
Software Engineering 2012, 2(4): 160-164
DOI: 10.5923/j.se.20120204.09

Software Defect Management Using a Comprehensive
Software Inspection Model

Navid Hashemi Taba*, Siew Hock Ow

Department of Software Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia

Abstract Traditional inspection approaches that are used for more than three decades are not effective for current
software and development processes. The studies and experiments by testing and inspection professionals showed that
customizing inspections can increase their effectiveness as well as efficiency. The comprehensive software inspection model
in this article performs defect removal actions as an important duty of inspection, as well as, using the capabilities of
collaborative and knowledge base systems. The process improvement is continuously in progress by creating swap iteration
in inspection model kernel. In order to validate the model, it is implemented in a real software inspection project. The
varieties of detected and removed defects show the potential performance of the model.

Keywords Software Inspection, Inspection Model, Defect Management, Knowledge Base

1. Introduction
Software inspection is considered by scholars as an

engineering and economic approach for software debugging
and software qualification improvement. Fagan is known as
the founder of software inspection[1, 2]. In 2002 Frank and
others issued a paper with inspection subject. They believed
that a common and successful technique used for examining
traditional specifications is inspection[3]. Although in recent
years code inspection by using automated tools has
overcome the formal methods of software documents’
review[4]. Another facility of software inspection is using
collaborative tools in a distributed manner. Using these tools
creates a possibility of tele-working for inspectors who are in
different time zones and locations. This electronically
collaboration is a proper replacement for traditional
approaches of gathering the inspectors in one location. The
common disadvantage of inspection models is removing
identified defects through the inspection mechanisms. This
means that the inspection methods advance up to discover
the defects and addressing their causes. However, the final
goal of inspection is defect removal not just defect detection.
The proposed comprehensive model involves defect removal
procedures as a major part of inspection process. The
implementation of the model on a quality control
project shows its capabilities in defect detection and
removal.

* Corresponding author:
nhtaba@siswa.um.edu.my (Navid Hashemi Taba)
Published online at http://journal.sapub.org/se
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

2. Defect Management
Managing the defects is so important for succession the

inspection process. Finding defects based on the predefined
defect patterns is the common essential task for any
inspection model. The first and the most important phase of
software inspection is individual preparation. In other words,
inspectors must be utterly familiar with development
environment, development tools, Projects characteristics,
and software product. Regardless of special kind of
technique or method to distinguish and remove the defect,
the sequence diagram in Figure 1 shows its general
strategy[5].

Figure 1. General Strategy for Software Inspection Process

2.1. Defect Definition

According to IEEE, a work product possesses a defect
when it faces some shortcomings and inadequacies during
providing its own requirements and attributes. Therefore
‘repairing’, ‘reworking’ or ‘replacing’ is necessary for its
removal. According to IEEE, a work product possesses a
defect when it Standard IEEE dictionary has defined ‘defect’,
‘fault’ and ‘failure’ specifically. These definitions and their
elated references are represented in Table 1 Following table
has offered different definitions and examples for defect
attributes. There are different classifications of defects. Two
main classes are Omission and Commission that in the

 Software Engineering 2012, 2(4): 160-164 161

former omitted elements are considered as a defect and in the
latter; those elements, which exist but are incorrect, are
considered as defects.

Table 1. Glossary of Terms and Definitions

Term Definition Reference

Defect

An imperfection or deficiency in a
work product where that work

product does not meet its
requirements or specifications and

needs to be either repaired or
replaced.

Project
Management

Institute

Error A human action that produces an
incorrect result.

ISO/IEC
24765:2009

Failure

Termination of the ability of a
product to perform a required

function or its inability to perform
within previously specified limits.

ISO/IEC
25000:2005

An event in which a system or
system component does not

perform a required function within
specified limits.

ISO/IEC
24765:2009

Problem

Difficulty or uncertainty
experienced by one or more
persons, resulting from an

unsatisfactory encounter with a
system in use.

ISO/IEC
24765:2009

A negative situation to overcome. ISO/IEC
24765:2009

2.2. Interconnected Relations among Problem, Failure,
and Defect

Figure 2 depicts the interconnected relation among the
problem, failure and defect failure. The rounded rectangle is
used to show the entities and some links connected them to
each other. The symbols, which are used at the end of links,
represent the number of entities[6].

