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Abstract  Discrimination between dietary specializations of bats has been largely analyzed using multivariate techniques 
such as discriminant and principal component analysis. In this study, models based on an artificial neural network 
(Multi-layer feed forward neural network) and Binary Logistic Regression (BLR) were compared in their ability to 
differentiate between insectivorous and frugivorous bats using habitat and morphometric measurements on captured bats. 
Although both models had similar diagnostic performance based on the area under the ROC (99% vrs 99.09%), sensitivity 
(97.6% vrs 96.8%) and specificity (95.3% vrs 93.8%) values, the logistic model was superior to the neural network model. 
We therefore recommend that if prediction is the sole objective, then ANNs provide acceptable results whiles BLR could be 
used to identify factor effects on classification. Further studies on these models may consider incorporating other dietary 
habits as well as factor effects (predictors) which could improve the accuracy of predictions. 
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1. Introduction 
Over millennia, organisms have evolved different trophic 

specializations in relation to morphological adaptations to 
changing ecological patterns. Chiropterans are armed with 
varied dietary apparatus which enable them to efficiently 
partition their resources hence, accounting for the success 
and abundance of this mammalian order. These trophic 
specializations include insectivory (feeding on insects), 
piscivory (feeding on fishes), carnivory (feeding on 
amphibians and small mammals), sanguivory (feeding on 
blood of mammals), frugivory (feeding on fruits), 
nectarivory (feeding on nectar, pollen and petals), folivory 
(feeding on leaves, buds and other green plant parts) and 
omnivory (reflects dietary overlap between phytophagy and 
animalivory) (Hill and Smith, 1984; Ferrarezzi and 
Gimenez, 1996; Simmons, 1998; Patterson et al., 2003; 
Giannini and Kalko, 2004, 2005).  

As such, morphometry is an important aspect in 
animal/wildlife studies. Coupled with appropriate statistical 
methods (parametric and non-parametric) it has been widely 
used in wildlife research. Multivariate statistics such as 
Principal Component and Discriminant Analyses have  
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largely been used to analyze ecological data (McGarigal et 
al., 2000) especially in bats, to efficiently discriminate 
between species as well as dietary specializations. For 
instance, Palmeirim et al. (1989) used Reciprocal 
Averaging (also known as Correspondence Analysis), a 
non-parametric analog to Principal Component Analysis 
(PCA) to study the trophic structure of frugivorous birds 
and bats. Van Cakenberghe et al. (2002) quantitatively 
examined the relationship between cranial shape and diet 
using PCA. Santana et al. (2010) also used discriminant 
analysis to separate groups of bats with different diets using 
the mechanics of bite force production.  

However, such techniques to discriminate between 
dietary specializations using morphometry, require a lot of 
effort and in some instances dead bat specimens. Hence, 
there is the need for more efficient and animal friendly 
techniques to be adopted by researchers.  

The use of Artificial Neural Network (ANN) as an 
alternative to other standard statistical methods is gaining 
more prominence. For instance, its application has been 
reported in ecological and environmental science (Colasanti, 
1991; Lek et al., 1996; Bastarache et al., 1997; Mastrorillo 
et al., 1998; Gozlan et al., 1999; Olden and Jackson, 2001; 
Scardi, 2001), as well as medicine and molecular biology 
((Lerner et al., 1994; Albiol et al., 1995; Faraggi and Simon, 
1995). This technique seeks to simulate the structure and 
functionalities of the biological central nervous system in 
information processing. There is evidence to suggest that 
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ANNs outperform other statistical methods such as Logistic 
Regression (LR) (Lapuerta et al., 1997; Li et al., 2000; 
Nilson et al., 2006). In contrast, others have reported that 
the differences in the results obtained by both ANN and LR 
models are negligible (Lang et al. 1997; Tafeit et al., 1999; 
Ergun et al., 2004). This study is therefore aimed at using 
simple yet commonly measured bat body parameters as well 
as habitat variables to compare the discriminatory ability of 
both Binary Logistic Regression (BLR) and Artificial 
Neural Networks in classifying bat dietary specializations. 

2. Methodology 
2.1. Study Area 

The study was conducted at Kosane in the Dormaa West 
district of the Brong Ahafo Region, Ghana. The district was 
carved out of Dormaa which lies within longitude 3°–3°30' 
W and latitude 7°–7°30' N. The types of vegetation that 
characterize the area are unused forest, broken forest, 
grassland and extensively cultivable forestland and forest 
reserves. It has a bimodal rainfall pattern with a dry spell that 
spans from November to February. Mean annual rainfall 
values in the area are between 1,250mm and 1,750mm with 
an average temperature high of 30°C and a low of 26.1°C 
(Dormaa Municipal Assembly, 2006). 

