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Abstract  Analyses of childhood stunting have mainly used mean regression yet modeling using quantile regression is 
more appropriate than using mean regression in that the former provides flexibility to analyze the determinants of stunting 
corresponding to quantiles of interest whereas the latter allows only analyzing the determinants of mean stunting. Bayesian 
structured additive quantile regression models were fitted for childhood stunting. Both quantile and mean regression models 
were fitted and their estimates were compared. Inference was fully Bayesian using integrated nested Laplace approximation 
approach for quantile regression and Markov chain and Monte Carlo approach for mean regression. The 2010 Malawi 
demography and health surveys data was used. Using multistage stratified sampling, more than 19000 eligible reproductive 
women aged between 15 and 49 years were interviewed in a round of surveys and the anthropometric characteristics of their 
under 5 children were measured. We found that the dominant determinants of childhood stunting in Malawi include child sex, 
household head sex, type of residence, mother working status, vitamin A supplementation, availability of radio/TV, source of 
drinking water, vaccination coverage, infectious diseases, mother education, ethnicity, child age, and duration of 
breastfeeding. We also observed no any significant structured spatial effects on childhood stunting. In this study, we 
confirmed that quantile regression fits better than mean regression when modeling childhood stunting. 

Keywords  Conditional quantile regression, Asymmetric laplace distribution, Integrated nested Laplace approximations, 
Structured spatial effects, Childhood stunting 

 

1. Introduction 
Childhood undernutrition has serious adverse effects on a 

child, a family and the development of a country. It leads to 
more than 30% of all deaths in children below five years in 
all developing countries [1]. An undernourished child is 
more likely to be sick and die [2]. It can lead to stunted 
growth [3], impaired cognitive and behaviour development 
[5], poor school performance, lower working capacity and 
lower income [4]. It can slow down economic growth and 
increase level of poverty. Furthermore, it can prevent the 
society from meeting its full potential through loss in 
productivity, cognitive capacity and increased cost in health 
care [5]. The indicators of undernutrition are stunting, 
wasting and underweight. In Malawi, childhood stunting still 
remains the highest undernutrition burden. The prevalence 
rate of childhood stunting has insignificantly dropped from 
53% in 2004 to 47% in 2010 [6]. Only childhood stunting 
was analysed in this study since stunting still remains the 
most significant undernutrition burdenin developing  
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countries including Malawi. 
The reduction of childhood malnutrition (MDG1) is 

among the United Nations Millennium Development Goals, 
aiming at halving the proportion of children suffering from 
hunger by 2015. In addition, the reduction of childhood 
mortality (MDG4) is also among the United Nations 
Millennium Development Goals, aiming at reducing the 
under-five mortality rate by two-thirds between 1990 and 
2015. In order to attain both MDG1 and MDG4, a first 1000 
child-days project was launched in Malawi about two years 
ago. However, little effort has been made to statistically 
understand the social-demographic determinants of 
childhood undernutrition.  

Studies have previously been made to appropriately 
analyse the childhood stunting in developing countries 
including Malawi. Unfortunately, most of the analyses have 
been emphasized on modeling mean regression instead of 
quantile regression. For instance, the regression studies of 
risk factors for acute or chronic undernutrition [7] should 
have used quantile regression instead of mean regression. In 
fact, even the regression studies for morbidity or mortality [8] 
should have used quantile regression instead of mean 
regression. Modeling stunting using quantile regression is 
more appropriate than using mean regression in that the 
former provides flexibility to analyze the determinants of 
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stunting corresponding to quantiles of interest either in the 
lower tail (say 5% or 10%) or upper tail (say 90% or 95%) or 
even median (50%) of the stunting distribution whereas the 
latter allows only analyzing the determinants of mean 
stunting. 

The main purpose of this study was to fit statistical models 
that would better explain variability in childhood stunting in 
Malawi. In order to achieve this, both the mean and quantile 
regression models for childhood stunting were fitted using 
the 2010 Malawi DHS data set, the socio-demographic 
determinants of childhood stunting were identified, the 
structured spatial effects on childhood stunting were 
estimated, and the estimates obtained from quantile 
regression models were compared with those obtained from 
mean regression models. 

The rest of this paper is structured as follows. Section 2 
describes the methods used in this study. The results of this 
study are given in section 3. Finally, the discussion and 
conclusion are presented in sections 4 and 5 respectively. 

2. Methods 
This section summarises the conceptual framework of the 

Bayesian structured additive quantile regression models, the 
data sources, and data analysis procedures used in this study.  

2.1. The Model 

2.1.1. Quantile Regression 

The quantile regression itself is an old regression method 
but it is the Bayesian framework that has made the Bayesian 
structured additive quantile regression arelatively new 
statistical method for analyzing data like malnutrition. 
Quantile regression aims at describing conditional quantiles 
in terms of covariates instead of the mean. Quantile 
regression is more appropriate for modeling severe 
malnutrition than mean regression [9]. In general, quantile 
regression is all about describing conditional quantiles of the 
response variable in terms of covariates instead of the mean. 
The general additive conditional quantile model is given by 

