Navier’s solution). Analytical 

methods have available for benchmark proble ms. Thanks to 

advanced numerical approaches such as finite elements [4, 5], 

smoothed finite elements(SFEM)[6, 7, 8], meshfree methods 

[9, 10, 11] and extended meshfree methods[12, 13, 14], we 

can solve effectively more complicated problems in practice. 

For illustration of this work, finite element analysis for 

composite sandwich plates is given by Tran et al.[15] based 

on HSDT. In addit ion, two-d imensional model based on 

zigzag  theory is also used to calculate the composite 

sandwich such as: the static analysis of composite sandwich 

plate with soft-core by Pandit et al.[16], C
0
 fin ite element 

model for the analysis of sandwich laminates with general 

layup by Singh et al.[17] and an improved C
0
 finite element 

model for the analysis of laminated sandwich plate with soft- 

core by Chalak et al.[19], etc.  

In the tradit ional FE method, a d iscretized  geometry  

obtained through the so-called meshing process is required. 

This process often leads to geometrical errors even using the 

higher-order FEM. Also, the communication of the geometry 

model and the mesh generation during an analysis process 

that aims to provide the desired accuracy for the solution is 

always needed and this constitute a time-consuming part in 

the overall analysis-design process, especially for industrial 
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problems[20]. To overcome this disadvantage, Hughes et al. 

[20] have recently proposed a NURBS-based isogeometric 

analysis to bridge the gap between Computer Aided Design 

(CAD) and Fin ite Element Analysis (FEA). In contrast to the 

standard FEM with Lagrange polynomial basis, isogeometric 

approach utilized more general basis functions such as 

Non-Uniform Rational B-splines (NURBS) that are common 

in CAD approaches. Isogeometric analysis  is thus very 

promising because it can directly use CAD data to describe 

both exact geometry and approximate solution. For structural 

mechanics, isogeometric analysis has been extensively 

studied for structural vibrations[21], the Reissner-Mindlin 

composite plate[24], the composite plate based on HSDT  

[25], laminated composite layerwise plates  [28], the 

Reissner-Mindlin shell[22] and Kirchhoff-Love shell[23, 27] 

and further developments[26], etc. The p lates are commonly 

employed in engineering applications as thin plates. So, 

CLPT is utilized in this paper to reduce computational costs. 

We focus on NURBS elements using a rotation-free 

isogeometric formulation for static analysis of composite 

sandwich plates.  

The paper is arranged as follows: a brief of the B-spline 

and NURBS surface is described in section 2. Section 3 

describes an isogeometric approximation for composite 

sandwich plates. Several numerical examples are illustrated 

in section 4. Finally we close our paper with some 

concluding remarks. 

2. Nurbs-Based Isogeometric Analysis 
Fundamentals 

2.1. Knot Vectors and Basis Functions  

Let be a nondecreasing  Ξ={ξ1,ξ2...,ξn+p+1} sequence of 

parameter values, 1, 1,...,i i i n p     . The i  is 

called knots, and Ξ is the set of coordinates in the 

parametric space. If all knots are equally spaced the knot 

vector is called uniform. If the first and the last knots are 

repeated p + 1 times, the knot vector is described as open. A 

B-Spline basis function is C
 continuous inside a knot 

span and 
1pC 
 continuous at a single knot. A knot value 

can appear more than once and is then called a multip le 

knot. At a knot of multiplicity k the continuity is 
p kC 

. 

Given a knot vector, the B-spline basis functions 

 ,i pN   of order p = 0 are defined recursively on the 

corresponding knot vector as follows 
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The basis functions of p>1 are defined by the following 

recursion formula  
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For p = 0 and 1 the basis functions of isogeometric 

analysis are identical to those of standard piecewise 

constant and linear finite elements, respectively. However, 

they are different for 2p  . In  this study, we consider 

basis functions with 2p  . 

2.2. NURBS Surface  

The B-spline curve is defined as: 

   ,
1

n

i p i
i

N 


C P              (3) 

where Pi are the control points and Ni,p (ξ ) is the pth-degree 

B-spline basis function defined on the open knot vector.  

