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Abstract  Bayesian methods provide more intuitive and meaningful inferences than likelihood-only based inferences. 
This is simply because Bayesian approach includes prior information as well as likelihood. In empirical Bayes (EB) 
methodology, we use data to help determine the prior through estimation of the so-called hyperparameters. In this paper, a 
Bayesian model called Beta-binomial conjugate model is employed using Bayesian sequential estimation method to estimate 
the proportion of different age groups attended to at the National Orthopaedic hospital, Igbobi, Nigeria. Over the years results 
show that the highest number of patients at the hospital is within the age group 15 to 44 years but with the smallest proportion 
of orthopaedic surgeries. Similarly, smallest the numbers of patients are among the age group less than one year and greater 
than 64 years but with highest proportion of orthopaedic surgeries. Also, overall EB proportion of patients admitted for 
orthopaedic surgeries in the hospital across the age groups increased steadily. Finally, the results of the comparative analysis 
of the sample and EB proportions show that the EB estimators are better estimators on the basis of efficiency and consistency.  
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1. Introduction 
The considerable impact of Empirical Bayes (EB) on 
statistical applications continues to receive increasing 
popularity since its introduction about four decades ago. The 
EB structure combines information from several but similar 
sources. The primary interest in EB analysis is in the 
hyperparameters (η  ) rather than the parameters from 

individual studies (θ ). More generally, the hierarchical 
structure allows for assessment of heterogeneity both within 
and between groups [1]. Thus Bayesian approach to 
parameter estimation, when conditions of data allow, is to 
estimate the posterior distribution of the parameter(s) in 
question (θ ) so that inference on θ  is then based on the 
posterior distribution. A prior distribution for θ  is needed 
to derive the posterior and, in some cases, the prior may have 
its own parameters, called hyperparameter(s) (η ). Quite 
often, η  is unknown to the analyst, in which case the prior  
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is not completely specified. One way of resolving this 
problem is through empirical Bayes (EB) analysis. More 
importantly, EB can lead to more precise estimates than 
sampling theory approaches [2]. EB analysis also provides a 
more dependable ranking of parameters and aids in the 
identification of extreme values in the group[3]. These 
properties of EB derive from the fact that it uses related 
supplementary data which frequentist inference ignores; (for 
more on this see[4]. The EB concept was first proposed by[5] 
in a non-parametric setting. Some notable works in this 
regard include[6],[7],[8],[9],[10],[11],[12],[13],[14] and[4]. 
More recent works and applications include 
[15],[16],[17],[18],[19], and[20], and[21].  

The national orthopedic hospital, Igbobi, Nigeria; was 
specifically commissioned to provide professional 
orthopaedic surgeries among health institutions in Nigeria. 
By orthopaedic surgeries or services, the study refers to the 
branch of surgery concerned with conditions involving the 
musculoskeletal system (i.e. the body's bones (the skeleton, 
muscles, cartilage, tendons, ligaments, joints, and other 
connective tissue that supports and binds tissues and organs 
together). This study identifies other category of treatments 
or services rendered by the orthopaedic hospital as 
non-orthopaedic (e.g. minor injuries resulting from motor 
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vehicle and motorcycle accidents, domestic and industrial 
accidents, gunshots, sport injury e.t.c.) because such cases 
can be easily handled by the general hospitals.  

In an attempt to determine the proportion of orthopaedic 
cases handled by the hospital especially among different age 
group, we employed a Bayesian model called Beta-binomial 
conjugate model using Bayesian sequential estimation 
method. From the hospital record, data were collected and 
collated over a period of three years (2009, 2010 and 2011). 
The study also compares the computed sample and EB 
estimates over the three year period and also the variances of 
the computed estimates. 

The remainder of the paper is organized as follows: 
Bayesian Sequential methodology is described in section 2. 
Beta- Binomial model is presented in section 3. Section 4 
presents the results of the application of Beta- Binomial 
model and Bayesian Sequential method along with 
comparative analyses of results. Section 5 concludes the 
paper. 