𝑄𝑄𝑌𝑌𝑖𝑖 |𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖(𝜏𝜏|𝑥𝑥𝑖𝑖 ,  𝑧𝑧𝑖𝑖) = 𝜂𝜂𝜏𝜏𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽𝜏𝜏 + ∑ 𝑔𝑔𝜏𝜏𝑗𝑗 � 𝑧𝑧𝑖𝑖𝑗𝑗 �
𝐽𝐽
𝑗𝑗=1  (1) 

where 𝑄𝑄𝑌𝑌𝑖𝑖 |𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖  is the conditional quantile response, 𝜂𝜂𝜏𝜏𝑖𝑖 is 
the semi-parametric predictor, 𝜏𝜏𝜏𝜏(0,1) is the 𝜏𝜏𝑡𝑡ℎ quantile 
response e.g. 𝜏𝜏 = 0.5 for the medianresponse regression, 𝑥𝑥 
is the vector for categorical covariates (assumed to have 
fixed effects), 𝑧𝑧 is the vector for metric/spatial covariates, 
𝛽𝛽  is the vectorfor coefficients for categorical covariates 
including intercept, 𝑔𝑔is the vector forsmoothing functions 
for metric/spatial covariates [10, 11]. It is worthy to note that 
quantile regression duplicates the roles of quartile, quintile, 
decile, and percentile regressions. This is achieved by 
selecting appropriate values of 𝜏𝜏 inthe conditional quantile 
regression model where 𝜏𝜏𝜏𝜏(0,1).The two unknowns, 𝛽𝛽 and 
𝑔𝑔are estimated via the minimization rule given by 

∑𝜌𝜌𝜏𝜏�𝜂𝜂𝜏𝜏𝑖𝑖� + 𝜆𝜆0‖𝛽𝛽‖1 + ∑ 𝜆𝜆𝑗𝑗⋁ �∇𝑔𝑔𝜏𝜏𝑗𝑗 �
𝐽𝐽
𝑗𝑗=1(𝛽𝛽 ,𝑔𝑔)

𝑚𝑚𝑖𝑖𝑚𝑚  
 (2) 

where 𝜌𝜌𝜏𝜏  is the check function (appropriate loss function) 
evaluated at a given 𝜏𝜏 , 𝜆𝜆0 is the zeroth (initial) tuning 
parameter for controlling the smoothnessof the estimated 
function, 𝜆𝜆𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ  tuning parameter for controlling the 
smoothness of the estimated function, ‖𝛽𝛽‖1 = ∑ |𝛽𝛽𝑘𝑘 |𝐾𝐾

𝑘𝑘=1  
and ⋁�∇𝑔𝑔𝜏𝜏𝑗𝑗 � denotesthe total variation of the derivative on 
the gradient of the function 𝑔𝑔 [10]. 

Bayesian inference requires likelihood. We need an 
assumption on data distribution for Bayesian quantile 
inference because the classical quantile regression has no 
such restriction. A possible parametric link between the 
minimization problem and the maximum likelihood theory is 
the Asymmetric Laplace Density (ALD). This skewed 
distribution appeared in [12, 13] among others. 

2.1.2. Prior Distributions 
In Bayesian framework, all unknown functions 𝑔𝑔′𝑠𝑠 for 

both metric and spatial covariates, all parameters 𝛽𝛽′𝑠𝑠 for 
categorical covariates, and all variance parameters𝜎𝜎2′𝑠𝑠 are 
considered as random variables and have to be supplemented 
by appropriate prior distributions. 

In this research, the following prior distributions were 
supplemented. To facilitate description of our method, we 
will suppress the subscription 𝜏𝜏 of regression effects in the 
following. Priors for unknown functions 𝑓𝑓𝑘𝑘(∙), 𝑘𝑘 = 1,⋯ ,𝑚𝑚𝑓𝑓 , 
belong to the class of Gaussian Markov random fields 
(GMRF), whose specific forms depend on covariate types, 
and on prior beliefs about the smoothness of 𝑓𝑓𝑘𝑘 . Although 
only GMRF is used in this work, there exist some other 
options like Bayesian P-splines [15]. 

Let 𝑓𝑓 = (𝑓𝑓(𝑢𝑢1), 𝑓𝑓(𝑢𝑢1),⋯ , 𝑓𝑓(𝑢𝑢𝑚𝑚))𝑇𝑇 , a random vector of 
the response at 𝑢𝑢𝑖𝑖 , 𝑖𝑖 = 1,2,⋯ ,𝑚𝑚. We say 𝑓𝑓is a GMRF with 
mean 𝜇𝜇 and precision (the inverse covariance) matrix 𝛿𝛿𝑄𝑄 if 
and only if it has density of form 

𝜋𝜋(𝑓𝑓|𝛿𝛿) ∝ 𝛿𝛿
𝑚𝑚−𝑚𝑚

2 exp�− 𝛿𝛿
2

(𝑓𝑓 − 𝜇𝜇)𝑇𝑇(𝑓𝑓 − 𝜇𝜇)� (3) 

where 𝑄𝑄  is a semi-definite matrix of constants with 
rank𝑚𝑚 −𝑚𝑚 (𝑚𝑚 ≥ 0). Theproperties of a particular GMRF 
are all reflected through matrix 𝑄𝑄. For instance, the Markov 
properties of GMRFs totally depend on the various sparse 
structures that the matrix 𝑄𝑄 may have. In this paper we use 
two kinds of GMRFs: continuous random walk (CRW) 
models [16] for metric covariates and intrinsic 
autoregressive models [17] for spatial covariates. Those two 
GMRFs share equation 5 but with different structures of 𝑄𝑄. 

