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Abstract  Most of the studies have concentrated on univariate non-linear mixed effects modelling to analyse a single 
growth response instead of multivariate non-linear mixed effects modelling to analyse multiple growth responses 
simultaneously. In this study, in addition to univariate modelling, we simultaneously analysed six body features (mass, bill, 
tarsus, wing, body, head and foot) of Swift tern chicks using multivariate modelling. Firstly, we fitted univariate inverse 
exponential, Gompertz, logistic and Richards non-linear mixed effects models to each of the six body features. Secondly, we 
fitted multivariate inverse exponential, Gompertz, logistic and Richards non-linear mixed effects models to all of the six body 
features simultaneously. Data used in this study was supplied by the Avian Demography Unit (Department of Statistical 
Sciences, University of Cape Town). To analyse the data we used nonlinear mixed effects (nlme) package in R. An R package 
is a free software programming language with international comprehensive archive network support for various statistical 
computing and graphing methods. It was found that the univariate inverse exponential models were most appropriate to 
describe the growth of four of the six body features. The multivariate logistic model gave the best model to describe the 
growth of all body features taken simultaneously. It was shown that the growth of Swift Tern chicks occurs in the following 
order: (tarsus, foot)-(body mass, bill, head)-wing. 

Keywords  Non-linear mixed effects, Univariate models, Multivariate models, Autoregressive correlation, Compound 
symmetry 

 

1. Introduction 
Measurements of size of an individual or an object, or a 

population are often collected on several occasions in order 
to determine how fast is the growth or how the growth is 
influenced by various treatments or other covariate 
characteristics. The resulting data set is usually referred to 
as longitudinal data or is sometimes known as growth data 
[1]. In growth studies, the knowledge of the age of each 
individual is essential information for growth analysis. 
However, in studies on birds it may not always be possible 
to follow all chicks from their hatching days. In this study, 
the exact age of most chicks was unknown, but a small 
portion of the sample was followed from nestling up to the 
end of the study period. This leads to necessity of 
estimation of age of the chicks whose age was unknown. 
The analysis of growth data can be done by using models of 
growth curves, which are equations describing the increase 
and/or decrease of the size of a specific feature of an 
individual against time [2]. In recent years, non-linear  

 
* Corresponding author: 
dntirampeba@polytechnic.edu.na (Dismas Ntirampeba) 
Published online at http://journal.sapub.org/statistics 
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved 

mixed effects models have become an important tool for 
growth models and are applied in different fields such as 
forestry, agriculture, ecology, biomedicine, sociology, 
economics and other areas. Most of the studies have 
concentrated on univariate non-linear mixed effects 
modelling to analyse a single growth response variable, 
very few studies have looked at fitting simultaneously 
non-linear mixed effects models to multiple responses [3]. 
In this study we have followed the univariate non-linear 
mixed effects models, as described by [4], to describe each 
of the six body features. To describe the growth of all 
features simultaneously, we have used a simple approach 
that allows a straightforward comparison of growth between 
the different body features. Similar analysis were also done 
to Grey-headed gulls, though are not presented in this 
paper. 

2. Data and Methods 
2.1. Data 

The swift tern (Sterna bergii), also known as greater 
crested tern, is a nomadic seabird species dispersed around 
the southern African coastlines (Namibia, Angola, South 
Africa and Mozambique) [5, 6]. The data set used in this 
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study consists of measurements of body mass (grams), wing 
length (mm), foot length (mm), head length (mm) and 
culmen length (mm) of Swift Tern chicks taken on several 
unequally spaced occasions during the period of May to July 
2001 at Robben Island. Chicks were not all measured from 
day of hatching. From a sample of 253 chicks only 34 chicks 
were followed from nestling stage, others were first captured 
when they were already runners. 

2.2. Methods 

Due to nature of the data (age unknown for some chicks), 
we have first estimated age by fitting the growth curve, 
obtained from birds with known age, to the mass 
measurements of the chick with unknown age as described 
below. 

