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Abstract In this paper, a rotation-free isogeometric formulation for static analysis of composite sandwich plates is
presented. The idea relies on a combination of isogeometric analysis with a classical laminate plate theory (CLPT).
Isogeometric analysis (IGA) based on non-uniform rational B-spline(NURBS) basic function was recently proposed to
preserve exact geometries and to enhance very significantly the accuracy of the traditional finite elements. B-splines basis
functions (or NURBS) is used to represent for both geometric and field variable approximations, which provide a flexible
way to make refinement and degree elevation. They enable us to achieve easily the smoothness with arbitrary continuity
order compared with the traditional FEM. CLPT ignores the transverse shear deformation so it is only applied for thin
plates. In our formulation, only deflection variables (without rotational degrees of freedom (dof)) are used for each control
point. Essential displacements and rotations boundary conditions can be satisfied strongly by assigning control variable
values on the boundary and these adjacent to the boundary, respectively. Several numerical examples are illustrated to

demonstrate the performance of the present method in comparison with other published methods.
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1. Introduction

Sandwich structures have been widely used in various
engineering such as aircrafts, aerospace, vehicles, buildings,
etc. Sandwich structures are made of three layers (two face
sheets and a core) with different materials stacked togetherto
achieve desired properties (e.g. high stiffness and strength-
to-weight ratios, long fatigue life, wear resistance,
lightweight, etc). For the analysis of sandwich plate, the
exact elasticity solution first has been proposed by Pagano[1]
to predict accurately of static behavior. Elasticity solution
three-dimensional (3D) can beco me very expensive when the
complex structures are modeled. Generally, computational
costs are reduced when two-dimensional model is used.
Using two-dimensional model, several plate theories using
equivalent single layer have been developed to analyze
laminated composite sandwich plates. The classical laminate
plate theory (CLPT)[3] can only give good results to thin
plates because it ignores the transverse shear deformation.
The first-order shear deformation theory (FSDT)[2] can be
applied forboth moderately thick and thin plates. This theory
assumes that transverse shear stresses are constant through
the thickness and a shear correction factor is needed to take
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into account the non-linear distribution of shear stresses. To
bypass the limitations of the FSDT, the higher-order shear
deformation theories (HSDT) have been developed by Kant
et al.[2] for the static analysis of composite sandwich plates
based on analytical methods (Navier’s solution). Analytical
methods have available for benchmark proble ms. Thanks to
advanced numerical approaches such as finite elements[4, 5],
smoothed finite elements(SFEM)[6, 7, 8], meshfree methods
[9, 10, 11] and extended meshfree methods[12, 13, 14], we
can solve effectively more complicated problems in practice.
For illustration of this work, finite element analysis for
composite sandwich plates is given by Tran et al.[15] based
on HSDT. In addition, two-dimensional model based on
zigzag theory is also used to calculate the composite
sandwich such as: the static analysis of composite sandwich
plate with soft-core by Pandit et al.[16], C° finite element
model for the analysis of sandwich laminates with general
layup by Singh et al.[17] and an improved C° finite element
model for the analysis of laminated sandwich plate with soft-
core by Chalak et al.[19], etc.

In the traditional FE method, a discretized geometry
obtained through the so-called meshing process is required.
This process often leads to geometrical errors even using the
higher-order FEM. Also, the communication of the geometry
model and the mesh generation during an analysis process
that aims to provide the desired accuracy for the solution is
always needed and this constitute a time-consuming part in
the overall analysis-design process, especially for industrial
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problems[20]. To overcome this disadvantage, Hughes et al.
[20] have recently proposed a NURBS-based isogeometric
analysis to bridge the gap between Computer Aided Design
(CAD) and Finite Element Analysis (FEA). In contrast to the
standard FEM with Lagrange polynomial basis, isogeometric
approach utilized more general basis functions such as
Non-Uniform Rational B-splines (NURBS) that are common
in CAD approaches. Isogeometric analysis is thus very
promising because it can directly use CAD data to describe
both exact geometry and appro ximate solution. For structural
mechanics, isogeometric analysis has been extensively
studied for structural vibrations[21], the Reissner-Mindlin
composite plate[24], the composite plate based on HSDT
[25], laminated composite layerwise plates [28], the
Reissner-Mindlin shell[22] and Kirchhoff-Love shell[23, 27]
and further developments[26], etc. The plates are commonly
employed in engineering applications as thin plates. So,
CLPT is utilized in this paper to reduce computational costs.
We focus on NURBS elements using a rotation-free
isogeometric formulation for static analysis of composite
sandwich plates.