2.2. Capture of Bats 

Bats were captured with the aid of 12 x 2.5m mist nets set 
at ground level at identified fly ways in three of each 
randomly selected agro-ecosystem type (Citrus farms, Mixed 
farms, Fallow lands, Teak plantations, Oil palm plantations, 
Maize farms) following a reconnaissance survey. The 
elevation and distance of each agro-ecosystem to roosts of 
bats was measured and recorded. Mist nets were monitored 
periodically from 18:30 hours each day until they were 
closed at 02:00 hours the following day. Each captured bat 
was marked to avoid double sampling and then released at 
the same site of capture. During this period, species 
identification and morphometric (body mass and forearm 
length) measurements of the chiropterans was carried out. 
Species were later classified into two foraging guilds based 
on diet (Hill and Smith, 1984; Giannini and Kalko, 2004). 
Fruit-eating bats were classified as frugivores whiles 
insect-eating bats were classified as insectivores. Out of the 
total of 253 captured bats, 128 had a frugivorous diet whiles 
the remaining 125 were insectivorous. Sexing of individuals 
was based on the presence of male external genitalia (Racey, 
1988). Captured bats were also classified into three age 
groups namely; juveniles, sub-adults and Adults (Nelson, 
1965; Vardon and Tidemann, 1998; Holmes, 2002). 

2.3. Artificial Neural Network 

ANNs are modelling techniques that are widely used to 
solve problems of prediction or to uncover patterns in data. 
Though there are many different types of ANNs in use today, 

the multi-layer Feed Forward Neural Network (FFNN) was 
employed in this research. This ANNs architecture consists 
of an input layer, a hidden layer and an output layer. After 
passing the sample through the network, the output value is 
calculated using the equation; 
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where; 
f(.) is the activation function 
yk is the kth output value 
xi is the ith input variable or feature 
w is the weighting value used in the hidden and output 

layers and  
b’s are the network biases  
The logistic (sigmoid) function, which is the most 

common and widely used activation function, was employed 
in this study. The equation for this function is given by; 
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A single (one) hidden layer architecture was used because 
past studies have found it to be sufficient in most situations 
(Wong et al., 1995; Fowler and Clarke, 1996). This is 
because it permits the approximation of any continuous 
function, provided an adequate number of nodes are found 
(Haykin, 1999). Determining the number of nodes to be 
placed in a single hidden layer is a difficult process. Though 
there are several ‘rules of thumb’, systematically 
experimenting with the number of hidden nodes in a network, 
as done in this study, provides the best fit without a priori 
assumptions (Marzban and Stumpf, 1996).  

2.3.1. Back Propagation Algorithm 

When using the sigmoid (logistic) function, the slope 
approaches zero as the input gets larger causing changes in 
the weights and biases. Hence, the network was trained using 
the resilient back propagation algorithm on the training data 
set to eliminate the effects of the magnitudes of the partial 
derivatives. Weights were first adjusted to meet the 
minimum of the MSE criterion function after feed 
forwarding the training set. The equation used for the 
weights adjustment is given by; 

( ) 21
ˆ
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where ŷ and y are the vectors of target (predicted) and output 
(observed) values respectively. To minimize the criterion, 
the weight adjustment value was calculated by; 

J
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where η is the user-input learning rate which regulates the 
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magnitude of changes in weights and biases during 
optimization. The error from the output layer is then 
back-propagated to the other layers starting from the end and 
working backwards to the input layer. The training ends 
when the network error (MSE) is below a set level or when 
the maximum number of epochs is reached iteratively. 

2.3.2. Generalized Weights 

The effect of each covariate xi for the neural network 
model can be expressed as generalized weights (Intrator and 
Intrator, 2001). These generalized weights however depend 
on all other covariates in the model. The interpretation of 
generalized weights for neural network models is analogous 
to logistic regression and can be defined as the individual 
covariate’s contribution to the log-odds. The generalized 
weights for each covariate were computed using the 
relationship; 
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The distribution of these generalized weights for a given 
data set will suggest if an input variable has a strong effect on 
the output of the neural network model or not. A linear effect 
is implied when the variance is small and vice versa for a 
non-linear effect.  

2.3.3. Independent Variable Contribution 

A number of methods have been proposed to determine 
the impact of input variables (Garson, 1991; Dimopoulos et 
al., 1995; Goh, 1995; Lek et al., 1996). This study employed 
Garson’s (1991) algorithm modified by Goh (1995) to 
determine the relative importance of explanatory variables 
on chiropteran dietary habits. Since this algorithm uses 
absolute weight values in its computation, it is difficult to 
interpret the direction of the relationship between input and 
output variables. The relative importance of each input 
variable is therefore defined as 
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where;  
cij is the contribution of each input neuron to the output 

through each hidden neuron 

rij is the relative contribution of each input neuron 
Si is the sum of input neuron contributions 
RIi is the relative importance of each input variable 
i, j, k respectively represent the input, hidden and output 