2.2.1. Age Determination Method 

The age determination method is based on the following 
assumptions:  

1. Body mass was used because this feature exhibits quite 
often a strong correlation with time.  

2. Asymptotes were assumed to vary between birds since 
it is naturally unlikely that all birds have the same maximum 
mass even if their lower asymptotes were the same at 
hatching, and other growth parameters ( µ the time at which 
the mass reaches half of the asymptote and β the time elapsed 
between mass reaching half and approximately 3/4 of the 
asymptotic mass). For the 34 nestling birds we assumed that 
age at first capture ( 0t ) was two days. We then fitted a 
logistic model to body mass for these nestling birds: 

( )( )1 expity tα µ β 
  

= + − −    (1) 

We then fixed α̂ , µ̂ and β̂ at the estimates generated 
from the equation 1. Then, for each of the runner birds, we 
found the logistic curve which fitted the observed 
measurements most closely by minimizing the sum of 
absolute residuals to the observed values (Figure 1) and by 
assuming that the growth rate parameters ( µ  and β ) were 
equal for birds and that individuals should only differ in their 
asymptotic weights (i.e. allowed the asymptote (α ) to differ 
from α̂  by adding iα∆ . Also, we allowed the age to 
differ from time 0 (day at first capture). 

The growth curve for runners can then be described as in 
equation 2. 

( ) ( )( )( )ˆˆ ˆ1 expit i iy t tα α µ β= + ∆ + − + ∆ −     (2) 

where 𝑦𝑦𝑖𝑖𝑖𝑖  is the body mass for bird 𝑖𝑖 measured at age 𝑖𝑖, 
∆𝛼𝛼𝑖𝑖  is the difference in asymptotes compared to 𝛼𝛼� and ∆𝑖𝑖𝑖𝑖  
is the actual age at first capture (days). The purpose was to 
determine ∆𝑖𝑖𝑖𝑖 , which quantifies the age of the bird at day 
zero (first capture for the particular bird). We used the 
“optim” function in R [7] to estimate it∆ . iα∆  and it∆
were constrained to lie between ˆ 55α ±  and 2 30± , 
respectively. The impact of changing these bounds was 

assessed and similar estimates were found for all intervals. 
Age at each occasion was then calculated as it t+ ∆ . Then ity  
(growth measurements for each growth feature) was 
modelled against it t+ ∆ . 

 

Figure 1.  Predicted curve for nestling bird masses (black line) and the 
optimized curve for bird number 199 (blue line), arrows indicate the ranges 
over which iα∆ and it∆  were allowed to vary 55iα∆ = − and

21.85it∆ =  for this bird 

2.2.2. Non-linear Mixed Effects Models: Model Formulation 
and Assumptions 

For univariate non-linear mixed effects models, we 
followed the formulation in [4]. To model multiple 
responses, we have used an alternative approach to one 
presented by [3, 4]. We assumed that all responses follow 
the same structural model. We formulated our model as 
follows: Let kijy

 
denote response k  for individual i

taken at occasion kijy
 

with 1, 2, ..., kii n=  ( kin is the 

number of individuals measured for response k ),
1, 2, ..., kjj n=  ( kin = number of observations on individual 

𝑖𝑖  for response𝑘𝑘 ), and 1, 2, ...,k R=  ( R = number of 
responses). Let us combine repeated observations for each 
individual i , relating to a specific response k , into a 

1kin × vector ( )1 2, , ...,
kiki ki ki n kiy y y y=  and further 

concatenate all vectors relating to all observations for R
response variables for each individual in 1in ×  vector 

( )1 2, , ..., T
i i i Riy y y y= where 

1

R

i kj
k

n n
=

=∑
 

is the number of measurements for individual i  over all 
responses at all occasions. Similarly we form a vector of 
occasions ix . We distinguished measurements from 
different response variables by adding a categorical 
response covariate to the model. So for R  responses, we 
define a r -level factor variable that indicates the specific 
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response that generated each measurement. This is 
incorporated into the model using dummy variables that 
compare measurements from 1R −  responses to 
measurements from the chosen reference/baseline response. 
The model formulation becomes: 

( ) ( )( ), ,  0, ,i ri i i i i i iy f x N Rφ ε ε φ φ ξ= +   (3) 

where ( )1 2, , ...,
T

i i i piφ φ φ φ= , is a 1p×  vector of 

parameters to estimate, and 

11 1 12 r

R
i r ir

bφφ φ τ
=

= + +∑ ,  , 

2
,

pr

R

pi p pir
r

bφφ φ τ
=

= + +∑  

where rτ  is an indicator variable equal to 1 if response 
variable equals 𝑟𝑟 , 0 elsewhere (except for 1r =  where

0rτ = ), prφ
 

are differences in parameter values compared 
to parameter values of baseline response (response variable 
1), and pib  is a random effect associated with parameter p  

for individual i . ( ),i iR φ ξ  is the variance-covariance 
structure for intra-individual variation as described by [4]. 