The paper is arranged as follows: a brief of the B-spline
and NURBS surface is described in section 2. Section 3
describes an isogeometric approximation for composite
sandwich plates. Several numerical examples are illustrated
in section 4. Finally we close our paper with some
concluding remarks.

2. Nurbs-Based Isogeometric Analysis
Fundamentals

2.1. Knot Vectors and Basis Functions
E={&1,8..Enepa} SEQUENce of

parameter values, & <&.,,i=1...,n+p. The égi is
called knots, and = is the set of coordinates in the
parametric space. If all knots are equally spaced the knot
vector is called uniform. If the first and the last knots are

repeated p + 1 times, the knot vector is described as open. A

Let be a nondecreasing

B-Spline basis function is C™ continuous inside a knot

span and CP"™ continuous at a single knot. A knot value
can appear more than once and is then called a multiple

knot. At a knot of multiplicity k the continuity is C Pk
Given a knot vector, the B-spline basis functions

Ni (f) of order p = 0 are defined recursively on the
corresponding knot vector as follows

1 if < E<E
Ni,o(f)z{ol é<§<§l+1}

otherwise
The basis functions of p>1 are defined by the following
recursion formula

(D

Nipl)= 25 Ny 4
§i+p+l_§ @
§i+ P+l §i+1 Ni+1’ pil(g)

For p = 0 and 1 the basis functions of isogeometric
analysis are identical to those of standard piecewise
constant and linear finite elements, respectively. However,
they are different for p>2. In this study, we consider

basis functions with p>2.

+

2.2. NURBS Surface

The B-spline curve is defined as:

c(s):iNi,p(f)Pi ®

where P; are the control points and N;, (¢) is the pth-degree
B-spline basis function defined on the open knot vector.

The B-spline surfaces are defined by the tensor product
of basis functions in two parametric dimensions & and n
with two knot vectors E ={{,&.LEnpeyand H
={n1.12...im+qe1} are expressed as follows:

n m

S(§,U)=;;Ni,p(§)'\ﬂj,q (7)Pi; )
where P;; is the bidirectional control net, N;,(&) and M;4(m)
are the B-spline basis functions defined on the knot vectors
over an n>m net of control points P;;. Similarly to notations
used in finite elements, we identify the logical coordinates
(i, j) of the B-spline surface with the traditional notation of a
node A[22]. Eqg.(4) can be rewritten in the following form:

nxm

S(f,n)ngA(f,n)PA (5)

where Na(&#) = Nip({)Mjq(m) is the shape function
associated with node A.
Similar to B-Splines, a NURBS surface is defined as

o _ Naw,
_ A 7 nxm
S(¢&n)= AZZ;RA(QE,U)PA where ZA: N,w, (6)

where wa is the weight function.

3. ARotation-Free Isogeometric
IIi/lor&nlljlatlon for Kirchhoff Plate
ode

Let QQ be the domain in R? occupied by the mid-plane
of the plate and u, v and w denote the displacement
components in the x,y and z directions, respectively. Using
the Kirchhoff model[3], the displacements of any point in
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the plate can be expressed as
u(x,y,z) =uy(x,y)—26,(xy)
V(x,y.2)=Vo (x,y)-28,(xy) (@)
w(x,y,z) =w(X,y)

where
0, _aw and 6, = ow (8)
OX ay
In-plane strains through the following equation:
T
8:[‘S‘xx gyy 7/xy] =80+ZK (9)