layer of the network 
v is the total number of nodes in the hidden layer of the 

network 
n is the total number of input variables in the neural 

network 

2.4. Binary Logistic Regression (BLR) 

This research employed BLR to model the dichotomous 
dependent variable of dietary specialization (insectivore or 
frugivore) with independent variables (Sex, Age, 
Agro-ecosystem, Moon phase, roost Distance, Elevation, 
Forearm length, and Body mass).The logistic regression 
model for a dichotomous response is given by; 
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Equation (10) has a linear relationship for the log odds 
(logit) as; 
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where β0 is the intercept and βi are the regression coefficients 
of the variable Xi. The computed value π(x) is a probability in 
the range 0 to 1. Thus, a cut-off point (usually 0.5) is set to 
predict group membership for subjects whose π(x) values fall 
below or above it. 

2.4.1. Hosmer Lemeshow Test 

An overall goodness-of-fit test is required once a logistic 
regression model has been fit to a given set of data. Although 
several goodness-of-fit tests have been proposed (example: 
Cox, 1958; Tsiatis, 1980; Brown, 1982; Azzalini et al., 1989; 
le Cessie and van Houwelingen, 1991; Su and Wei, 1991), 
the Hosmer-Lemshow (1980) test was used in this study. 
This goodness-of-fit test groups subjects into deciles based 
on the values of the estimated probabilities such that yij is the 
binary outcome for observation j(j=1,····,ni) in group 
i(i=1, ····,g). It then compares the number actually in each 
group (observed) to the number predicted by the logistic 
regression model (expected). If π̂ ij is the probability for the 
fitted model, then the statistic is given by; 
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This test statistic has an approximate chi-square 
distribution. If the associated p-value of the test is greater 
than the 0.05 significance level, then the fitted model is 
adequate at the 5% significance level. 

3. Results 
3.1. Classification of Dietary Habits Using FFNN 

Figure 1 is a diagram of the trained neural network on the 
dietary habits of chiropterans evaluated using 75% of the 
dataset. The remaining 25% was used to validate the model. 

Based on the selection criteria, a neural network of five 
hidden neurons with a single layer was suitable for modeling 
the dietary habits of chiropterans (Accuracy=0.967, 
AIC=202.5957, BIC=387.6761). However, an examination 
of the generalized weight plots for each covariate in the 
model showed that Sex and Agro-ecosystem type had no 

influence on the dietary habits of chiropterans (Figure 2). 
Thus, all their generalized weight values were close to zero. 

 
Figure 1.  Trained neural network of chiropteran dietary habits 

 

Figure 2.  Generalized weight plots for dietary covariates 
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The remaining predictor variables (Age, Forearm length, 
Body mass, Elevation, roost Distance from foraging sites and 
to an extent Moon phase) had a non-linear effect on the 
response variable since some of their generalized weights 
were greater than one. Exploring the ‘significant’ predictor 
variables, two reduced neural network models were fitted 
and compared. The first model contained all the ‘significant’ 
predictor variables whiles the second model excluded 
additional moon phase. The results revealed that the second 
model (AIC=99.9388, BIC=236.3138) outperformed the 
former (AIC=165.8037, BIC=318.4139) which had all six 
predictor variables incorporated in the model. The network 
topology of the selected model is presented in Figure 3. The 
range for the estimated weights of the neural network model 
is –9.382 to 27.199.  

 

Figure 3.  Network topology of final neural network model 

 
Figure 4.  Contribution of each of the five independent variables to the 
classification of bat dietary habits – obtained by Garson’s algorithm 

The relative importance of the input variables for the final 
neural network model is illustrated in Figure 4. The results 
indicate that forearm length and elevation of foraging sites 
have the greatest influence on how the neural network 
classifies the dietary habits of chiropterans. Thus, forearm 
length contributed the highest importance of 29.4% to the 
classification of dietary habits followed by elevation with a 
contribution of 24.6%. Also, the contribution of body mass 
was 20.5% while distances of foraging sites from roosts had 
a contribution of 14.3% on the predictive nature of the model. 
The variable with the least contribution was age which 
measured an importance contribution value of 11.2%. 

3.2. Classification of Dietary Habits Using BLR 

A binary logistic regression was used to model the 
probability of a chiropteran being insectivorous or 
frugivorous. An a priori model for the analysis included the 
following independent variables; type of Agro-ecosystem, 
Sex, Age, Moon phase, Forearm length, Body mass, 
Elevation and roost Distance from foraging sites. The final 
model with the variables Body mass, Forearm length, Age, 
Elevation and roost Distance were jointly found to be 
statistically significant in determining the dietary habits of 
chiropterans (Table 1).  