3. Results 
3.1. Age Determination 

The summary estimates of it∆  and iα∆ using the 
optimisation method were as shown in the Table 1. We 
observed that the actual ages of the 219 (253-34) birds were 
between 0.89 days and 40 days with 50% younger than 
16.87 days. 

Table 1.  Summary statistics for estimates of it∆  and iα∆  for Swift 

Terns, using bounds of ±55 for asymptote and ±30 for age 

 Min Lower 
quartile Median upper 

quartile Max 

∆𝑖𝑖𝑖𝑖  0.89 11.71 16.87 19.50 40 

∆𝛼𝛼𝑖𝑖  -55 -18.22 3.79 24.37 55 

it∆  
is the actual age at first capture and iα∆ is the difference in asymptotes 

Figure 3 gives clear patterns of individual changes over 
time compared to Figure 2. It also shows narrower ranges 
and better defined curves. This implies that our age 
determination method seems to work well. Table 1 gives 
some summary statistics of estimates of it∆  and iα∆ . We 
noted that 75% of Swift Tern chicks were at most 19.5 days 
old at first capture. 
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Figure 2.  Loess curves superimposed on growth data for each of the six body features of Swift Terns before age of each chick at first capture was estimated 

    

    

    

Figure 3.  Loess curves superimposed on growth data for each of the six body features of Swift Terns after age of each chick at first capture was estimated 
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3.2. Growth Curves 

The Logistic, Gompertz, Richards, and inverse 
exponential models were fitted to each of the body features. 
Based on the AIC statistic it was found that the inverse 
exponential model provided the best description of growth 
for culmen (bill), head, tarsus, and foot; but was a poor 
model for mass and could not be fitted to wing length (Table 
2). The logistic model, with a variance function increasing as 
a power of fitted values, with a different power for each 
feature 

( ( ) 22 k
ij ijVar

δ
ε σ µ= ) 

and autoregressive correlation structure for within bird errors 
with errors from different features within the same subject 
assumed to be independent 
( ( )1 1| /corAR form bird feature= ), gave the best 
model to describe the growth of all body features taken 
simultaneously (37385.75 against 37848.40 for Gompertz 
model, Table 3). Other correlation structures that include 

second order autoregressive, spherical, unstructured, and 
compound symmetry correlations were considered. However, 
the models with all these correlation structures failed to 
converge for our data. Neither the Richards model nor the 
inverse exponential model could fit simultaneously all six 
body features. This was disappointing because the inverse 
exponential was the best univariate fit for four of the six 
features. Tables (5, 6) provide differences between estimates 
of time to reach half of asymptotes among features and 
between estimates of time to increase from half to three 
quarters of the asymptotes for different features. A feature in 
a given row is compared to a feature in any column. For 
instance, 14.11 (second row and first column of Table 5) 
indicates that for a wing it took 14.11 days longer to reach 
half of the maximum wing length than it took mass to reach 
half of the asymptotic body mass. The value -11.08 (row 1 
and column 1 of Table 5) implies that it took the culmen 
11.08 days less to reach half of its asymptotic length than it 
took mass to reach half of the maximum body mass. The 
interpretation of the values in Table 6 is handled in a similar 
way as for Table 5. 