Figure 2. Interconnected Relations

A hollow circle at the end of a link clarifies that the entities
are optional, in other words, their existence is not necessary.
Trident symbols represent this point that several entities may
attend in the connection. Lack of a trident symbol, means
that utmost one entity could be applied. Two interconnected
rounded rectangles show the relation between the child and
parent; the outside symbol represents the parent and the
inside one the child. For instance, as it can be seen, defect
will be the parent and failure will be the child.

3. Related Works
Tyran stated that software inspections have been found to

be one of the most effective ways to promote quality and
productivity in software development[7]. The researcher
emphasized the correction of a defect found early in
development has 10 to 100 times less cost to remove
comparing rework performed at the latter stages. According
to Suma, Nair, and Gopalakrishnan, the key challenge of an
IT industry is to design a software product with minimum
post deployment defects[8]. Armour in a test oriented paper,
stated that inspection is a way to obtain a high-quality of
software[9].

Zheng et al.[10] introduced Automated Static Analysis
(ASA) to correct failures before inspections or clients reports
or doing some tests lead to their discovery. In his invaluable
paper, he has analysed the statistical analysis results of a case
study to do with ASA. The researcher has demonstrated that
static analytical tools account for as a complement for other
error detection techniques and lead to economical
development of software product with a high quality.

Leite, Julio in 2005]11] issued an article that shows how
inspections help software developers to better manage the
production of scenarios. They have used Fagan’s inspections
as the main paradigm in the design of our proposed process.
The process was applied to case studies and data were
collected regarding the types of problems as well as the effort
to find them. During a case study, software products of
Nortel networks with more there 33 million line program
was inspected. The objective of the research was that
whether ASA can make qualitative improvement of software
products in an organization. As an important step,
classification of different types of defects and their
correspondence with software development process stages
are performed and its summary, adopted[12], is available in
table 2.

Table 2. ODC Defect Types and Process Associations

Process Association Defect Type

Design Function

Low Level Design Interface, Checking,
Timing/Serialization, Algorithm

Code Checking, assignment

Library Tools Build, Package, Merge

Publications Documentation

162 Navid Hashemi Taba et al.: Software Defect Management Using a Comprehensive Software Inspection Model

4. Proposed Inspection Model
The inspection model composed of four important phases

as illustrated in Figure 3, which are: preparation, defect plan
design, generative inspection procedures, and inspection
process evaluation.

Figure 3. Generative Software Inspection Model

To implement this conceptual model, it is necessary that
inspectors, developers, and users communicate during the
process using a comprehensive collaboration tool. Also the
involved people in inspection process should be
electronically trained to be dominant on tools, methods, and
inspection artifacts. In order to survey the causes of effects of
defects incidence wisely, the model suggests designing and
using a knowledge base. The phases of the aforementioned
model are explained as below.

4.1. Preparation

The initial point for inspection process is preparing the
environment and inspectors. In this phase, the first step is to
select expert inspectors according to their required skills and
inspected artifacts specifications. The second step is to
arrange inspection team including team organization
structure in a centralized, decentralized, or distributed and
identifying responsibilities, roles, and duties of each member
of the team. The third step is to distribute specifications and,
in some cases, the artifacts between team members or
making them available for inspection team. The last step is to
do a quick flash test to be conversant of inspectors’ situations
and knowledge.

4.2. Designing Defect Plan

Proper resource allocation, scheduling and goals
determination are crucial in the success of an inspection
process[9]. The suggested steps of this phase, initiate by
defining profile and access right for inspectors. However, the
next steps are: Defining an appropriate scheduling and a
complete charter including collaboration method and
resolving possible disagreements, determining milestones ad
finally collaboration protocols.