For metric covariates, let 𝑢𝑢1 < 𝑢𝑢2 < ⋯ < 𝑢𝑢𝑚𝑚  be the set 
of continuous locations and 𝑧𝑧𝑖𝑖 = 𝑓𝑓(𝑢𝑢𝑖𝑖) be the function 
evaluations at 𝑢𝑢𝑖𝑖 , for 𝑖𝑖 = 1,2,⋯ ,𝑚𝑚. Then construction of 
CRW model is based on a discretely observed continuous 
time process 𝑧𝑧(𝑢𝑢) that is a realization of an 𝑚𝑚 −  1 fold 
integrated Wiener processgiven by 

𝑧𝑧(𝑢𝑢) = ∫ (𝑢𝑢−ℎ)𝑚𝑚−1

𝑚𝑚−1
𝑢𝑢

0 d𝑊𝑊(ℎ)   (4) 
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where 𝑊𝑊(ℎ) is a standard Wiener process.  
For spatial covariates, letting 𝑚𝑚𝑖𝑖  denote the number of 

neighbors of site 𝑢𝑢𝑖𝑖 , we assume the following spatial 
smoothness prior for the function evaluations 

𝑓𝑓(𝑢𝑢𝑖𝑖)|{𝑓𝑓(𝑢𝑢𝑗𝑗 ) 𝑗𝑗 ≠ 𝑖𝑖}, 𝛿𝛿~𝑁𝑁 � 1
𝑚𝑚𝑖𝑖
∑ 𝑓𝑓�𝑢𝑢𝑗𝑗 �, 1

𝑚𝑚𝑖𝑖𝛿𝛿𝑗𝑗 :𝑗𝑗~𝑖𝑖 �  (5) 

where 𝑗𝑗~𝑖𝑖 denotes that site 𝑢𝑢𝑖𝑖  and 𝑢𝑢𝑗𝑗  are neighbors. Thus 
the conditionalmean of 𝑓𝑓(𝑢𝑢𝑖𝑖)is an un-weighted average of 
evaluations of neighboring sites. 

For the fixed effect parameters 𝛽𝛽𝑗𝑗 ′𝑠𝑠 , we shall assume 
independent diffusepriors 𝜋𝜋(𝛽𝛽𝑗𝑗 ) ∝ constant or a weakly 
informative Gaussian 𝛽𝛽~𝑁𝑁(0,𝜙𝜙−1𝐼𝐼)with small precision 𝜙𝜙. 
If 𝛽𝛽 is a high-dimensional vector, one may consider using 
Bayesian regularization priors developed in [19], where 
conditionally Gaussianpriors are assigned with suitable 
hyper prior assumptions on the variances inducing the 
desired shrinkage and sparseness on coefficient estimates . 

2.1.3. Posterior Inference 

When a fully Bayesian framework is adopted, the 
Asymmetric Laplace Distribution(ALD) is assumed as the 
likelihood model and three common methods for estimating 
posterior marginal distribution are available. The standard 
method is MCMC (Markov chain Monte Carlo). The other 
two methods are INLA (integrated nested Laplace 
approximations) and Boosting. 

In this study, only two methods (MCMC and INLA) were 
used. It is worthy to note that the MCMC is so far the 
standard method for estimating posterior marginal 
distribution in fully Bayesian framework while INLA [24] is 
relatively new approach which has so far been guaranteed to 
outperform MCMC both inaccuracy and computational 
speed especially for large non-Gaussian response datasets 
[20]. In Bayesian framework, all unknown functions 𝑔𝑔′𝑠𝑠 for 
both metric and spatial. 

2.2. Data 

For applications of the methodology, we considered data 
from the 2010 Malawi Demographic and Health Surveys 
(MDHS). The multistage clustered sampling technique was 
used with other districts oversampled like Blantyre, 
Lilongwe, and Mulanje. The 2010 MDHS interviewed a 
representative sample of more than 19000 eligible 
reproductive women aged between 15 and 49 years in a 
round of surveys. The anthropometric assessment of 
themselves and their children that were born within the 
previous five years was administered. The data set contains 
information on family planning, maternal and child health, 
child survival, HIV/AIDS, educational attainment, and 
household composition and characteristics [6]. 

The primary outcome in this study was the childhood 
(under 5 years) stunting in Malawi. It was assessed by using 
the adjusted child height-for-age z-score (haz) for childhood 
stunting as a continuous response variable. Considering the 
literature and the 2010 MDHS data, the following 
bio-demographic and socioeconomic covariates of 

childhood stunting were assessed in this study. The 
categorical covariates included child’s sex (csex), household 
head sex (hhsex), type of residence (residence), ethnicity 
(ethnicity), mother’s education (meduc), current mother 
working status (mwork), vitamin A supplementation 
(vitamin),vaccination coverage (vaccin), infectious diseases 
(infectd), availability/use of radio/TV (radiotv), and source 
of drinking water (drinkwat). The metric covariates included 
child’s age in months (cage), mother’s body mass index 
(mbmi), and duration of breastfeeding in months (dubreast). 
The only spatial covariate was district of Malawi (district). 

2.3. Analysis 

The statistical software packages used in this study were 
SPSS version 16.0, Rversion 2.15.1, and BayesX version 
2.0.1. SPSS was used for data management, R for quantile 
regression, and BayesX for mean regression. The statistical 
inference was fully Bayesian using the “INLA” approach for 
quantile regression in R [20] and the “MCMC” approach for 
mean regression in BayesX [25]. 

Firstly, we started with exploratory data analysis where 
basic descriptive analyses such as cross tabulations for all 
categorical covariates against childhood stunting indicator 
variable. The categorized adjusted child height-for-age with 
two categories, stunted (haz<-2) and not stunted (haz≥-2), 
was used as a childhood stunting indicator variable in this 
phase. The statistics (counts, proportions, means, and 
chi-squarep-values) of cross tabulations were summarized in 
Table 1. Since there are many covariates, only those with 
p-values < 0.20 (20%) were included in the subsequent 
quantile models. The choice of 20% rather than 5% is 
deliberate in order to tolerate any possible confounding. 