where g, and « are the in-plane deformations and
curvatures of the middle surface, respectively:

s _ .
= 00 -—
S0 0 o

2
=] 0 < oluand k=[0 0 - |uqo
ox oy
2 29 00 22
Loy ox X0y |
and u={u, v, w} is displacement components at

the middle surface.
The Hook’s law for an arbitrary layer Kk, the stress in
plane is expressed as

k k
o' 1o, q, o79a"

k
=1Qy Qp O ‘9£)
k k
71(2) 0 0 Q 71(2)
where subscripts 1 and 2 are the directions of the fiber and

in-plane normal to fiber, respectively, subscript 3 indicates
the direction normal to the plate; and the reduced stiffness

(11

k .
components, Qiﬁ ) are given by

() K
w0__ BV Q(k)= viy EF
T (k) Ky k)
Via Va1
E( ’
12
k k k k
in which El( i Eé ) G( ) , V1(2) and v are

independent material properties for each layer.

The laminate is usually made of several orthotropic layers.
Each layer must be transformed into the laminate coordinate
system (X, y, z). The stress - strain relationship is given as

Oy ) (511 612 (316 " Exx )
Ow( = 621 (322 (526 Ey (12)
Y Qﬁl 662 (566 Vxy

where @j is the transformed material constant matrix[3].

A Rotation-free Isogeometric Analysis for Composite Sandwich Thin Plates

A weak form of the static model for composite sandwich
plates can be briefly expressed as:

TN _
jgéfe DedQ = IQ SwpdQ (13)
where € and w are the strains and the deflection and the
material matrix D :

(14)

(A,, ij ):ﬂ/zz

Using the same NURBS basis functions,
description of the geometry (or the physical

point) and the displacement field are expressed as
nxm

=Y R,(&n)P, and

u"(x(& n))=§RA(§,nhA

where nxm is the number basis functions, X" =(Xx ) is

(Lz.2°)Qdz i,j=126
both the

(15)

the physical coordinates vector. R, (5,77) is rational basic

functions and g, =[U, v, W, | is the degrees of

freedom of u" associated to control point A.
The strains in Eq. (14) can be expressed to following
nodal displacements as:

i r
[eo x] =2[B% B, ] 0y (o
=1
where
R,, 0 0
B’E: 0 RA,y 0 and
RA,y RA’X 0
0 0 —Ryy
b
0 0 —2RA,Xy

b . .
B and BA are membrane and bending strain-

displacement matrices gained from derivative of shape
functions, respectively.

The IGA formulation of composite sandwich plates can
then be obtained for static analysis:

Kg=f
where the global stiffness matrix is

K = I {Bm} {2 E}EH dQ  (19)

and f is the global force matrix:

(18)
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f= jQ pRAQ (20)

where q are the global displacements matrix

4. Numerical Results

In this section, several numerical studies using a
rotation-free isogeometric analysis are presented. For all
numerical examples, quadratic, cubic and quartic NURBS
elements integrated with nG = (p + 1)(q + 1) Gauss points
are used . The material parameters are assumed as:

Material I: E; = 25E;; Gi, = Gi3 = 0.5E;; Gy3 =0.2E; Vo
=0.25

Material I1I:

Face sheets : E; = 172.4 GPa; E,=6.89 GPa; G, = Gj3=
3.45 GPa; Gy3=1.378 GPa; v, =0.25 Core: E; = E,=0.276
GPa; G, = 0.1104 GPa; Gi3 = Gp3 = 0.414 GPa; vy, =0.25

The normalized displacement and in-plane stresses of

. . _ _ 10°wWE,h’
composite sandwich plate are defined as: W=———"—
o2
_ ol o, h? _ o i
Ox=""2, 0y= 5 and o, =——.
Qo2 ohte} 9,2