4.3. Generative Inspection Procedures

This phase includes doing the repetitive procedures of two
complementary sets:
• The first action set that is called Detect Diagnosis (DD)

contains the required actions to identify and recognize the
defects. Performing inspection procedures, defect detection,
explaining the details of each defect, sketching the cause and
effect diagrams, and updating the defects’ databases are the
main actions of DD set in the third phase.
• Defect Removal (DR) is the second routine set that is

considered as the most specific attribute of the proposed
model and makes the model intelligent and generative, also
satisfies the main goal of inspection process, which is defect
removal. The other supplementary duties of this phase are
removing defects from artifacts and preparing a new version,
updating related documents, defect plan and finally creating
defect report.
• DD and DR swapping: as it is mentioned earlier, two

sets that form intelligent inspection must be run iteratively
and periodically. The iteratively execution feature makes it
possible to remove new arisen defects while detecting the
other defects. The key factor is to recognize when the cycle
should be broken and entered the last phase. However, these
should be considered in defect plan as certificate instruction
and termination criteria.
• Defect knowledgebase: the action of the two sets, DD

and DR, are done by using a knowledgebase composed of
defects related rules and facts. In this base the potential
defects and causes are stored and by detecting each defect,
the inspectors establish, reform or modify the rules. Using an
inference engine may help the inspectors to do their duties.
The aforementioned inference engine reminds about the
possible defects and shows the possible causes (if any defect
found).

4.4. Inspection Process Evaluation

As there is a specific plan for each inspection, the
evaluation process should be done according to a specific
plan so the first step of the last phase is to customize
evaluation metrics[13]. The second step is to finalize the
evaluation formulas according to pre-defined criteria.
Respectively, next step is to put data in the related formula
and analysing them. The results of these evaluations can be
useful in future inspection plan designing and improving the
methods used in evaluation. It adds the learning property to
the system that is the special attribute of an intelligent
model.

 Software Engineering 2012, 2(4): 160-164 163

5. Model Implementation
To have a real evaluation of model performance, software

quality control project of an auto spare part company is
selected. Therefore, some system development documents
and artifact related to different processes like Purchase, Sales,
Production, and Maintenance were inspected. Table 3 shows
the inspected processes and efforts for defect detection and
defect removal using proposed model in developing each
process.

Kaplan stated that defect detection in early phases of
system development dramatically reduces the quality
costs[14]. Adapting aforementioned research, the minimum

and maximum cost saving rate as the model performance
criteria are calculated and presented in table 4.

The minimum saving is related to defect detection in
immediate next phase and maximum performance is due to
detection the defects in last phase of development or after
shipping to customer.

Table 5 shows total saved effort as the model efficiency
criteria for defect detection and removal. As it is clear, for
some defects the required efforts for defect detection is more
than the necessary efforts for detect removal and in some
cases this fact is reverse.

Table 3. Defect Detection and Removal Efforts

Quality Management Processes

Efforts for Defects Detection and Removal in Case Study (Person / Week)

Analysis Design Code Test

IE DDE DRE IE DDE DRE IE DDE DRE IE DDE DRE
Document and data Control, Analysis of data,
Preventive and Corrective Action 7 4 3 4 1 3 5 2 3 6 3 3

Sales, Customer Related Processes 5 2 3 4 2 2 6 5 1 5 2 3

Purchase 4 2 3 3 1 2 9 7 2 7 3 4

Process Audit 7 4 3 8 3 5 7 6 1 6 4 2

Planning of production 8 4 4 9 5 4 8 4 4 10 5 5

Training 6 4 2 4 2 2 6 4 2 2 1 1

Storage 8 3 5 6 3 3 10 3 7 9 5 4

Product Audit 10 4 6 12 5 7 9 4 5 14 6 8

Inspection and test (Lab, Calibration) 6 4 2 8 6 2 6 4 2 5 3 2

Maintenance & Tool management 8 3 5 6 4 2 8 4 4 6 4 2

Management review, QMS Planning 12 6 6 7 2 5 4 2 2 14 5 9

TOTAL 81 40 42 71 34 37 78 45 33 84 41 43

IE: Inspection Effort, DDE: Defect Detection Effort, DRE: Defect Removal Effort

Table 4. Defect Amplification

 Relative Cost of Correcting Defects in Next Phases

Phases Analysis Design Code Test Implementation

 Min Max Min Max Min Max Min Max Min Max

Analysis Base 3 6 10 10 15 70 40 1000

Design Base 2 3 4 17 10 250

Code Base 2 7 4 100

Test Base 2 20

Table 5. Total Saved Efforts Defect

Phase IE DDE DRE AAR EDA SE

Analysis 81 40 42 144 6000 5200

Design 71 34 37 62 2200 2130

Code 78 45 33 28 924 846

Test 84 41 43 11 473 389

Total 314 160 155 - 9597 8565

IE: Inspection Effort Defect; DDE: Detection Effort; DRE: Defect Removal Effort; AAR: Average Amplification Rate; EDS: Expected Defect Saved

164 Navid Hashemi Taba et al.: Software Defect Management Using a Comprehensive Software Inspection Model

6. Involved People in the Model
Users, software developers, independent and internal

inspectors are the involved people in inspection process.
Using web-based distributed tools and collaboration
framework not only leads to inspection process facilitation,
but also removes the gap and overlaps of the actions done.
Another advantage of using this kind of environments is
involving inspection process employers who are in different
time zones and geographically in far positions.

