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Abstract  In this paper, an attempt has been made to estimate variance of the classical regression estimator. Adopting 
some available techniques used for estimation of population variance under classical as well as predictive approach, we 
develop eight new variance estimators of the classical regression estimator. It is assumed that the population mean and 
population variance of the auxiliary variable are known prior to sampling. A simulat ion study has been undertaken for 
evaluating relat ive performance of the suggested estimators in respect of standard error and coverage rate based on 95% 
confidence interval.   
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1. Introduction 
Consider a finite population 𝑈𝑈 = {1, 2, … , 𝑖𝑖 , … ,𝑁𝑁}. Let 𝑦𝑦 

and 𝑥𝑥  denote the study variable and an auxiliary variable 
taking values 𝑦𝑦𝑖𝑖  and 𝑥𝑥𝑖𝑖  respectively on the 𝑖𝑖 th unit (𝑖𝑖 =
1, 2, … ,𝑁𝑁) . Let 𝑌𝑌� = ∑ 𝑦𝑦𝑖𝑖𝑁𝑁

𝑖𝑖=1 𝑁𝑁⁄ , 𝑋𝑋� = ∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝑁𝑁⁄  be the 

population means and 𝑆𝑆𝑦𝑦2 = ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌�)2𝑁𝑁
𝑖𝑖=1 (𝑁𝑁 − 1)⁄ , 

𝑆𝑆𝑥𝑥2 = ∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋�)2𝑁𝑁
𝑖𝑖=1 (𝑁𝑁 − 1)⁄  be the population variances 

of 𝑦𝑦 and  𝑥𝑥, and 𝑆𝑆𝑦𝑦𝑥𝑥 = ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌�)(𝑥𝑥𝑖𝑖 − 𝑋𝑋�)𝑁𝑁
𝑖𝑖=1 (𝑁𝑁 − 1)⁄  be 

the population covariance between 𝑦𝑦  and 𝑥𝑥 . Consider a 
sample 𝑠𝑠  of 𝑛𝑛  units drawn from 𝑈𝑈  according to simple 
random sampling without replacement (SRSWOR) to 
estimate the unknown mean  𝑌𝑌� . Let 𝑦𝑦� = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 𝑛𝑛⁄  and 
𝑥𝑥̅ = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 𝑛𝑛⁄  be the sample means, 𝑠𝑠𝑦𝑦2 = 
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑖𝑖𝑖𝑖𝑠𝑠 (𝑛𝑛 − 1)⁄  and 𝑠𝑠𝑥𝑥2 = ∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥̅)2

𝑖𝑖𝑖𝑖𝑠𝑠 (𝑛𝑛 − 1)⁄  
the sample variances, and  𝑠𝑠𝑦𝑦𝑥𝑥 =  ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑥𝑥𝑖𝑖 − 𝑥𝑥̅)/𝑖𝑖𝑖𝑖𝑠𝑠  
(𝑛𝑛 − 1) be the sample covariance. 

The class ical regress ion  est imator of  𝑌𝑌� that  ut ilizes  
known value o f 𝑋𝑋�  is  defined  by  𝑡𝑡𝑅𝑅𝑅𝑅 = 𝑦𝑦� − 𝑏𝑏(𝑥𝑥̅ − 𝑋𝑋�), 
where  𝑏𝑏 = 𝑠𝑠𝑦𝑦𝑥𝑥 𝑠𝑠𝑥𝑥2⁄  is the familiar least squares estimator 
of  𝛽𝛽 = 𝑆𝑆𝑦𝑦𝑥𝑥 𝑆𝑆𝑥𝑥2⁄ , the population regression coefficient of 𝑦𝑦 
on 𝑥𝑥. The main advantages associated with  𝑡𝑡𝑅𝑅𝑅𝑅  are that it  
can  cover both the situat ions  o f pos it ive and negat ive 
correlations between  𝑦𝑦 and 𝑥𝑥, and its precision is usually 
higher than that of the simple expansion (direct) estimator 𝑦𝑦� 
as well as its ratio and product counterparts. In early days 
regression est imator was not frequently  used in  practice 
because of its computational difficulty. But later on, due to 
advancement of computational facilities, the regression or  
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regression-type estimators are o f much interest to the survey 
statisticians.  