4.1. Three Layer (0°/90%/0°%) Square Laminated Plate
Under Sinusoidally Distributed Load

Let us consider a simply supported square laminated

plate subjected to a sinusoidal load
0.455 , ,
HSDT-exact
— % — FSDT-exact
—A— Quadratic
0451 —&— Cubic
N —k— Quartic

o
R
mA

0.44%

0.435

Normalized deflection (100w E2h3/pa4)

0.43 ; : : y ; y
10 12 14 16 18 20
Number of element per side

q:qosin(ﬂ—xjsin(%yj. The length to width ratios is
a

a/b=1and the length to thickness ratios is a/h=100. Material
I described is use. The plate is modeled by 9x9, 13x13,
17x17 and 21x21 B-spline elements. The convergence of
normalized displacement and in-plane stresses are given in
Figure 1. It can be seen that, the obtained results is very
closed with analytical solutions by Kant[2] based on the
third shear deformation plate theory and the elasticity
solution 3D by Pagano[1].

In order to compare the results, we calculate the
normalized displacement and in-plane stresses of the
sandwich square plate using 21x21 B-spline elements, as
given in Table 1. Obtained results are compared with the
several other methods including the close form solution
(CFS) based on the exponential shear deformation plate
theory (ESDT) by Aydogdu[18], the elasticity solution
given in Pagano[l] and analytical solutions based on
Navier’s technique by Kant[2]. In[2], there are
three-solutions such as: the fully third shear deformation
plate theory using 12 dof/node (Kant 1), the third shear
deformation plate theory of Reddy using 5 dof/node (Kant 2)
and the first shear deformation plate theory 5 dof/node
(Kant 3). It is observed that for deflection and stresses the
results of the present method agrees well with published
results. Figure 2 plots the distribution of stresses through
the thickness of the plate. The obtained results are in good
agreement with those reported by Kant[2].
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Figure 1. The in-plane normal and shear stresses ofthe three-layer composite (0°/00°0°) simple supported square plates
05 ‘ \ \ \ \ \ 0.5
04} 1 04r ]
0.3f 1 0.3} ]
0.2} 1 0.2} ]
< 01 B T 01 0 1
N N
] or =4 or 1
T kS
X 01} C 01} 1
02 1 02 ]
03 1 03¢} ]
-04 1 -04 | 1
-0.5 : : ; : : : -0.5 : : :
08 -06 -04 -02 0 0.2 0.4 0.6 -0.2 -0.1 0 0.1 0.2
Normalized stress o, Normalized stress o,
05
041
031
0.2r
- 011
N
.2 o
®
& 01t
02}
037
047
-0.5 ‘ ‘ : ‘ ‘
-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Normalized stress ny

Figure 2. The in-plane normal and shear stresses of the three-layer composite (0°/90°/0°) simple supported square plates
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Table 1. The normalized displacement andthe stresses in a three-layer (0°/00°0°) simply supported square laminate under sinusoidal transverse load

Authors & methods W(E,E,O) o, (E,E,E o, (E,E,E Gy (O,O,E)
2 2 222 222 2
Kant 1[2] (HSDT) 04343 05392 0.1807 00214
Kant 2[2] (HSDT) 0.4342 05390 0.1806 00214
Aydogdu[18] (ESDT) 0.4350 05389 0.1806 00214
Kant 3[2] (FSDT) 0.4337 05384 0.1804 0.0213
Elagticity[1] - 05390 0.1810 00213
Quadratic (CLPT) 04329 05383 0.1794 0.0213
Cubic (CLPT) 0.4342 05382 0.1794 0.0213
Quartic (CLPT) 04353 05387 0.1796 0.0213

4.2. The Sandwich (0%/core/0°%) Square Plate under Sinusoidally Distributed Load

We consider the sandwich (0°/core/0°) simply supported square plate subjected to sinusoidally distributed load with the
thickness of each face sheet equal h/10. Material 11 is used. The plate is modeled by 21x21 B-spline element. The
normalized transverse displacement and normalized stresses are reported Table 2. The obtained results are compared with
the exact elasticity solution by[1], the analytical solution by[2], FEM solutions based on the higher order zig zag plate theory
(HOZT) by[16, 17] and and FEM solutions based on the third shear deformation plate theory by[15]. It is found that the
results of present method shown good agreements with those solutions. The distribution of stresses through the thickness of
the plate is illustrated in Figure 3.