Secondly, the Bayesian structured additive quantile 
regression models were fitted for childhood stunting using R 
2.15.1 statistical software [20]. For brevity, only three 
quantiles (𝜏𝜏 = 0.2, 0.4, and 0.5) were assessed. The choice of 
the quantiles to assess in this study depended on the normal, 
moderate, and severe cut-points of childhood stunting based 
on WHO standards such that 𝜏𝜏 = 0.2 wasequivalent to severe 
(haz<-3) and 𝜏𝜏  = 0.4 was equivalent to moderate 
(-3≤haz<-2). 

Thirdly, the Bayesian structured additive mean regression 
models were fitted for childhood stunting using BayesX 
2.0.1 statistical software [25]. 

Lastly, the fixed effects, nonlinear effects, and structured 
spatial effects on childhood stunting obtained from quantile 
regression models were compared with those obtained from 
mean regression models. 

3. Results 
This section presents the main findings of this study. The 

summary of descriptive statistics is presented first in form of 
tables. A brief discussion of these exploratory results is 
provided immediately within the text. Thereafter, the 
findings from the fitted Bayesian structured additive models 
are presented in form of tables for fixed categorical 
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covariates, graphs for nonlinear metric covariates, and maps 
for spatial covariates. 

3.1. Significant Categorical Covariates 

Table 1 shows the summary of cross tabulations of 
childhood stunting by categorical covariates. Considering 
Pearson chi-square p-values < 0.20 (i.e. p-values <20%) 
together with relevant literature on malnutrition, the 
following categorical covariates were included in 
subsequent Bayesian analyses; child’s sex, household head’s 
sex, type of residence, ethnicity, mother’s education, current 
mother’s working status, vitamin A supplementation, 
vaccination coverage, infectious diseases, availability and 

use of radio/TV, and source of drinking water. 
Only eight categorical covariates were observed to be 

highly significant for childhood stunting in this study. These 
were child’s sex, type of residence, mother’s education, 
vitamin A supplementation, vaccination coverage, 
availability of radio / TV, source of drinking water, and 
ethnicity. Highly stunted were the children with male sex, 
rural residence, low mother’s education, satisfactory vitamin 
A supplementation, full vaccination coverage, no radio/TV, 
non-improved source of drinking water, and ethnic groups 
Yao, Tonga, Chewa, and Lomwe. All these results were 
consistent with literature similar previous studies excepton 
vitamin A supplementation and vaccination coverage. 

Table 1.  Childhood Stunting by Categorical Covariates 

Variable Category % Stunted p-value 

Child’s Sex Female 
Male 

997 (38.6%) 
1141 (44.6%) < 0.001** 

Household Head’s Sex Female 
Male 

181 (43.9%) 
1957 (41.3%) 0.306 

Type of Residence Rural 
Urban 

1966 (42.3%) 
172 (34.2%) < 0.001** 

Antenatal Care Poor 
Satisfactory 

1347 (38.9%) 
75 (46.3%) 0.059 

Mother’s Education 

No Education 
Incomplete Primary 
Complete Primary 

Incomplete Secondary 
Complete Secondary 

Higher 

415 (48.0%) 
1303 (41.9%) 
197 (40.7%) 
170 (34.9%) 
50 (27.8%) 
3 (13.0%) 

< 0.001** 
 

Mother’s Working Status No 
Yes 

906 (41.0%) 
1222 (41.8%) 0.59 

Early Breastfeeding Not Immediately 
Immediately 

54 (40.6%) 
1371 (39.1%) 0.723 

Vitamin A No 
Yes 

316 (34.3%) 
1818 (43.2%) < 0.001** 

Vaccination Coverage Incomplete 
Full Vaccination 

528 (32.3%) 
1165 (47.2%) < 0.001** 

Infectious Diseases No 
Diarrhea/Fever /Cough 

1073 (40.7%) 
727 (42.4%) 0.266 

Nutritional Care Poor 
Satisfactory 

1000 (42.8%) 
33 (38.8%) 0.470 

Health Seeking Poor 
Satisfactory 

53 (41.4%) 
666 (43.3%) 0.673 

Radio/TV No 
Yes 

1129 (43.3%) 
991 (39.5%) 0.006** 

Drinking Water Not Improved 
Improved 

659 (46.0%) 
1479 (39.8%) < 0.001** 

Toilet Facility Not Improved 
Improved 

1869 (41.8%) 
269 (39.7%) 0.304 

Ethnicity 

Chewa 
Tumbuka 
Lomwe 
Tonga 
Yao 
Sena 

Nkhonde 
Ngoni 
Others 

725 (43.8%) 
193 (36.9%) 
306 (41.9%) 
59 (44.0%) 

245 (46.3%) 
116 (36.6%) 
45 (39.1%) 

251 (38.3%) 
196 (40.7%) 

0.032* 

The p-value marked with * indicates that the variable was significant at 5% level. 
The p-value marked with ** indicates that the variable was significant at 1% level. 
All p-values correspond to Pearson Chi-square test of contingency. 
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Table 2.  Fixed Effects on Childhood Stunting 

Variable Category Severe stunting Moderate stunting Median stunting 
  Mean 95% C.I. Mean 95% C.I. Mean 95% C.I. 