The approximate variance of 𝑡𝑡𝑅𝑅𝑅𝑅  is given by 
𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅) = 𝑁𝑁−𝑛𝑛

𝑁𝑁𝑛𝑛
𝑆𝑆𝑦𝑦2(1 − 𝜌𝜌2),       (1.1) 

where  𝜌𝜌 = 𝑆𝑆𝑦𝑦𝑥𝑥 𝑆𝑆𝑦𝑦⁄ 𝑆𝑆𝑥𝑥  is the correlation coefficient between 
𝑦𝑦 and 𝑥𝑥 . The precision of 𝑡𝑡𝑅𝑅𝑅𝑅  is usually discussed in terms 
of  𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅 ). But the exact value of this variance is unknown 
as it depends on the unknown population quantities  𝑆𝑆𝑦𝑦2  and 𝜌𝜌. 
Hence, the estimation of the variance of  𝑡𝑡𝑅𝑅𝑅𝑅  seems to be an 
important aspect of study in the survey sampling literature. 
An estimate of the variance is needed to provide a measure of 
the error in estimation of the mean  𝑌𝑌� by 𝑡𝑡𝑅𝑅𝑅𝑅 . A variance 
estimate is also used to construct a confidence interval fo r the 
unknown mean. A commonly used estimator of the 
approximate variance 𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅 ) is its sample analogue 

𝑣𝑣0(𝑡𝑡𝑅𝑅𝑅𝑅) = 𝑁𝑁−𝑛𝑛
𝑁𝑁𝑛𝑛

𝑠𝑠𝑦𝑦2(1 − 𝑟𝑟2),        (1.2) 
where 𝑟𝑟 = 𝑠𝑠𝑦𝑦𝑥𝑥 𝑠𝑠𝑦𝑦 𝑠𝑠𝑥𝑥⁄  is the sample correlation coefficient, a  
consistent estimate of  𝜌𝜌.  

Survey sampling literature provides a number of 
procedures for estimat ing unknown variance  𝑆𝑆𝑦𝑦2  using 
auxiliary information based either on the classical approach 
[cf., Das and Tripathi[1], Isaki[2], Kad ilar and Cingi[3], 
Grover[4], Yadav[5]] or on the predict ive approach [cf., 
Bolfarine and Zacks[6], Biradar and Singh[7], Nayak and 
Sahoo[8]]. On the other hand, estimation of correlation 
coefficient although receives considerable attention in many 
research papers [cf., Gupta and Singh[9], Shevlyakov[10], 
Roy[11], Shevlyakov and Smirnov[12]], the sample 
correlation coefficient  𝑟𝑟 still remains as the most discussed 
estimator of 𝜌𝜌. Hence, our mechanism of estimating 𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅) 
in this work consists of selecting alternative estimators of  𝑆𝑆𝑦𝑦2  
in place of 𝑠𝑠𝑦𝑦2  and selecting 𝑟𝑟 as the estimator of 𝜌𝜌 in the 
usual way. We assume that both  𝑋𝑋�  and  𝑆𝑆𝑥𝑥2  are known 
accurately. 
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2. Formulation of the Estimators 
As pointed out earlier, our principal interest here is the 

estimation of  𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅) with special concentration on the use 
of an estimator  �̂�𝑆𝑦𝑦2 for  𝑆𝑆𝑦𝑦2  that incorporates the available 
auxiliary information on  𝑥𝑥 . This means that we focus 
attention on the creation of variance estimators having the 
following generalized fo rm:  

𝑉𝑉�(𝑡𝑡𝑅𝑅𝑅𝑅) = 𝑁𝑁−𝑛𝑛
𝑁𝑁𝑛𝑛

�̂�𝑆𝑦𝑦2(1 − 𝑟𝑟2).         (2.1) 
This generalized variance estimator  𝑉𝑉�(𝑡𝑡𝑅𝑅𝑅𝑅 ) can generate 

a family of estimators of  𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅)  for various selections 
of  �̂�𝑆𝑦𝑦2 . This goal can be achieved by many alternatives ways. 
But, the variety of fin ite population variance estimation 
methods and variety of estimator selection criteria leave us 
wondering which estimator could be used successfully. The 
literature to date also offers little guidance in this choice. 
However, as we are concerned with the variance estimat ion, 
we give more stress on the property of non-negativity of an 
estimator. It means that we do not consider some estimators 
of 𝑆𝑆𝑦𝑦2  that achieve negative values very frequently under 
repeated sampling  from a given population. Let  us now 
present a brief review of the estimators those are taken into 
account in the present work.  