The B-spline surfaces are defined by the tensor product 

of basis functions in two parametric d imensions ξ and η 

with two knot vectors Ξ ={ξ1,ξ2...,ξn+p+1}and H 

={η1,η2...,ηm+q+1} are expressed as follows: 

     
1 1

, , ,,
n m

i j
i p j q i jN M   

 

S P      (4) 

where Pi,j is the bidirectional control net, Ni,p(ξ) and Mj,q(η) 

are the B-spline basis functions defined on the knot vectors 

over an n×m net of control points Pi,j. Similarly  to notations 

used in fin ite elements, we identify the logical coordinates 

(i, j) of the B-spline surface with the traditional notation of a 

node A[22]. Eq.(4) can be rewritten in the fo llowing form: 

   
x

, ,
n m

A A

A

N   S P            (5) 

where NA(ξ,η) = Ni,p(ξ)Mj,q(η) is the shape function 

associated with node A.  

Similar to B-Splines, a NURBS surface is defined as  

   
1

, ,
nxm

A A
A

R   


S P  where 

w

w
A

A A
nxm

A A
A

R
N

N




 (6) 

where wA is the weight function.  

3. A Rotation-Free Isogeometric 
Formulation for Kirchhoff Plate 
Model 

Let   be the domain in R
2
 occupied by the mid-p lane 

of the plate and u, v and w denote the displacement 

components in the x, y and z directions, respectively. Using 

the Kirchhoff model[3], the displacements of any point in 
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the plate can be expressed as  
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where 

  and x y

w w
 

x y
 

 
 
 

             (8) 

In-plane strains through the following equation: 

0[   ]T

xx yy xy z                (9) 

where 
0  and   are the in-plane deformations and 

curvatures of the middle surface, respectively:  
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and  0 0

T
u v wu =  is displacement components at 

the middle surface. 

The Hook’s law for an arbitrary layer k , the stress in 

plane is expressed as  

 

 

 

   

 

 

1 1
11 12

2 21 22 2

33
12 12

0

0

0 0

k kk

k k

k k

Q Q

Q Q

Q

 

 

 

   
    

    
    
    

    
   

      (11) 

where subscripts 1 and 2 are the directions of the fiber and 

in-plane normal to fiber, respectively, subscript 3 indicates 

the direction normal to the plate; and the reduced stiffness 

components, 
( )

ij

kQ are given by 
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in which 
( )

1

kE , 
( )

2

kE , 
( )

12

kG , 
( )

12

k  and 
( )

21

k  are 

independent material properties for each layer.  

The laminate is usually made of several orthotropic layers. 

Each layer must be transformed into the laminate coordinate 

system (x, y , z). The stress - strain relat ionship is given as 
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where ijQ  is the transformed material constant matrix[3]. 

A weak form of the static model for composite sandwich 

plates can be briefly expressed as:   

d dT wp 
 

   D           (13) 

where   and w are the strains and the deflection and the 

material matrix D : 
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Using the same NURBS basis functions, both the 

description of the geometry (or the physical 

point) and the displacement field are expressed as 

   , ,
nxm

h

A A

A
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where n×m is the number basis functions,  T x yx  is 

the physical coordinates vector.  ,A  R  is rat ional basic 

functions and  
T

A A A Au v wq  is the degrees of 

freedom of u
h
 associated to control point A. 

The strains in Eq. (14) can be expressed to following 

nodal displacements as: 

      (16) 
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m
AB  and 

b
AB  are membrane and bending strain- 

displacement matrices gained from derivative of shape 

functions, respectively.  

The IGA formulation of composite sandwich plates can 

then be obtained for static analysis: 

Kq = f                  (18) 

where the global stiffness matrix is  

d

T
m m

b b

      
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

B A B B
K

B DB B
     (19) 

and f  is the global force matrix:  
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dp


 f R                 (20) 

where q are the global displacements matrix 

4. Numerical Results 

In this section, several numerical studies using a 

rotation-free isogeometric analysis are presented. For all 

numerical examples, quadratic, cubic and quartic NURBS 

elements integrated with nG = ( p + 1)(q + 1) Gauss points 

are used . The material parameters are assumed as: 