Child’s Sex (Female) 
Male 

– 
-0.21* 

– 
-0.32 , -0.03 

– 
-0.25* 

– 
-0.33 , -0.17 

– 
-0.25* 

– 
-0.34 , -0.17 

Head’s sex (Female) 
Male 

– 
-0.02 

– 
-0.27 , 0.15 

– 
0.04 

– 
-0.10 , 0.19 

– 
-0.05* 

– 
-0.09 , -0.19 

Type of 
Residence 

((Rural) 
Urban 

– 
-0.08 

– 
-0.26 , 0.14 

– 
0.001 

– 
-0.19 , 0.16 

– 
0.02 

– 
-0.13 , 0.17 

Working 
Mother 

(No) 
Yes 

– 
-0.02 

– 
-0.18 , 0.12 

– 
-0.03* 

– 
-0.12 , -0.07 

– 
-0.02 

– 
-0.10 , 0.06 

Vitamin A (No) 
Yes 

– 
0.04 

– 
-0.11 , 0.17 

– 
0.10* 

– 
0.02 , 0.23 

– 
0.09 

– 
-0.02 , 0.20 

Radio/TV (No) 
Yes 

– 
0.10* 

– 
0.02 , 0.36 

– 
0.06* 

– 
0.03 , 0.16 

– 
0.08 

– 
-0.01 , 0.16 

Drinking 
Water 

(Poor) 
Improved 

– 
0.16* 

– 
0.03 , 0.36 

– 
0.11* 

– 
0.01 , 0.22 

– 
0.12* 

– 
0.03 , 0.21 

Vaccine 
Coverage 

(Poor) 
Full 

– 
0.04 

– 
-0.12 , 0.4 

– 
0.004 

– 
-0.11 , 0.17 

– 
-0.03 

– 
-0.13 , 0.06 

Infectious 
Diseases 

(No) 
Yes 

– 
0.01 

– 
-0.21 , 0.12 

– 
-0.003* 

– 
-0.10 , -0.002 

– 
-0.02 

– 
-0.10 , 0.06 

Mother’s 
Education 

(None) 
Primary 

Secondary 
Higher 

– 
0.10 
0.26 
0.57 

– 
-0.03 , 0.22 
-0.27 , 0.45 
-0.23 , 1.45 

– 
0.08 
0.23* 
0.89* 

– 
-0.04 , 0.21 
0.07 , 0.11 
0.25 , 1.48 

– 
0.06 
0.22* 
0.87* 

– 
-0.002 , 0.17 
0.06 , 0.37 
0.30 , 1.44 

Ethnicity 

(Others) 
Chewa 

Tumbuka 
Lomwe 
Tonga 
Yao 
Sena 

Nkhonde 
Ngoni 

– 
0.14 
-0.08 
0.07 
0.14 

-0.16* 
0.13 
0.22 
-0.03 

– 
-0.06 , 0.35 
-0.63 , 0.17 
-0.29 , 0.31 
-0.20 , 0.48 
-0.38 , -0.08 
-0.01 , 0.51 
-0.17 , 0.61 
-0.63 , 0.24 

– 
0.02 
-0.06 
0.01 
-0.05 
-0.18* 
0.17 
0.09 
-0.09 

– 
-0.18, 0.22 
-0.27 , 0.15 
-0.19 , 0.21 
-0.36 , 0.27 
-0.38 , -0.03 
-0.09 , 0.43 
-0.37 , 0.43 
-0.11 , 0.30 

– 
0.01 
-0.06 
-0.01 
-0.13 
-0.14* 
0.25 
0.06 
0.11 

– 
-0.16 , 0.19 
-0.26 , 0.13 
-0.19 , 0.17 
-0.42 , 0.17 
-0.33 , -0.05 
-0.09 , 0.36 
-0.27 , 0.37 
-0.08 , 0.31 

The categories in parentheses were chosen as reference categories. 
The posterior mean marked with * indicates that the variable category was significant at 5% level relative to reference category. 

The rest of the categorical covariates were observed not 
significant at 5% level. For more details about 
non-significant categorical covariates, refer to the Table 1. It 
is worth to note that some of these non-significant 
categorical covariates were still included in the subsequent 
Bayesian structured additive regression models based on the 
literature and significance at 20% level. 

3.2. Bayesian Structured Additive Quantile Models 

Only three conditional quantile regression models were 
fitted in this study. The first model was fitted to assess severe 
childhood stunting. The 20% quantile was found to be 
equivalent to haz = -3 which is the cut-point for severe 
childhood stunting according to WHO standards. The second 
model was fitted to assess moderate childhood stunting. The 
40% quantile was found to be equivalent to haz = -2 which is 
the cut-point for moderate childhood stunting according to 
WHO standards. The third model was fitted to assess median 
adjusted height for-age. The 50% quantile was found to be 
equivalent to haz = -1.88 which is within the range of normal 
adjusted childhood height-for-age according to WHO 
standards. For each model, fixed effects, nonlinear effects, 

and structured spatial effects were assessed. In general, the 
results were as follows. 

3.2.1. Fixed Effects 

The summary of fixed effects on childhood stunting is 
shown in Table 2. Since stunting and adjusted height-for-age 
are negatively associated variables, care was taken in 
interpreting the effects on childhood stunting. For example, 
“male child” showed significant negative effect on 
height-for-age at all observed quantile levels implying that 
male children had significant positive effect on severe, 
moderate and median childhood stunting. In other words, 
stunting is more attributable to male children than to female 
children in Malawi i.e. male children are at higher risk of 
stunting than female children in Malawi. 