Two notable but simple estimators under classical 
approach due to Das and Tripathi[1] and Isaki[2] are very 
much popular in survey practice. These estimators are 
defined by 
𝑣𝑣1 = 𝑠𝑠𝑦𝑦2𝑋𝑋� 𝑥𝑥̅⁄  and 𝑣𝑣2 = 𝑠𝑠𝑦𝑦2𝑆𝑆𝑥𝑥2 𝑠𝑠𝑥𝑥2⁄ , 

respectively. It may be mentioned here that when  �̂�𝑆𝑦𝑦2 = 𝑣𝑣1 , 
𝑉𝑉�(𝑡𝑡𝑅𝑅𝑅𝑅 ) is reduced to the estimator o f Deng and Wu[13].  

During the years that followed, emphasis has also been 
given on the prediction of the population variance using 
auxiliary information. Under this approach, the survey data 
are at hand i.e., the sample observations are treated as fixed 
and unassailable. Uncertainty is then attached only to the 
unobserved values which need to be predicted. To take the 
advantage of this criterion, the population 𝑈𝑈 is decomposed 
into two mutually  exclusive domains 𝑠𝑠  and 𝑟𝑟  of 𝑛𝑛  and 
𝑁𝑁 − 𝑛𝑛  units respectively, where 𝑟𝑟 = 𝑈𝑈 − 𝑠𝑠  denotes the 
collection of units in 𝑈𝑈 which are not included in  𝑠𝑠. Biradar 
and Singh[7], Nayak and Sahoo[8] considered the following 
predictive equation to predict  𝑆𝑆𝑦𝑦2  developed earlier by 
Bolfarine and Zacks[6]: 

(𝑁𝑁 − 1)�̂�𝑆𝑦𝑦2 = (𝑛𝑛 − 1)𝑠𝑠𝑦𝑦2 + (𝑁𝑁 − 𝑛𝑛 − 1)𝑉𝑉𝑟𝑟  
+(1 − 𝑓𝑓)𝑛𝑛(𝑦𝑦� − 𝑀𝑀𝑟𝑟 )2 ,         (2.2) 

where 𝑓𝑓 = 𝑛𝑛 𝑁𝑁⁄ ,   𝑋𝑋�𝑟𝑟 = (𝑁𝑁𝑋𝑋� −𝑛𝑛𝑥𝑥̅) (𝑁𝑁 − 𝑛𝑛)⁄ ; 𝑀𝑀𝑟𝑟  and 𝑉𝑉𝑟𝑟  
are the implied predictors of 𝑌𝑌�𝑟𝑟 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 (𝑁𝑁 − 𝑛𝑛)⁄  and

𝑆𝑆𝑦𝑦(𝑟𝑟)
2 = ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌�𝑟𝑟 )2

𝑖𝑖𝑖𝑖𝑟𝑟 (𝑁𝑁 − 𝑛𝑛 − 1)⁄  respectively. 
For different selections of 𝑀𝑀𝑟𝑟  and  𝑉𝑉𝑟𝑟 , (2.2) can lead to a 

number of estimators of  𝑆𝑆𝑦𝑦2 . But, here we report below six 
estimators viz., 𝑣𝑣3 , 𝑣𝑣4 , 𝑣𝑣5  suggested by Biradar and Singh 
[7], and  𝑣𝑣6 , 𝑣𝑣7 , 𝑣𝑣8  suggested by Nayak and Sahoo[8]:  
 𝑣𝑣3 = �𝑁𝑁−2