Table 2.  Fixed effects estimates obtained from the univariate growth models for all six body features of Swift Terns 

 Body feature 

Model  Mass Bill Tarsus Wing Head Foot 

Logistic 

AIC 10465.84 3656.967 4146.841 8785.914 4863.988 5169.982 

𝛼𝛼 316.34 (2.36) 34.01 (0.21) 34.68 (0.15) 286.15 (2.26) 92.35 (0.31) 65.29 (0.17) 

𝜇𝜇 14.00 (0.16) 3.48 (0.32) -0.94 (0.38) 28.16 (0.22) 0.46 (0.24) -4.28$ (0.33) 

𝛽𝛽 7.48 (0.11) 11.11 (0.37) 5.14 (0.35) 9.65 (0.09) 13.54 (0.20) 7.33 (0.24) 

Gompertz 

AIC 10620.71 3633.416 4147.47 8872.747 4764.136 5168.414 

𝛾𝛾 34.80 (1.37) 14.45 (0.41) 18.26 (0.64) 7.51 (0.41) 46.32 (0.44) 40.43 (0.51) 

𝛽𝛽 2.27 (0.04) 0.89 (0.02) 0.64 (0.03) 3.93 (0.05) 0.73 (0.01) 0.48 (0.01) 

𝜇𝜇 0.08 (0.002) 0.06 (0.003) 0.17 (0.012) 0.05 (0.001) 0.05 (0.001) 0.13 (0.004) 

Inverse 
exponetial 

AIC 10598.36 3609.783 4146.343 - 4681.819 5121.345 

𝛾𝛾 -6.72 (4.53) 14.10 (0.45) 17.08 (0.15) - 44.44 (0.55) 47.23 (0.89) 

𝛼𝛼 369.48 (4.91) 36.18 (0.38) 34.72 (0.15) - 98.07 (0.48) 66.17 (0.19) 

𝛽𝛽 0.04 (0.001) 0.05 (0.002) 0.16 (0.011) - 0.04 (0.001) 0.08 (0.004) 

Richards 

AIC 10485.42 - - 8976.06 - - 

𝛼𝛼 334.71 (3.32) - - 296.03 (4.86) - - 

𝜇𝜇 -2.18$ (1.76) - - 2.54 (0.26) - - 

𝛽𝛽 0.08 (0.004) - - 0.09 (0.005) - - 

𝜎𝜎 0.05 (0.08) - - 0.88 (0.10) - - 

The standard errors are gives in brackets. 
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Table 3.  Fixed effects estimates obtained from the multivariate growth models for the six body features of Swift Terns 

 Body feature 

Model  Mass Bill Tarsus Wing Head Foot 

Logistic 
AIC (37385.75) 

𝛼𝛼 317.58 (1.91) 34.52 (0.24) 34.91 (0.22) 285.39 (2.76) 93.25 (0.31) 65.38 (0.20) 

𝜇𝜇 14.06 (0.23) 2.81 (0.38) -2.64$ (0.51) 28.18 (0.29) -0.07$ (0.23) -5.84$ (0.44) 

𝛽𝛽 7.85 (0.14) 12.27 (0.43) 5.78 (0.38) 9.87 (0.13) 14.56 (0.24) 7.98 (0.28) 

Gompertz 
AIC (37848.40) 

𝛾𝛾 29.97 (1.95) 14.71 (0.34) 18.88 (0.84) 5.96 (0.54) 45.34 (0.36) 41.75 (0.65) 

𝛽𝛽 2.40 (0.06) 0.87 (0.20) 0.61 (0.04) 4.04 (0.08) 0.74 (0.007) 0.44 (0.01) 

𝜇𝜇 0.09 (0.002) 0.06 (0.002) 0.18 (0.01) 0.06 (0.001) 0.055 (0.001) 0.13 (0.005) 

The standard errors are gives in brackets. 

Table 4.  Comparison of parameter estimates obtained from univariate and multivariate models for the six body features of Swift Terns 

 Body feature 

Model  Mass Bill Tarsus Wing Head Foot 

Logistic 

𝛼𝛼 
317.58 (1.91) 34.52 (0.24) 34.91 (0.22) 285.39 (2.76) 93.25 (0.31) 65.38 (0.20) 

316.34 (2.36) 34.01 (0.21) 34.68 (0.15) 286.15 (2.26) 92.35 (0.31) 65.29 (0.17) 

𝜇𝜇 
14.06 (0.23) 2.81 (0.38) -2.64(0.51) 28.18 (0.29) 0.07 (0.23) -5.84 (0.44) 

14.00 (0.16) 3.48 (0.32) -0.94 (0.38) 28.16 (0.24) 0.46 (0.24) -4.28 (0.33) 

𝛽𝛽 
7.85 (0.14) 12.27 (0.43) 5.78 (0.38) 9.87 (0.13) 14.56 (0.24) 7.98 (0.28) 