2. The Bayesian Sequential Methodology 
If a set of observations x1 , x2 ,  x3 , . . . , xn generates a 

posterior distribution and, in a similar situation, additional 
data are collected beyond these observations, then the 
posterior distribution found with earlier observations 
becomes the new prior distribution and the additional 
observations give a new posterior distribution and inference 
can be made from the second posterior distribution. This 
procedure can continue with even more observations. In 
other words, the second posterior becomes the new prior, and 
the next set of observations give the next posterior from 
which the inference can be made [22]. This is the principle of 
Bayesian sequential methodology that we applied to estimate 
the proportion of counted data obtained from the hospital. 

Based on the Bayesian approach described above, data 
were collected monthly and collated yearly for three years 
(2009, 2010 & 2012) from the hospital records. The 
population proportion of patients admitted for orthopaedic 
surgery is denoted by Po while the proportion of patients 
admitted for orthopaedic surgery in age group j is Pj  (j = 1, 
2, . . ., 5). Xij represents a random outcome of patient i 
examined in age group j. 
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3. The Beta-Binomial Model  
The EB model to be applied is a conjugate beta-binomial 

model where the binomial distribution represents the 
likelihood of the observed data likelihood and the beta 
distribution serves as the prior distribution of the binomial 
parameter. The posterior mean is  

∫= jkjkjkjkjk dPYPfPP ),|(~ η      (1) 

A key component of this integral is ),,|( ηjkjk YPf The 

posterior distribution of which is jkP . Under the general 
Bayesian framework and using the beta conjugate prior plus 
the binomial likelihood, the posterior distribution of jkP  

is: 

1 1

1 1
( , )

1(1 ) (1 )( , )
( | , ) ,

1(1 ) (1 )( , )

jk jk jk

jk jk jk

Y n Yjk r s
jk jk jk jk

jk
jk jk

Y n Y r s
jk jk jk jk jk

r s

n
P P P PY B r s

f P Y
P P P P dPB r s

ηη

− − −

− − −

 
 
 
  =

− −

=
− −∫

        (2) 



 Rotimi K. Ogundeji et al.:  Bayesian Sequential Estimation of Proportion of Orthopaedic Surgery Among  110 
Different Age Groups: A Case Study of National Orthopaedic Hospital, Igbobi-Nigeria 

 

There is need to estimate the hyperparameters r and s of 
the beta distribution in order to completely specify the prior. 
This can be achieved easily through reparameterisation of 

),|( ηjkPf  and using moment estimation[16]. Letting  
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Consequently, 
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λ  and it can be readily seen 

that where Μ̂  (the scale factor) is large relative to jkn , 

λ  is large and oP̂  receives a larger weight than
jk
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n
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. But 

large Μ̂  implies small prior variance. Thus, the estimate 
which is associated with smaller variance receives larger 
weight in determining the posterior mean EBP~ . On the other 

hand, if Μ̂  is small relative to jkn , the sample mean 
receives more weight. Note that the posterior density for the 
overall age group proportion 𝑃𝑃𝑜𝑜  is obtained by replacing 

jkY  and jkn  in equation (3) with Y and N, respectively. 

Under conjugacy, the EB estimator of a proportion ijP̂  is 
a weighted mean of two estimators, the mean of the prior 

density oP  and the sample proportion estimator ijP̂ . Thus, 

ijoEB PPP ˆ)1(~ λλ −+=           (6) 

EBP~  is the empirical Bayes Estimators with λ as the 
shrinkage factor. λ is a function of the prior and sample 
estimator variances such that, if variance of sample estimator 

is large, the weight of oP̂  (i.e.λ  ) will be large and EBP~  

will shrink towards oP̂  . Two components of the above 

model λ and oP̂  are derived from the EB process,[14]. 