𝑁𝑁−1
� 𝑠𝑠𝑦𝑦2   

 𝑣𝑣4 =
𝑠𝑠𝑦𝑦2

𝑠𝑠𝑥𝑥2
𝑆𝑆𝑥𝑥2 + 𝑛𝑛𝑁𝑁 (𝑥𝑥 ̅−𝑋𝑋�)2

(𝑁𝑁−𝑛𝑛)(𝑁𝑁−1) �𝑟𝑟
2 −

𝑠𝑠𝑦𝑦2

𝑠𝑠𝑥𝑥2
� 

 𝑣𝑣5 =
𝑠𝑠𝑦𝑦2

𝑠𝑠𝑥𝑥2
𝑆𝑆𝑥𝑥2 + 𝑛𝑛𝑁𝑁 (𝑥𝑥−̅𝑋𝑋� )2

(𝑁𝑁−𝑛𝑛)(𝑁𝑁−1) �𝑏𝑏
2 −

𝑠𝑠𝑦𝑦2

𝑠𝑠𝑥𝑥2
� 

 𝑣𝑣6 = �𝑛𝑛−1
𝑛𝑛
� � 𝑁𝑁

𝑁𝑁−1
� 𝑠𝑠𝑦𝑦2  

 𝑣𝑣7 = �𝑛𝑛−1
𝑁𝑁−1

� �𝑠𝑠𝑦𝑦2 + 𝑟𝑟2 �𝑁𝑁−1
𝑛𝑛 −1

𝑆𝑆𝑥𝑥2 − 𝑠𝑠𝑥𝑥2�� 

 𝑣𝑣8 = �𝑛𝑛−1
𝑁𝑁−1

� �𝑠𝑠𝑦𝑦2 + 𝑏𝑏2 �𝑁𝑁−1
𝑛𝑛 −1

𝑆𝑆𝑥𝑥2 − 𝑠𝑠𝑥𝑥2��. 

After identifying eight estimators of  𝑆𝑆𝑦𝑦2 , we then utilize 
equation (2.1) to produce estimators of   𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅)  by 
substituting an estimator  𝑣𝑣𝑖𝑖 , 𝑖𝑖 = 1, 2, … ,8  for   �̂�𝑆𝑦𝑦2 . This 
operation generates eight estimators corresponding to 
different but specific choices of �̂�𝑆𝑦𝑦2  as shown in Tab le 1. To 
save space, the detail expressions of proposed estimators are 
not given.  

3. Performance of the Proposed 
Estimators 

Generally we judge estimators by their design-based 
qualities, such as design expectation and design variance, 
under repeated sampling with a g iven design from the fixed 
fin ite population. The regression estimator is no exception. 
We are thus interested in evaluating the statistical properties 
of the eight variance estimators  i.e., 𝑣𝑣𝑖𝑖(𝑡𝑡𝑅𝑅𝑅𝑅 ), 𝑖𝑖 = 1, 2, … , 8, 
compared to the traditional estimator  𝑣𝑣0(𝑡𝑡𝑅𝑅𝑅𝑅) . But, this 
cannot be done exactly, because of the complex nature of the 
considered estimators. However, here we rely on a Monte 
Carlo simulat ion in which 5000 independent samples for 
𝑛𝑛 = 6, 8 and 10 are drawn from 20 populations available in 
various text books and research papers on survey sampling. 
The following performance measures of an estimator 
𝑣𝑣𝑖𝑖(𝑡𝑡𝑅𝑅𝑅𝑅) (𝑖𝑖 = 0, 1, 2, … ,8) are taken into consideration: 

(i) Standard Error (SE) : This performance measure of  
𝑣𝑣𝑖𝑖(𝑡𝑡𝑅𝑅𝑅𝑅) is defined by 

𝑆𝑆𝑆𝑆�𝑣𝑣𝑖𝑖(𝑡𝑡𝑅𝑅𝑅𝑅)� = +�𝑆𝑆[𝑣𝑣𝑖𝑖(𝑡𝑡𝑅𝑅𝑅𝑅)]2 − �𝑆𝑆�𝑣𝑣𝑖𝑖(𝑡𝑡𝑅𝑅𝑅𝑅)��
2
,  

which is a convenient and widely used indicator of the 
precision attained by the variance estimator.  

Table 1.  Proposed Estimators of  𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅) 

Selection of 

𝑆𝑆𝑦𝑦2  
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7 𝑣𝑣8 

Estimator of 

 𝑉𝑉(𝑡𝑡𝑅𝑅𝑅𝑅) 
𝑣𝑣1(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣2(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣3(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣4(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣5(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣6(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣7(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣8(𝑡𝑡𝑅𝑅𝑅𝑅) 
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(ii) Coverage Rate (CR) Based on 95% Confidence 
Interval for Estimating 𝑌𝑌� : We consider an approximate 95% 
confidence interval for 𝑌𝑌�  based on  𝑡𝑡𝑅𝑅𝑅𝑅  and its variance 
estimator 𝑣𝑣𝑖𝑖(𝑡𝑡𝑅𝑅𝑅𝑅)  defined by  𝑡𝑡𝑅𝑅𝑅𝑅 ± 1.96�𝑣𝑣𝑖𝑖(𝑡𝑡𝑅𝑅𝑅𝑅)  under 
the assumption that sampling distribution of   𝑡𝑡𝑅𝑅𝑅𝑅  is 
approximately a normal d istribution. This performance 
measure gives us an idea about which percentage of the so 
constructed confidence intervals based on the variance 
estimator covers the true value of 𝑌𝑌� under repeated draws of 
independent samples from a population.  