7.48 (0.11) 11.11 (0.37) 5.14 (0.35) 9.65 (0.09) 13.54 (0.20) 7.33 (0.24) 

Gompertz 
 

𝛾𝛾 
29.97 (1.95) 14.71 (0.34) 18.88 (0.84) 5.96 (0.54) 45.34 (0.36) 41.75 (0.65) 

34.80 (1.37) 14.45 (0.41) 18.26 (0.64) 7.51 (0.41) 46.32 (0.44) 40.43 (0.51) 

𝛽𝛽 
2.40 (0.06) 0.87 (0.20) 0.61 (0.04) 4.04 (0.08) 0.74 (0.007) 0.44 (0.01) 

2.27 (0.04) 0.89 (0.02) 0.64 0.03() 3.93 (0.05) 0.73 (0.01) 0.48 (0.01) 

𝜇𝜇 
0.09 (0.002) 0.06 (0.002) 0.18 (0.01) 0.06 (0.001) 0.05 (0.001) 0.13 (0.005) 

0.08 (0.002) 0.06 (0.003) 0.17 (0.01) 0.05 (0.001) 0.05 (0.001) 0.13 (0.004) 

1. The standard errors are gives in brackets. 
2. For each parameter, the upper row corresponds to multivariate estimates and the lower row to univariate estimates. 

Table 5.  Estimates of differences in days between growth parameters μ for the body features of swift terns 

Body feature Mass Wing Culmen Head Tarsus Foot 

Mass - - - - - - 

Wing 14.11 (0.30) - - - - - 

Culmen -11.08 (0.36) -25.20 (0.40) - - - - 

Head -14.13 (0.24) -28.24 (0.30) -2.97 (0.39) - - - 

Tarsus -16.70 (0.51) -30.82 (0.54) -5.66 (0.60) -2.57 (0.50) - - 

Foot -19.90 (0.44) -34.02 (0.48) -8.89 (0.54) -5.77 (0.42) -3.20 (0.59) - 

The standard errors are gives in brackets. 

Table 6.  Estimates of differences in days between growth parameters for the body features of Swift Terns 

Body feature Mass Wing Culmen Head Tarsus Foot 

Mass - - - - - - 

Wing 2.02 (0.19) - - - - - 

Culmen 4.26 (0.42) 2.24 (0.42) - - - - 

Head 6.71 (0.27) 4.68 (0.27) 2.55 (0.50) - - - 

Tarsus -2.08 (0.41) -4.10 (0.41) -6.41 (0.58) -8.78 (0.44) - - 

Foot 0.13 (0.31) -1.89 (0.31) -4.15  (0.52) -6.57  (0.36) 2.21 (0.47) - 

The standard errors are gives in brackets. 
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Figure 4 reveals that foot and tarsus exhibit similar growth patterns and also that head and bill have same growth patterns. 
It also shows that the univariate inverse exponential, univariate and multivariate logistic models fitted equally well the bill, 
head, tarsus and foot growth data. 

 

Figure 4.  Predicted curves obtained from univariate inverse exponential (dotted line), univaritae (red line), and multivariate (dotted green line) growth 
models superimposed on growth data (grey dots) for the six body features of Swift Terns 

 

Figure 5.  Scaled predicted growth curves obtained from multivariate 
logistic growth model for the six body features of Swift Terns 

For each body feature, the predictions obtained from the 
logistic multivariate model were scaled by dividing these 
predictions by the asymptotic value. The scaled values were 
plotted against time to produce Figure 5, which describes and 

compares growth of different body features. From this 
Figure, it may be deduced that the growth of Swift Tern body 
features follows the following order: (Foot, Tarsus)- (body 
mass, bill, Head)-Wing. 

4. Discussions 
The first strength with our approach of modelling 

simultaneously multiple responses is that it becomes 
straightforward to carry out a comparison of growth between 
the different body features. The multivariate logistic model 
provides an easy and meaningful multiple comparison of 
growth rates between features as all growth parameters have 
the same units (days) irrespective of units of the features. 
With our approach, based on fixed effects parameters, we 
can carry out comparisons between different responses and 
easily generate estimates of confidence intervals (CI) for 
differences in parameter estimates for different responses 
whereas, with the approach described by [3, 4], these 
comparisons would be based on comparing predicted 
outcome. 