Considering 95% credible intervals, we found that the 
effects of “male child” and “Yao ethnic group” had 
significant positive relations with severe childhood stunting 
where as “availability of radio/TV” and “improved source of 
drinking water” had significant negative relations with 
severe childhood stunting. The effects of “male child”, 
“working mother”, “infectious diseases” and “Yao ethnic 
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group” had significant positive relations with moderate 
childhood stunting where as“ availability of radio/TV”, 
“improved source of drinking water”, “vaccine coverage” 
and “mother’s education” had significant negative relations 
with moderate childhood stunting. The effects of “male 
child”, “male household head”, and “Yao ethnic group” had 
significant positive relations with median childhood stunting 
where as “improved source of drinking water” and 
“mother’s education” had significant negative relations with 
median childhood stunting. 

3.2.2. Nonlinear Effects 

Figure 1 shows the summary of observed nonlinear effects. 
The first row corresponds to severe childhood stunting. The 

second and third rows correspond to moderate and median 
childhood stunting respectively. 

The summary of nonlinear effects of child’s age in months 
on childhood stunting was displayed along the left column in 
the Figure 1. We found that the general relationship of the 
effects of child age with adjusted height-for-age followed 
aU-shape. We observed that adjusted height-for-age 
remained constantly high (constantly low childhood stunting) 
for the first 6 months after which it steadily deteriorated 
(increasing childhood stunting) until 18 months. The 
adjusted height-for-age remained constantly low (constantly 
higher childhood stunting) from 18 months up to 30 months. 
Thereafter, adjusted height-for-age stabilized back to normal 
(reducing childhood stunting). 

 
Figure 1.  Nonlinear effects on childhood stunting 
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Figure 2.  Posterior means of structured spatial effects on childhood 
stunting 

The summary of nonlinear effects of mother body mass 
index on childhood stunting was displayed along the middle 
column in the Figure 1. We found that the general 
relationship of the effects of mother’s body mass index with 
adjusted height-for-age followed an inverse U-shape. We 
observed that very low mother’s body mass index (lower 
than 20 kg/m2) as well as very high mother’s body mass 
index (higher than 35 kg/m2) reduced adjusted height-for-age 

(increased childhood stunting). An exception was observed 
only for severe childhood stunting model in which mother’s 
body mass index continued increasing the adjusted 
height-for-age (continued reducing severe childhood 
stunting) beyond35 kg/m2. We observed that, for mother’s 
body mass indices between20 kg/m2 and 35 kg/m2, increase 
in mother’s body mass index slightly increased adjusted 
height-for-age (reduced childhood stunting). 

The summary of nonlinear effects of duration of 
breastfeeding in months on childhood stunting was displayed 
along the right column in the Figure 1. We found that the 
general relationship of the effects of duration of 
breastfeeding with adjusted height-for-age followed a 
U-shape. We observed that very short duration of 
breastfeeding (less than 6 months) and very long duration of 
breastfeeding (more than 18 months) were associated with 
higher adjusted height-for-age (reduced childhood stunting). 
We observed that durations of breastfeeding between 6 
months and 18 months were associated with constantly 
lower adjusted height-for-age (increased childhood stunting). 
It was noted that duration of breastfeeding was complex to 
interpret. On one hand, it was quiet in order to observe that 
long duration of breastfeeding increased adjusted 
height-for-age (reduced childhood stunting). On the other 
hand, it was a surprise to observe that very short duration of 
breastfeeding also increased adjusted height-for-age 
(reduced childhood stunting). Likely, there should be an 
expert explanation for this surprise. 

3.2.3. Structured Spatial Effects 

Figure 2 shows the posterior means of structured spatial 
effects on childhood stunting. The top map corresponds to 
severe childhood stunting model. The middle and bottom 
maps correspond to moderate and median childhood stunting 
models respectively. In general, we observed that only 
Chitipa, Machinga, Zomba, and Mwanza districts depicted 
high positive structured spatial effects on adjusted 
height-for-age (high negative structured spatial effects on 
childhood stunting). However, these effects were not 
significant at 95% nominal level. 

3.3. Bayesian Structured Additive Mean Models 

The mean regression model was fitted for childhood mean 
adjusted height-for-age. The fixed effects, nonlinear effects, 
and structured spatial effects were assessed. It is important to 
note that with mean regression, we cannot talk of childhood 
stunting but simply childhood average adjusted 
height-for-age. This model was fitted to assess childhood 
mean adjusted height-for-age. As already pointed out earlier, 
mean regression has a major drawback of explaining the 
relations of covariates with average nutritional status. Since 
the mean response is heavily influenced by outliers, it is 
difficult to validate whether the observed relations are with 
respect to undernutrition, or overnutrition, or normal 
nutrition status. With conditional quantile regression, we 
were able to validate whether the observed relations were not 
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only with respect to undernutrition, or overnutrition, or 
normal nutrition but also whether with respect to moderate 
or severe nutritional status. This is the main reason why 
quantile regression should be preferred to mean regression in 
modeling nutritional status. The results of the fitted mean 
regression were as follows. 

3.3.1. Fixed Effects 

The summary of fixed effects on childhood mean adjusted 
height-for-age is shown in Table 3. The posterior means and 
95% credible intervals of all categorical covariates were 
summarized in this table. Considering 95% credible intervals, 
we found that only the effect of male child had significant 
negative relation with childhood mean adjusted 
height-for-age. On the other hand, we found that the effects 
of improved source of drinking water, and secondary or 
higher mother education had significant positive relations 
with childhood mean adjusted height-for-age. 