4. Description of the Monte Carlo 
Simulation  

Our Monte Carlo study involves repeated draws of simple 
random without replacement samples from 20 natural 
populations. Table 2 presents the source, size  (𝑁𝑁) , 
definit ions of the variables 𝑦𝑦 and 𝑥𝑥  in respect of these 
populations. 5,000 independent samples, for 𝑛𝑛 = 6, 8  
and 10, were selected from each population and fo r each 
sample numerical values of the comparable estimators were 
calculated. Then, considering 5,000 such combinations, 
simulated values of the performance measures viz., SE and 
CR were computed and summarized in Tables 3 and 4. 
Results for 𝑛𝑛 = 8 are not shown, as they confirm more or 
less the tendencies found in the cases of 𝑛𝑛 = 6 and 10 . 
Major findings of the study are discussed in subsections 4.1 
and 4.2. 

4.1. Results Based on the Standard Error 

Simulation results on the SE of the different estimators are 
provided in Table 3. From these results, as is usually 
expected, we note that the SE of an estimator dimin ishes 
with en largement of sample size. In respect of this criterion, 
the performance of 𝑣𝑣6(𝑡𝑡𝑅𝑅𝑅𝑅 ) seems to be very poor, and the 
estimators  𝑣𝑣3(𝑡𝑡𝑅𝑅𝑅𝑅 ), 𝑣𝑣4 (𝑡𝑡𝑅𝑅𝑅𝑅) and 𝑣𝑣5(𝑡𝑡𝑅𝑅𝑅𝑅) behave very much 
erratically  and there is no clear indication that which one of 
them would have a decidedly  better overall performance than 
other two estimators. The estimator 𝑣𝑣7(𝑡𝑡𝑅𝑅𝑅𝑅) emerged out as 
the best performer as it is decidedly more efficient than the 
rest of the estimators in 12 and 9 populations for 𝑛𝑛 = 6 and 
10 respectively, and ranked as second in 6 and 9 populations 
for 𝑛𝑛 = 6  and 10 respectively. However, on this 
consideration we may choose 𝑣𝑣8(𝑡𝑡𝑅𝑅𝑅𝑅 ) and 𝑣𝑣2(𝑡𝑡𝑅𝑅𝑅𝑅) as the 
second best and third best performers respectively.  

4.2. Results Based on the Coverage Rate 
Using several variance estimators, the coverage rates of 

nominal 95% confidence intervals fo r 𝑌𝑌� are shown in Table 
4. The results on the CR give clear indication of 
improvement in the performance of an estimator as the 
sample size increases. The CR of the estimators (except 
some few cases) usually bears no resemblance to the nominal 
rates aimed at. The three estimators  𝑣𝑣3(𝑡𝑡𝑅𝑅𝑅𝑅), 𝑣𝑣4(𝑡𝑡𝑅𝑅𝑅𝑅)  and 
𝑣𝑣5(𝑡𝑡𝑅𝑅𝑅𝑅) perform equally well. However, on the ground of 
the achieved CR we may consider  𝑣𝑣7(𝑡𝑡𝑅𝑅𝑅𝑅 ) ,  𝑣𝑣2(𝑡𝑡𝑅𝑅𝑅𝑅) 
and  𝑣𝑣8(𝑡𝑡𝑅𝑅𝑅𝑅)  as the best, second best and third best 
performers respectively. 

Table 2.  Populations Under Study 

Pop. 
No. Source 𝑁𝑁 𝑦𝑦 𝑥𝑥 

1 Cochran[14] p.152 49 no of inhabitants in 1930 no. of inhabitants in 1920 

2 Sukhatme and Sukhatme[15] p.185 34 area under wheat in1937 area under wheat in1936 

3 Sukhatme and Sukhatme[15] p.185 34 area under wheat in1937 area under wheat in1931 

4 Samford[16] p.61 35 acreage under oats in 1957 acreage of crops and grass in 1947 
5 Wetherill[17] p.104 32 percent yield of petroleum petroleum fraction end point 
6 Murthy[18] p.398 43 no of absentees no of workers 
7 Murthy[18] p.399 34 area under wheat in 1964 cultivated area in 1961 
8 Murthy[18] p.399 34 area under wheat in 1964 area under wheat in 1963 
9 Steel and Torrie[19] p.282 30 leaf burn in secs. percentage of potassium 