Material I: E1 = 25E2; G12 = G13 = 0.5E2; G23 = 0.2E2; v12 

= 0.25 

Material II:  

Face sheets : E1 = 172.4 GPa;  E2= 6.89 GPa; G12 = G13 = 

3.45 GPa; G23 = 1.378 GPa; v12 = 0.25 Core: E1 = E2= 0.276 

GPa; G12 = 0.1104 GPa; G13 = G23 = 0.414 GPa; v12 = 0.25 

The normalized d isplacement and in-plane stresses of 

composite sandwich plate are defined as: 

2 3

2

4

0

10 wE h
w

q a
 , 

2

2

0

x
x

h

q a


  , 

2

2

0

y

y

h

q a


   and 

2

2

0

xy

xy

h

q a


  . 

4.1. Three Layer (0
0
/90

0
/0

0
) Square Laminated Plate 

Under Sinusoidally Distributed Load 

Let us consider a simply supported square laminated 

plate subjected to a sinusoidal load 

0 sin sin
x y

q q
a b

    
    

   
. The length to width ratios is 

a/b=1 and the length to thickness ratios is a/h=100. Material 

I described is use. The plate is modeled by 9x9, 13x13, 

17x17 and 21x21 B-spline elements. The convergence of 

normalized  displacement and in-p lane stresses are given in 

Figure 1. It  can be seen that, the obtained results is very 

closed with analytical solutions by Kant[2] based on the 

third shear deformation p late theory and the elasticity 

solution 3D by Pagano[1].  

In order to compare the results, we calculate the 

normalized d isplacement and in-plane stresses of the 

sandwich square plate using 21x21 B-spline elements, as 

given in Table 1. Obtained results are compared with the 

several other methods including the close form solution 

(CFS) based on the exponential shear deformation plate 

theory (ESDT) by Aydogdu[18], the elasticity solution 

given in Pagano[1] and analytical solutions based on 

Navier’s technique by Kant[2]. In[2], there are 

three-solutions such as: the fully third shear deformation 

plate theory using 12 dof/node (Kant 1), the third shear 

deformation plate theory of Reddy using 5 dof/node(Kant 2) 

and the first shear deformation plate theory 5 dof/node 

(Kant 3). It is observed that for deflect ion and stresses the 

results of the present method agrees well with published 

results. Figure 2 plots the distribution of stresses through 

the thickness of the plate. The obtained results are in good 

agreement with those reported by Kant[2]. 
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Figure 1.  The in-plane normal and shear stresses of the three-layer composite  (00/900/00) simple supported square plates 

 

 

Figure 2.  The in-plane normal and shear stresses of the three-layer composite (0
0
/90

0
/0

0
) simple supported square plates 
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Table 1.  The normalized displacement and the stresses in a three-layer (0
0
/90

0
/0

0
) simply supported square laminate under sinusoidal transverse load 

Authors & methods ( , ,0)
2 2

a b
w  ( , , )

2 2 2
x

a b h
  ( , , )

2 2 2
y

a b h
  (0,0, )

2
xy

h
  

Kant 1[2] (HSDT) 0.4343 0.5392 0.1807 0.0214 

Kant 2[2] (HSDT) 0.4342 0.5390 0.1806 0.0214 

Aydogdu[18] (ESDT) 0.4350 0.5389 0.1806 0.0214 

Kant 3[2] (FSDT) 0.4337 0.5384 0.1804 0.0213 

Elasticity[1] - 0.5390 0.1810 0.0213 

Quadratic (CLPT) 0.4329 0.5383 0.1794 0.0213 

Cubic (CLPT) 0.4342 0.5382 0.1794 0.0213 

Quartic (CLPT) 0.4353 0.5387 0.1796 0.0213 

4.2. The Sandwich (0
0
/core/0

0
) Square Plate under Sinusoidally Distributed Load 

We consider the sandwich (0
0
/core/0

0
) simply supported square plate subjected to sinusoidally distributed load with the 

thickness of each face sheet equal h/10. Material II is used. The plate is modeled by 21x21 B-spline element. The 

normalized  transverse displacement and normalized  stresses are reported Table 2. The obtained results are compared with 

the exact elasticity solution by[1], the analytical solution by[2], FEM solutions based on the higher order zigzag plate theory 

(HOZT) by[16, 17] and and FEM solutions based on the third shear deformation p late theory by [15]. It is found that the 

results of present method shown good agreements with those solutions. The distribution of stresses through the thickness of 

the plate is illustrated in Figure 3.  