3.3.2. Nonlinear Effects 

Figure 3 (left) shows display of nonlinear effects of child’s 
age in months on average childhood adjusted height-for-age. 
We found that the general relationship of the effects of 

child’s age with average adjusted height-for-age followed 
aUshape. We also observed that average adjusted 
height-for-age steadily deteriorated until 20 months. The 
average adjusted height-for-age remained constantly low 
from 20 months up to 40 months. Thereafter, average 
adjusted height-for-age started stabilizing gradually. Figure 
3 (middle) shows display of nonlinear effects of mother’s 
body mass index on average childhood adjusted 
height-for-age. We found that the general relationship of the 
effects of mother’s body mass index with adjusted height-for 
age followed an inverse U-shape. In general, we observed 
that mother’s body mass indices beyond 30 kg/m2 were 
associated with higher average childhood adjusted 
height-for-age. Figure 3 (right) shows display of nonlinear 
effects of duration of breastfeeding in months on average 
adjusted childhood height-for-age. We found that the general 
relationship of the effects of duration of breastfeeding with 
adjusted height-for-age followed an inverse U-shape. We 
observed that very short durations of breastfeeding (less than 
10 months) reduced average adjusted height for-age. We 
observed that, for durations of breastfeeding beyond 10 
months, increase in duration generally increased the average 
adjusted height-for-age. 

Table 3.  Fixed Effects on Mean Childhood Stunting 

Variable Category Mean Stunting 
  Mean 95% C.I. 

Child’s Sex (Female) 
Male 

– 
-0.25* 

– 
-0.33 , -0.16 

Head’s sex (Female) 
Male 

– 
0.03 

– 
-0.13 , 0.19 

Type of Residence ((Rural) 
Urban 

– 
-0.004 

– 
-0.17 , 0.17 

Working Mother (No) 
Yes 

– 
-0.02 

– 
-0.11 , 0.07 

Vitamin A (No) 
Yes 

– 
0.07 

– 
-0.06 , 0.19 

Radio/TV (No) 
Yes 

– 
0.10 

– 
-0.003 , 0.19 

Drinking Water (Poor) 
Improved 

– 
0.12* 

– 
0.02 , 0.22 

Vaccine Coverage (Poor) 
Full 

– 
-0.07 

– 
-0.18 , 0.05 

Infectious Diseases (No) 
Yes 

– 
-0.05 

– 
-0.13 , 0.04 

Mother’s Education 

(None) 
Primary 

Secondary 
Higher 

– 
0.02 

0.19* 
0.72* 

– 
-0.10 , 0.14 
0.001 , 0.38 
0.01 , 1.40 

Ethnicity 

(Others) 
Chewa 

Tumbuka 
Lomwe 
Tonga 
Yao 
Sena 

Nkhonde 
Ngoni 

– 
0.03 
-0.09 
0.02 
-0.11 
-0.10 
0.14 
-0.07 
0.10 

– 
-0.14 , 0.24 
-0.31 , 0.13 
-0.17 , 0.22 
-0.45 , 0.21 
-0.31 , 0.11 
-0.12 , 0.40 
-0.45 , 0.31 
-0.11 , 0.32 

The categories in parentheses were chosen as reference categories. 
The posterior mean marked with * indicates that the variable category was significant at 5% level relative to reference category 
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Figure 3.  Nonlinear effects on childhood mean adjusted height-for-age 

3.3.3. Structured Spatial Effects 

Figure 4 shows the posterior means of structured spatial 
effects on average adjusted childhood height-for-age. We 
observed that only Karonga and Phalombe districts depicted 
high positive structured spatial effects on average adjusted 
childhood height-for-age but not significant at 95% nominal 
level. On the other hand, we observed that only Dowa and 
Chiradzulu district depicted high negative structured spatial 
effects on average adjusted childhood height-for-age but not 
significant at 95% nominal level. 

 
Figure 4.  Nonlinear effects on childhood mean adjusted height-for-age 

3.4. Comparing Bayesian Quantile and Mean Models 

In order to compare the fit of quantile and mean regression 
models, we compared the deviance information criterion 

(DIC) computed for each model that was fitted. Table 4 
displays the summary of DIC for all the models that were 
fitted in this study. In Table 4, D stands for “Deviance 
evaluated at the posterior mean”, p stands for “Effective 
number of parameters”, and DIC stands for “Deviance 
Information Criterion”. The mathematical relationship used 
to compute DIC is given by DIC = D + 2p where D is minus 
twice the log likelihood (-2LL). The DIC is an appropriate 
tool for assessing the adequacy of the fitted models. The rule 
of thumb is that the smaller DIC values correspond to better 
model fit i.e. the model with smaller DIC is better than a 
model with larger DIC. 

Comparing the DIC in the Table 4, we observed much 
smaller DIC values for all quantile regression models than 
for mean regression model for stunting (haz). This 
observation implied that all quantile regression models fitted 
better than mean regression model. 

Table 4.  DIC for Bayesian Regression Models 

 20% haz 40% haz 50% haz Mean haz 
D 6850.4 6554.72 6555.1 8780.7 
p 51.69 28.89 28.80 44.72 

DIC 6953.8 6612.5 6612.7 8870.1 

4. Discussion 
In this study, both the Bayesian structured additive 

quantile and mean regression models were fitted for 
childhood stunting. The primary aim of this study was to 
demonstrate that quantile regression is more appropriate than 
mean regression in modeling nutritional status. The 
childhood stunting was assessed because it had shown to be 
the most prevalent among children under-five (about47%) 
and that it would provide more information about 
undernutrition status among under-five children in Malawi. 