Table 2. The normalized displacement and the stresses in a three-layer (0°/core/0%) simply supported square sandwich under sinusoidal transverse load

_ab _,abh _,abh _ h
Author & method W(—,—,0) ,(==,=) oy(—,—,— Gy (0,0,-)
2 2 222 222 2
Kant 1[2] 08913 1.0990 0.0560 0.0436
Kant 2[2] 0.8908 1.0973 0.0549 0.0436
Kant 3[2] 0.8852 1.0964 0.0546 0.0435
Elasticity[1] - 1.0980 0.0550 0.0437
Singh etal [17] 0.9017 1.1020 - 0.0453
Pandit etal. [16] 08917 1.1093 0.0547 0.0434
Tran etal. [15] 0.8919 1.1069 0.0573 0.0432
Quadratic 0.8816 1.0962 0.0542 0.0434
Cubic 0.8842 1.0965 0.0542 0.0433
Quartic 0.8864 1.0970 0.0543 0.0433
05 , , , , ,
0.4 —_— 1
0.3f ]
0.2} ]
c 01} 1
N
0 or 1
S
X 01} 1
02 1
03 1
04| /— ]
0.5 : ‘ : : ‘
-1.5 -1 0.5 0 0.5 1 1.5

Normalized stress o,
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Figure 3. The in-plane normal and shear stresses of the sandwich (0/core/0) simple supported square plates

4.3. An-symmetry the Sandwich (0°/90°/core/0°/90%) Square Plate under Sinusoidally Load

Table 3. The nomalized displacement and the stresses in a five-layer (0°/90°/core/0°/90%) SCSC and CCCC square sandwich under sinusoidal transverse
load

Bounday et TER) 5C20 58200
conditions 2'2 X 2'2'9 y 2'2'92
SCSC Pandit etal.[16] 0.3453 0.4077 0.0326

Singh etal [17] 0.3920 05986 -
Chalak etal.[19] 0.3430 0.4250 0.0366
Quadratic 0.3328 0.3969 0.0327
Cubic 0.3358 0.3990 0.0327
Quartic 0.3369 0.39%4 0.0328
CCcCC Pandit etal.[16] 0.2286 04270 0.0228
Singh etal [17] 0.2260 0.4283 -
Chalak etal.[19] 0.2267 04371 0.0259
Quadratic 0.2200 0.4300 0.0229
Cubic 02221 0.4302 0.0229

Quartic 0.2231 04305 0.0229
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In order to study the stretching-bending coupling effect,
the an-symmetry five-layer sandwich plate (0°/90%core/0%/
90%) is considered. Material 11 is also used. The core has a
thickness of 0.8h while the two laminated face -sheets are
of 0.1h. The plate has supported (S) and clamped (C)
boundary conditions. When 21x21 element mesh, the
normalized displacement and stresses derived from the
present method of a five-layer sandwich plate with various
boundary conditions are given in Table 3. For comparison,
other methods based on C° higher order zigzag plate theory
by Chalak et al.[19], Singh et al.[17] and Pandit et al. [16]
are cited. It is observed that the present results are in good
agreement with published ones for both SCSC and CCCC
boundary conditions.

5. Conclusions

An isogeometric formulation has been developed for
static analysis of the composite sandwich plates using a
rotation-free isogeometric formulation of CLPT. Weak
form of the static model for composite sandwich plates
using CLPT was derived. The present method only used
three degrees of freedom per node (3 dof/node), and the
obtained results are in very good agreement with analytical
solution by Kant 1[2] using 12 dof/node, Kant 2[2] using 5
dof/node, FEM solutions using 11 dof/node[16, 17, 19] and
FEM solutions using 9 dof/node[15]. The distribution of
stresses through the thickness of the sandwich plates are in
very good agreement with those of other existing methods.
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