10 Shukla[20] 50 fiber yield height of plant 
11 Shukla[20] 50 fiber yield base diameter 
12 Dobson[21] p.83 30 cholesterol age in years 
13 Dobson[21] p.83 30 cholesterol body mass 
14 Yates[22] p.159 25 measured volume of timber eye estimated volume of timber 
15 Yates[22] p.159 43 no. of absentees total no. of persons 

16 Panse and Sukhatme[23] p.118 25 progeny mean parental plant value 

17 Panse and Sukhatme[23] p.118 25 progeny mean parental plot mean 
18 Dobson[21] p.69 20 total calories from carbohydrate calories as protein 
19 Horvitz and Thompson[24] 20 actual no. of households eye estimated number of households 
20 Dobson[21] p.69 20 carbohydrate body weight 
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Table 3.  Standard Error of the Estimators 

𝑛𝑛 Pop. No. 𝑣𝑣0(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣1(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣2(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣3(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣4(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣5(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣6(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣7(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣8(𝑡𝑡𝑅𝑅𝑅𝑅) 

6 

1 43.34 48.05 36.87 82.44 245.72 242.88 244.33 42.44 108 

2 248.71 170.52 213.54 241.17 127.82 124.04 127.43 123.43 102.57 

3 266.28 224.43 228.63 258.21 404.88 405.12 406.12 213.93 227.66 

4 25.31 41.06 21.71 64.56 109.36 107.2 121.56 24.87 42.32 

5 5.3 5.27 4.56 5.13 102.66 102.67 102.89 1.01 14.87 

6 1.47 1.46 1.25 1.43 2.06 2.06 2.08 0.86 0.87 

7 197.43 197.4 169.51 201.75 447.52 447.52 448.19 191.45 280.43 

8 62.8 49.25 53.92 60.9 63.24 63.55 63.69 52.9 58.9 

9 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0 0 

10 0.07 0.08 0.06 0.07 0.52 0.53 0.56 0.01 0.21 

11 0.05 0.05 0.06 0.05 0.23 0.23 0.24 0.01 0.04 

12 0.05 0.06 0.1 0.05 0.04 0.14 0.14 0.05 0.05 

13 0.08 0.09 0.07 0.08 0.17 0.17 0.18 0.02 0.05 

14 255.31 266 221.62 244.67 179.27 174.07 182.28 148.29 70.51 

15 5.6 5.54 4.78 5.47 7.8 7.79 7.88 8.15 3.3 

16 0.05 0.05 0.08 0.04 0.07 0.06 0.06 0.04 0.02 

17 0.06 0.06 0.15 0.05 0.15 0.05 0.19 0.03 0.03 

18 1.96 1.91 1.72 1.86 3.55 3.59 4.07 1 1.21 

19 1.74 1.56 1.53 1.65 2.51 2.55 2.62 1.26 1.68 

20 2.4 2.5 4.11 2.28 15.33 15.84 18.55 1.26 1.47 

10 

1 14.85 15.94 13.64 14.54 14.05 14.03 14.03 13.36 17.25 

2 120.77 88.94 111.99 117.11 77.92 74.71 77.05 61.54 92.31 

3 126.26 96.15 117.08 122.44 118.39 120.74 124.2 83.05 93.12 

4 9.51 17.75 8.81 9.23 53.37 52.48 66.81 21.61 25.15 

5 2.21 2.19 0.67 2.13 6.89 6.89 6.91 1.16 3.05 

6 0.8433 0.8016 0.7771 0.8233 0.5673 0.5681 0.5711 0.3298 0.3082 

7 71.03 61.9 85.87 68.88 188.27 188.54 190.42 64.5 85.76 

8 29.31 21.97 27.18 28.42 20.12 20.31 20.4 19.27 17.52 

9 0.0041 0.0044 0.0038 0.0039 0.005 0.005 0.0055 0.0016 0.0015 

10 0.0362 0.0366 0.0332 0.0354 0.0382 0.0382 0.0383 0.0188 0.0084 

11 0.0184 0.0192 0.0169 0.018 0.068 0.0688 0.0813 0.024 0.008 

12 7 0.0214 0.0202 0.0209 0.0298 0.03 0.0303 0.0164 0.0279 

13 0.0331 0.0331 0.0308 0.0319 0.0062 0.063 0.0634 0.0181 0.012 