The inference used in this study was fully Bayesian. For 
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quantile regression models, the posterior marginals were 
estimated using INLA approach in R. For mean regression 
models, the posterior marginals were estimated using 
MCMC approach in BayesX. The INLA approach was 
chosen for quantile regression models because it 
outperforms the MCMC approach in terms of convergence 
and computational speed for quantile models. For the mean 
regression models, MCMC approach has no problems. 

Using quantile regression models, significant predictors of 
severe childhood stunting in Malawi include child’s sex, 
availability of radio/TV, source of drinking water, child’s 
age, mother’s body mass index, and duration of 
breastfeeding. The significant predictors of moderate 
childhood stunting in Malawi include child’s sex, mother’s 
working status, supplementation of vitamin A, availability of 
radio/TV, source of drinking water, infectious diseases, 
mother’s education level, child’s age, mother’s body mass 
index, and duration of breastfeeding. The significant 
predictors of median childhood stunting in Malawi include 
child’s sex, household head’s sex, source of drinking water, 
mother’s education level, child’s age, mother’s body mass 
index, and duration of breast feeding. Both positive and 
negative structured spatial effects were observed for all 
quantile regression models. However, none of them was 
significant at 95% nominal level. 

Using mean regression model, significant predictors of 
mean childhood stunting in Malawi include only child’s sex, 
source of drinking water, mother’s education level, child’s 
age, mother’s body mass index, and duration of 
breastfeeding. Both positive and negative structured spatial 
effects were also observed for mean regression model. 
However, none of them was significant at 95% nominal 
level. 

It is worthy to note that most of the results found in this 
study agreed with the major findings of similar studies. For 
instance, a study was carried out in order to analyse 
socio-demographic and spatial determinants of 
undernutrition in two African countries (Tanzania and 
Zambia) [7]. Among major findings, the significant risk 
factors of childhood undernutrition included low mother 
education, working mother, and male child. It was also found 
out that increase in child’s age significantly increased 
childhood stunting. Furthermore, it was found that childhood 
stunting and mother body mass index (mbmi) followed a 
general inverse U-shape. Evidently, similar results were also 
observed in this study. Another study was carried out to 
analyse determinants of undernutrition among children 
under-2 in Bangladesh in partial fulfillment of the degree of 
master of public health [26]. Among major findings, the 
significant risk factors of undernutrition amongunder-2 
children in Bangladesh included male child, currently 
working mother, infectious diseases, lower wealth index 
quintiles (poverty), food insecurity, poor antenatal care, low 
mother education, and others. It was also found that increase 
in child’s age significantly increased undernutrition and 
particularly stunting. Evidently, similar results were 
observed in this study. 

What we see as the most significant strength of this study 
is that quantile regression was compared to mean regression 
using the same 2010 MDHS data. The findings obtained 
from quantile regression were more efficient than those 
obtained from mean regression. Furthermore, quantile 
regression was more appropriate in modeling childhood 
stunting than mean regression in that the former was able to 
explain the relationship between socio-demographic factors 
and moderate childhood stunting as well as severe childhood 
stunting. One significant evident weakness of mean 
regression was that it explained the relationship between 
socio-demographic factors and average childhood stunting 
status which was meaningless. Quantile regression was 
meaningful because it explained the relationship with 
extreme childhood nutritional status i.e. moderate and severe 
childhood undernutrition. 

The strength of quantile approach applied in this study 
was that continuous response variable was used in regression 
rather than categorized response variables as in the case of 
binary or multinomial regressions. Use of continuous 
response variable led to more flexibility in choosing the level 
of response to consider in regression. In other words, binary 
or multinomial regressions are limited to the assigned 
response categories whereas continuous quantile regression 
is more flexible in such that one can choose any response 
level by choosing appropriate values of 𝜏𝜏 which represent 
desirable response quantiles to regress. 

However, what we see as the major limitation of this study 
is that the 2010MDHS did not capture data on food security 
which should also have been assessed. Although others 
argue that food security can be assessed by wealth index, we 
do not agree with them because it is practically possible for 
rich households to lack food security due to poor 
management. 

5. Conclusions 
Using the fitted quantile regression models, we concluded 

as follows. The fixed effects of male child, currently 
working mother, infectious diseases, and Yaoethnic group 
had significant positive relations with childhood stunting 
while the fixed effects of vitamin A supplementation, 
availability of radio/TV, improved source of drinking water, 
and secondary or higher mother education had significant 
negative relations with childhood stunting. The general 
relationship of the effects of child age with adjusted 
height-for-age followed a U-shape. The general relationship 
of the effects of mother’s body mass index with adjusted 
height-for-age followed an inverse U-shape. The general 
relationship of the effects of duration of breastfeeding with 
adjusted height-for-age followed aU-shape. In general, only 
Chitipa, Machinga, Zomba, and Mwanza districts depicted 
high positive structured spatial effects on adjusted 
height-for-age (highnegative structured spatial effects on 
childhood stunting). However, these effects were not 
significant at 95% nominal level. Finally, this paper provided 
evidence that the Bayesian structured additive quantile 
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regression models are more appropriate than the Bayesian 
structured additive mean regression models in modeling 
childhood stunting. The implication from this study is that 
when interested in specific levels of response other than the 
mean (average) response, one should use quantile models 
rather than mean regressions. 
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