Table 1.  Parameter Estimates of Reduced BLR Model 

Parameter Estimate Std. 
Error 

Wald 
Chi-square P–value Odds 

ratio 

Intercept 27.02040 6.03050 20.07610 <0.0001 NA 

Juvenile -1.54370 0.70660 4.77260 0.0289 0.048 

Sub-adult 0.05090 0.87410 0.00340 0.9536 0.236 

Forearm L. -0.25590 0.09420 7.38470 0.0066 0.774 

Body mass -0.31000 0.05600 30.69900 <0.0001 0.733 

Elevation -0.02250 0.00855 6.19700 0.0085 0.978 

Distance 0.00327 0.00076 18.54230 <0.0001 1.003 

Apart from sub-adults and roost distance from foraging 
sites, all other parameters exhibited a negative relationship 
with the dietary habits of chiropterans. Thus, with decreasing 
forearm length and body mass, a chiropteran is more likely to 
be insectivorous. Also, with decreasing elevation and 
increasing distance of forage sites from roosts, a chiropteran 
is more likely to be classified as insectivorous.  

There was no evidence of lack of fit for the selected model 
following a diagnostic test using the Hosmer and Lemeshow 
test, which gave a test statistic of 25.6907 with a P-value of 
0.07. Thus, the binary logistic regression model was 
adequate.  

3.2. Comparative Analysis of Statistical Methods 

In order to select the most adequate model for the 
classification of chiropteran dietary habits, the diagnostic 
performance of BLR and FFNN were compared. The results 
indicate that both the BLR and FFNN have nearly similar 
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diagnostic performance though most of the tests favored 
BLR (Table 2).  

Table 2.  Diagnostic Performance of Predictive Models 

Method AIC Sensitivity Specificity AUC 

BLR 78.476 97.600 95.300 0.9900 

FFNN 99.938 96.800 93.800 0.9909 

For instance, the sensitivity test which is a measure of 
accuracy indicated that 97.6% of the events of interest were 
correctly classified by the BLR model. On the other hand, the 
FFNN correctly classified 96.8% of the events of interest 
(insectivores) which was a bit lower than the BLR model. 
Also, the specificity test revealed that 95.3% and 93.8% of 
frugivores were correctly classified by the BLR and FFNN 
models respectively. The ability of the two models to 
discriminate between the two dietary habits was 99% for 
BLR and 99.09% for FFNN. Considering their AICs 
however, BLR was much preferred to FFNN since this 
selection criterion ensured, as well as favored, simplicity and 
parsimony among these competing models.  

4. Discussion  
The negligible difference in discriminatory power (based 

on area under ROC curve, sensitivity and specificity) 
between the two developed models were similar and 
consistent with other findings (Lang et al., 1997; Ergun et al., 
2004). Both the BLR and ANN models indicated that 
Forearm length, Elevation, Body mass, roost Distance from 
foraging sites, and Age significantly influenced dietary 
classification of bats. These factors which were confirmed in 
studies elsewhere (Fleming, 1991, 1993; Hughes et al., 1995; 
Adams, 1996, 1997) have been arranged in order of 
magnitude based on each independent variable’s 
contribution for the ANN. One important advantage of BLR 
over ANN is its ability to identify factor effects and their 
directions on the response variable (interpretability of model 
parameters). This has often led to the ANNs description as a 
“black box” in ecological modeling due to its lack of 
explanatory power (Paruelo and Tomasel, 1997; Özesmi and 
Özesmi, 1999). Another disadvantage of ANNs is their 
inability to handle missing data. They however compensate 
for this by being able to simultaneously handle numerous 
variables (Bishop, 1995; Zou et al., 2008). As such, other 
predictive variables could be examined and used to improve 
the predictive accuracy of the model. Again, the problem of 
dimensionality is managed well in ANNs than other 
statistical methods, even with small sample sizes. The 
dynamic approach employed to analyze dietary 
specializations enables ANNs to modify their internal 
structure in relation to a functional objective by using the 
data to generate the model via learning without supervision. 
Therefore in complex biological or ecological systems, the 
predictive range of BLR is extended in ANN by replacing 

identity functions (linear combinations) with nonlinear 
activation functions. Hence, ANNs become powerful 
techniques when underlying relationships are unknown. 
Thus, they are able to explore hidden layers to find 
nonlinearities, interactions, and nonlinear interactions 
among independent variables.  

5. Conclusions 
The study revealed that both models (FFNN and BLR) had 

similar diagnostic performances. Also, the two models 
clearly indicated that Forearm length, Elevation, Body mass, 
roost Distance from foraging sites, and Age had significant 
effect on the dietary classification of chiropterans. We 
therefore conclude that if prediction is the sole objective, 
then ANNs provide acceptable results whiles BLR could be 
used to identify factor effects on classification. Also, ANNs 
could be used to achieve globally more accurate predictions 
when further studies incorporating other dietary habits 
(dependent variables) as well as predictors (independent 
variables), are to be conducted. 
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