Bryksyzenski[15] stated: “Software inspection has
decisively improved software quality, development cycle
time, overall maintainability.” Finally we should say that the
integrated environments supported by relation or networking
database are better to present the experiments between the
projects, and then do some traditional document based
approaches.

7. Conclusions
The proposed model in this research, suggested a defect

management approach systematically detect removing
through an iterative manner. Registering the events and
rules related to defects and their causes in a knowledgebase,
makes the model intelligent. Using distributed collaboration
tools enables software inspectors to do their duties without
any gap and overlap. Customized evaluations of inspection
process prepare useful information about performance and
effectiveness of inspection process, which causes continuous
improvement in the next iterations of a project lifecycle.
Implementing the model in a real environment to detect and
remove the real defects shows the performance of the model.
Developing and maintaining collaboration tools is highly
recommended to gain better performance.

REFERENCES
[1] M. E. Fagan, “Design and Code Inspection to Reduce Errors

in Program Development,” IBM Systems Journal, vol. 15, No.
3, pp. 182-211, 1976.

[2] M. E. Fagan, “Advances in Software Inspections,” IEEE
Trans. on Software Engineering, SE, vol. 12(7), pp.744-751,
July 1986.

[3] H. Frank, S. Thilo, E. Dietmar, “Defect Detection for
Executable Specifications — An Experiment, “International
Journal of Software Engineering & Knowledge Engineering, ,
vol. 12, Issue 6, pp. 637, Dec2002.

[4] M. Bertrand, “Design and Code Reviews in the Age of the
Internet, “Communications of the ACM, vol. 51, Issue 9, pp.
66-71, Sep 2008.

[5] ISO/IEC 24765-2009, Systems and Software
Engineering—Vocabulary.

[6] IEEE Std 1044™-2009(Revision ofIEEE Std 1044-1993).

[7] C. K. Tyran, “A Software Inspection Exercise for the Systems
Analysis and Design Course,”Journal of Information Systems
Education, Vol. 17, Issue 3, pp. 341-351, Fall2006.

[8] V. Suma, T. Nair, R. Gopalakrishnan, “Effective Defect
Prevention Approach in Software Process for Achieving
Better QualityLevels,”Proceedings of World Academy of
Science: Engineering & Technology, Vol. 32, pp. 288-292,
Aug 2008.

[9] P. G. Armour, “The Unconscious Art of Software Testing,
“Communications of the ACM, vol. 48, Issue 1, pp. 15-18,
Jan2005.

[10] Zheng, J.; Williams, L.; Nagappan, N.; Snipes, W.; Hudepohl,
J.P.; Vouk, M.A., "On the value of static analysis for fault
detection in software," Software Engineering, IEEE
Transactions on , vol.32, no.4, pp. 240- 253, April 2006doi:
10.1109/TSE.2006.38

[11] Leite, Julio; Doorn, Jorge; Hadad, Graciela; Kaplan, Gladys,
2005. Scenario inspections. Leite, Julio; Doorn, Jorge; Hadad,
Graciela; Kaplan, Gladys. Requirements Engineering,
Feb2005, Vol. 10 Issue 1, p1-21.

[12] R. Chillarege, I.S. Bhandari, J. Chaar, M.J. Halliday, D.S.
Moebus, B.K. Ray, and M.Y. Wong, “Orthogonal Defect
Classification—A Concept for In-Process Measurements,”
IEEE Trans. Software Eng., vol. 18, no. 11, pp. 943-956, Nov.
1992.

	1. Introduction
	2. Defect Management
	3. Related Works
	4. Proposed Inspection Model
	5. Model Implementation
	6. Involved People in the Model
	7. Conclusions