14 79.35 91.03 74.39 76.04 71.06 63.77 72.63 33.95 65.6 

15 3.32 3.17 3.06 3.25 2.22 2.22 2.23 1.29 1.15 

16 0.0193 0.019 0.0181 0.0226 0.0235 0.0209 0.0226 0.0086 0.0282 

17 0.0178 0.0175 0.0167 0.0171 0.0522 0.0504 0.0759 0.0101 0.012 

18 0.4936 0.478 0.4676 0.4676 0.6296 0.6293 0.6561 0.2822 0.3088 

19 0.5542 0.548 0.525 0.525 0.5715 0.5783 0.5837 0.4858 0.4081 

20 0.697 0.708 0.6603 0.6603 0.6155 0.6188 0.6244 0.3318 0.4229 
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Table 4.  Coverage Rate of the Estimators 

𝑛𝑛 Pop. No. 𝑣𝑣0 (𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣1(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣2 (𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣3 (𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣4(𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣5 (𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣6 (𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣7 (𝑡𝑡𝑅𝑅𝑅𝑅) 𝑣𝑣8 (𝑡𝑡𝑅𝑅𝑅𝑅) 

6 

1 26 26 39 25 54 40 24 39 37 
2 72 74 77 72 76 77 70 77 77 
3 65 65 69 65 61 66 63 69 68 
4 40 45 50 40 52 44 39 51 50 
5 58 58 57 69 26 40 54 69 68 
6 58 59 61 58 58 50 57 61 61 
7 74 74 78 73 69 76 71 78 78 
8 59 61 64 58 63 64 56 64 64 
9 65 65 66 65 36 40 62 67 66 
10 38 37 54 38 24 31 35 54 54 
11 60 61 76 60 52 55 56 77 76 
12 76 76 83 75 95 65 72 84 85 
13 79 79 82 78 64 65 82 83 75 
14 63 67 59 62 64 50 60 60 60 
15 60 61 63 59 59 53 59 63 63 
16 77 83 77 82 93 68 80 83 80 
17 73 73 72 72 61 56 70 73 72 
18 72 72 75 71 66 61 70 75 75 
19 58 59 64 67 65 63 96 74 65 
20 82 82 84 81 78 66 84 85 80 

10 

1 99 99 99 99 98 98 99 99 100 
2 99 99 98 100 99 99 100 100 98 
3 67 63 67 70 70 71 69 71 71 
4 39 37 43 30 45 45 29 45 30 
5 4 2 17 17 35 35 15 36 17 
6 16 20 28 27 24 24 26 24 28 
7 87 77 80 82 90 90 81 91 83 
8 99 99 99 99 99 99 99 99 99 
9 35 33 60 58 57 57 57 58 59 
10 19 13 33 32 40 40 30 40 33 
11 59 49 67 65 79 79 64 81 66 
12 83 99 94 93 96 95 92 95 93 
13 79 86 96 96 98 98 95 96 96 
14 53 65 67 61 63 60 61 65 62 
15 16 18 28 27 23 23 26 23 27 
16 68 87 79 78 77 75 78 79 76 
17 64 72 80 79 85 85 79 83 80 
18 77 80 86 84 86 85 84 86 85 
19 61 61 58 56 68 68 56 62 57 
20 77 84 89 88 85 85 88 85 89 

 

5. Conclusions 

Our Monte Carlo simulat ion study shows that the 
estimator 𝑣𝑣7(𝑡𝑡𝑅𝑅𝑅𝑅) is preferable to its competitors on the 
grounds of SE and CR. It means that this variance estimator 
is more efficient than others and can also produce shorter 
confidence intervals for the population mean. On the other 
hand, the estimators 𝑣𝑣8(𝑡𝑡𝑅𝑅𝑅𝑅)  and 𝑣𝑣2(𝑡𝑡𝑅𝑅𝑅𝑅 )  may be 
considered as the second best choice on the consideration of 
SE and CR respectively.  

Although the conclusions of this Monte Carlo  
investigation may not be applicable to all situations, they 
provide certain guidelines on the overall performance o f the 
variance estimators under consideration. Further 
investigations in this direction with the help of other performance 
measures may be more useful for better understanding of the 
statistical properties of the estimators. 
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