Table 2.  The normalized displacement and the stresses in a three-layer (0
0
/core/0

0
) simply supported square sandwich under sinusoidal transverse load 

Author & method ( , ,0)
2 2

a b
w  ( , , )

2 2 2
x

a b h
  ( , , )

2 2 2
y

a b h
  (0,0, )

2
xy

h
  

Kant 1[2] 0.8913 1.0990 0.0560 0.0436 

Kant 2[2] 0.8908 1.0973 0.0549 0.0436 

Kant 3[2] 0.8852 1.0964 0.0546 0.0435 

Elasticity[1] - 1.0980 0.0550 0.0437 

Singh et al.[17] 0.9017 1.1020 - 0.0453 

Pandit et al. [16] 0.8917 1.1093 0.0547 0.0434 

Tran et al. [15] 0.8919 1.1069 0.0573 0.0432 

Quadratic 0.8816 1.0962 0.0542 0.0434 

Cubic 0.8842 1.0965 0.0542 0.0433 

Quartic 0.8864 1.0970 0.0543 0.0433 
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Figure 3.  The in-plane normal and shear stresses of the sandwich (0/core/0) simple supported square plates 

4.3. An-symmetry the Sandwich (0
0
/90

0
/core/0

0
/90

0
) Square Plate under Sinusoidally Load 

Table 3.  The normalized displacement and the stresses in a five-layer (0
0
/90

0
/core/0

0
/90

0
) SCSC and CCCC square sandwich under sinusoidal transverse 

load 

Boundary 

conditions 
Method ( , ,0)

2 2

a b
w  ( , , )

2 2 2
x

a b h
  ( , , )

2 2 2
y

a b h
  

SCSC Pandit et al.[16] 0.3453 0.4077 0.0326 

 Singh et al.[17] 0.3920 0.5986 – 

 Chalak et al.[19] 0.3430 0.4250 0.0366 

 Quadratic 0.3328 0.3969 0.0327 

 Cubic 0.3358 0.3990 0.0327 

 Quartic 0.3369 0.3994 0.0328 

CCCC Pandit et al.[16] 0.2286 0.4270 0.0228 

 Singh et al.[17] 0.2260 0.4283 – 

 Chalak et al.[19] 0.2267 0.4371 0.0259 

 Quadratic 0.2200 0.4300 0.0229 

 Cubic 0.2221 0.4302 0.0229 

 Quartic 0.2231 0.4305 0.0229 
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In order to study the stretching-bending coupling effect, 

the an-symmetry five-layer sandwich p late (0
0
/90

0
/core/0

0
/

90
0
) is considered. Material II is also used. The core has a 

thickness of 0.8h while the two laminated face -sheets are 

of 0.1h. The plate has supported (S) and clamped  (C) 

boundary conditions. When 21x21 element mesh, the 

normalized d isplacement and stresses derived from the 

present method of a five-layer sandwich plate with various 

boundary conditions are given in Table 3. For comparison, 

other methods based on C
0

  higher order zigzag plate theory 

by Chalak et  al.[19], Singh et al.[17] and Pandit et al. [16] 

are cited. It is observed that the present results are in good 

agreement with published ones for both SCSC and CCCC 

boundary conditions. 

5. Conclusions 

An isogeometric formulat ion has been developed for 

static analysis of the composite sandwich plates using a 

rotation-free isogeometric formulat ion of CLPT. Weak 

form of the static model for composite sandwich plates 

using CLPT was derived. The present method  only used 

three degrees of freedom per node (3 dof/node), and the 

obtained results are in very good agreement with analytical 

solution by Kant 1[2] using 12 dof/node, Kant 2[2] using 5 

dof/node, FEM solutions using 11 dof/node[16, 17, 19] and 

FEM solutions using 9 dof/node[15]. The d istribution of 

stresses through the thickness of the sandwich plates are in 

very good agreement with those of other existing methods.  
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