4. Results  
The results of the application of Beta-Binomial model and 

Bayesian sequential methods to the data of different age 
group patients for the three years (2009, 2010 and 2011) 
observations are presented in Table 1 & 2 below. The 
hyperparameters µ and M  are estimated using sample 
information. These were subsequently used to determine the 
parameters of the posterior distributions α and β  thereby 
completely specifying them. In our analyses, we compare on 
yearly basis estimated sample proportions and EB 
proportions as well as variances of estimated sample 
proportions and EB proportions. 

Table 1.  Comparative Analysis of Estimated Sample Proportions and EB Proportions 

Year: 2009 2010 2011 
Age group Pj1 PEB Pj2 PEB Pj3 PEB 

< 1yr 0.4900332 0.4885043 0.547619 0.5430286 0.4608819 0.470019 
1 - 14yrs 0.4288879 0.4294206 0.52383 0.5215909 0.5281195 0.527877 

15 – 44yrs 0.3881102 0.3887539 0.4268812 0.4263775 0.4754009 0.474256 
45 – 64yrs 0.5764463 0.574785 0.6481088 0.6463872 0.6910533 0.689386 

> 64yrs 0.5823899 0.5772227 0.6392638 0.6352365 0.7375887 0.727948 
Overall 0.4628868 0.4628868 0.5231361 0.52281 0.5593983 0.559072 
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Table 2.  Comparative Analysis of Variances of Estimated Sample Proportions and EB Proportions 

Year: 2009 2010 2011 
Age group Var(Pj1) Var(PEB) Var(Pj2) Age group Var(Pj1) Var(PEB) 

< 1yr 0.00042 0.00039 0.00037 0.00034 0.00035 0.00031 
1 - 14yrs 0.00011 0.00011 0.00011 0.00010 0.00011 0.00011 
15 - 44yrs 0.00006 0.00006 0.00006 0.00006 0.00007 0.00007 
45 - 64yrs 0.00010 0.00010 0.00010 0.00009 0.00009 0.00009 

> 64yrs 0.00031 0.00029 0.00028 0.00027 0.00023 0.00021 
Overall 0.00002 0.00002 0.00002 0.00002 0.00003 0.00002 

 
Figure 1.  Comparative number of Patiens at the Hospital across the different age groups 

 
Figure 2.  Comparative Proportions Amomg different age groups in 2009 

 
Figure 3.  Comparative Proportions Amomg different age groups in 2010 
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Figure 4.  Comparative Proportions Amomg different age groups in 2011 

Over the years under consideration, the results show that 
the highest number of patients attended to at the hospital is 
among the age group 15 to 44 years (see figure 1) but in 
figures 2, 3, 4 this age group also has the smallest proportion 
of orthopaedic surgeries. Similarly, the smallest number of 
patients can be found among the two age groups ‘less than 
one year’ and ‘greater than 64’. Also the highest proportion 
of orthopaedic surgeries is among patients whose ages are 
greater than 64 years followed by those who are less than one 
year old.  

The overall EB proportion of patients admitted for 
orthopaedic surgeries in the hospital across the age groups 
increased steadily (0.4629, 0.5228 and 0.5591) over the 
respective three years of study.  

Furthermore, the computed variances of the sample and 
EB estimates are smallest among the age groups ‘15 – 44 
years’ and ‘44 – 64 years’ while highest variances are noted 
in age group ‘less than one’ and ‘greater than 64 years’ (see 
Table 2).  

5. Conclusions  
This paper has been able to show how Bayesian sequential 

estimation of proportion can be applied to statistical process 
control for different ages of the patients and years. The result 
of the analysis was compared both of yearly estimated 
sample proportions and EB proportions plus the variances. It 
was found that overall EB proportion of patients admitted for 
orthopaedic surgeries in the hospital across the age groups 
increased steadily. Similarly, the overall variances of the 
proportions tend more to zero over the three years under 
review. Thus, the results show that the EB estimators are 
better estimators on the basis of efficiency and consistency 
properties of good estimators.  
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