Swift Tern data was analysed by [8] using the 

 



 International Journal of Statistics and Applications 2014, 4(5): 224-232 231 
 

non-parametric approach to fitting growth curves. Our 
non-linear mixed effects method and the non-parametric 
method [8] gave similar shapes of growth curves for the body 
features of Swift Terns. On one hand, [9] showed that the 
Gompertz model is a reasonable approximation to growth 
patterns of seabirds. On the other hand, [8] showed that 
Gompertz model did not provide good fit to Swift Tern data. 
Our findings, however, suggest that the (multivariate) 
Gompertz model gives a good description of growth of body 
features of Swift Terns which agrees with [9]. Our estimates 
of asymptotic growth lengths for the tarsus and foot are 
similar to the mean adult lengths given in [8]. Asymptotic 
mass, maximum wing length and asymptotic head length 
obtained from our results are reasonably close to mean adult 
measurements given in [8] for these features. However, a 
large discrepancy between our maximum bill length estimate 
(34.52 mm) and mean adult bill length [8] (63.6 mm) was 
observed. One reason for this discrepancy is that 
measurements have stopped well before the bill has 
completed its growth, and our asymptote estimate is an 
extrapolation beyond the range of available data. From our 
results, it seems that development of the body features of 
Swift Terns is as follows (foot, tarsus, body, mass)-(bill, 
head)-(wing) whereas legs-wing-bill was the order given in 
[8]. This implies that the bill growth was estimated to reach 
the maximum length before the wing but in reality the bill of 
a Swift Tern is believed to continue to grow at very low rate 
for longer period after fledging. 

The second strength with our approach is that since we can 
bring in the feature covariate into our variance function (in 
our case, especially by allowing different power functions 
for different features) we are able to some extent to 
overcome the problem of differential scales for responses. 
However, this method is only of use when the same 
structural form is applicable for all responses. In our study, 
we assumed the same structural model for all response 
variables (body features). Although this approach allowed us 
to solve a multivariate problem, it presents a major drawback 
if different features require different structural functions. 
Attempts to fit different structural models to responses from 
different features using the approach described by [3, 4] ran 
into estimation problems when using nlme (non-linear mixed 
effects) procedure in R. Therefore, further work is needed to 
suit multiple responses with different structural forms for 
groups of responses. 

In this study we fitted different variance functions 
successfully for the univariate modelling approach. However, 
for the multivariate modelling approach, we could only 
impose the same variance functions (albeit with differential 
power parameters for each feature) and correlation functions 
(compound symmetry or first order autoregressive 
correlation structure) for all features with errors from 
different body features within the same bird were assumed to 
be independent, for convergence purpose. Thus, we 
recommend future investigation in variance functions and 
correlation structures for each feature within the same bird 
for the multivariate approach. Due to estimation problems, 

we were restricted to a block diagonal structure for the 
variance-covariance structure for random effects. Other 
forms of variance-covariance matrix for random effects, 
such as an unstructured form, might improve the model 
provided that convergence is attained. Lastly, we do 
recommend for further research on computational methods 
on non-linear mixed effects model estimation. 

5. Conclusions 
Firstly, we found that Logistic and Gompertz models gave 

a good description of growth models of body features of 
Swift Terns compared to other growth models investigated in 
this study. 

Secondly, we observed that univariate and multivariate 
modelling approaches yielded approximately the same 
parameter estimates. Estimates obtained from univariate 
models did not differ substantially from those obtained from 
the multivariate models. With multivariate modelling 
approach, it was possible to explore correlation between 
body features to some extent.  

Thirdly, we observed that the completion of growth for the 
body features occurs in a specific sequence. The body 
features do not all grow at the same rate and the growth is not 
completed at the same time. For foot, tarsus, head, and 
culmen (bill), more than 40% of the growth occurred during 
the incubation period whereas body mass and wing length 
have less than 20% of their growth completed during 
incubation. The asymptotes are reached at different times. 
The completion of the growth for different body features of 
Swift Tern chicks occurs in the following pattern: (tarsus, 
foot)-(body mass, bill, head)-(wing). 
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