
Software Engineering 2012, 2(4): 138-146
DOI: 10.5923/j.se.20120204.07

An Improved Model for Component Based Software
Development

Asif Irshad Khan1,*, Noor-ul-Qayyum2, Usman Ali Khan2

1Department of Computer Science, Singhania University, Jhunjhunu, Rajasthan, India
2Faculty of Computing and Information Technology, King Abdul Aziz University, Jeddah, Saudi Arabia

Abstract Software development costs, time-to-market and quality product are the three most important factors affecting
the software industry. Various tools and techniques are invented by researchers and practitioners to improve in delivering
quality software systems with lower cost and shorter time to market. One such practice is development of software using
Component Based Software Development (CBSD) techniques. CBSD recommended building software systems using
existing reusable components, instead of writing from scratch. The main objective of CBSD is to writes once and reuse any
number of time with no or minor modification. Some of the advantages that a company may avail by adapting CBSD for
the Software development are shorter development time which results in meet tight dead line, Increase productivity and
Quality Product. CBSD also, support reusability. The aim of this paper is to describe the characteristics of some selected
state of art CBSD models that are widely practiced in software industries. Based on the literature study we proposed a
complete model for Component Based Software Development for reuse. This Model will cover both component based
software development as well as Component development phases. Further a comparison is being made between the
selected state of art CBSD models with our proposed CBSD model to know the strength and weakness.

Keywords Component Model, Component Based Software Development, CBD, Software Process

1. Introduction
Software Industry in the present Information Technology

era, has enormous pressure of meeting the product deadlines
with minimum development time and minimum
development cost. Reusability of software is an important
prerequisite for cost and time-optimized software
development. More and more software companies are
adopting Component-based Development (CBD)
methodologies to meet the demands of customers to deliver
the product with changing requirement and at lower cost.

Component-based software engineering (CBSE) is used to
develop/assemble software from existing components. Some
of the advantages that a company may avail by opting CBD
for the SW development are reduce development time as less
or no coding is involved, Achieve tight deadlines as
development time reduced, software productivity is also
improved as software are built by integrating already
developed components instead of writing them from scratch
by using state of art tools.

Further, risk in creating new software is reduced since the
use of a component in several other similar domains

* Corresponding author:
alig.asif@gmail.com (Asif Irshad Khan)
Published online at http://journal.sapub.org/se
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

increases the chance of errors being identified & fixed and
strengthens confidence in that component.

CBD technologies comprised of implementing a
component into a system through its well defined interfaces
[1]. Using well-defined interfaces, a component interact with
other components to accomplish a partial function of the
system.

The inner structure of the component and the
implementation of the interfaces are hidden to the outside.
Therefore, CBSE enables a distributed and independent
development of components as well as a straightforward
replacement of a component by a different component in
large-scale systems[2].

Lego, as shown in figure 1, is often taken as an example of
a component- based approach.

Figure 1. Concept of Component-based software engineering

Lego provides a set of building blocks in a large variety of
shapes and colors. Lego is sold in boxes that contain a

 Software Engineering 2012, 2(4): 138-146 139

number of blocks that can be composed to make up toys such
as cars, trains and airplanes[3]. System development with
components mainly focuses on what are entities that can be
easily reusable and relations between them, starting from the
system requirements and from the availability of components
already existing. Components are built to be used and reused
with little or no modification in many applications and
should be well specified, easy to understand, easy to adapt,
easy to deliver and deploy and easy to replace with newer
versions release of the surrounding systems and applications.

In CBSD, Development of components is distinguished
from development of systems using components,
Component development focused on building reusable units
for example Car Company Toyota build component like
engine, brakes, etc which can easily be incorporated to a
Toyota car while Component based System development
focuses on the reuse of components, their evaluation and
integration for example Toyota Corolla car is made by
integrating different components like engine, brake, tires etc.
These two processes are often performed independently of
each other. The paper is organized as: section 2 describes
Component based software development methodology,
section 3 outlines some selected state of art CBD models,
section 4 presents our proposed Improved Component based
software development model section 5 describes comparison
among different model and finally, section 6 describes
conclusion and future work.

2. Component based Software
Development life-cycle Phases

Component-based software development is a collection of
process that deals with the systematic reuse of existing
components often know as commercial off-the-shelf (COTS)
and assembling them together to develop an application
rather than building and coding overall application from
scratch, thus the life cycle of component-based software
systems is different from that of the traditional software
systems. In general, analysis and design phases for
component-based software development process models
take more time than traditional ones and much less time is
spent in development, while testing occurs throughout the
process[4].

The life cycle of component based software systems can
be summarized as follows:

2.1. Requirements Analysis and Specification

System boundaries should be defined and clearly specified
in this activity, in a component-based approach requirement
analysis also implies that it is necessary to analyze whether
requirements can be fulfilled with available components.

Availability of existing components is also considered in
requirements specification. Analysts have to be aware of the
components that can possibly be reused. It is very likely that
appropriate components fulfils all the similar requirement, in
such cases one possibility is to negotiate the requirements

and modify them to be able to use the existing components to
keep with component-based approach and utilize its
advantages. The main motive of this phase is to make the
solution as crystal clear as possible.

2.2. Analysis and Designing of the System Architecture

The design phase starts with an architectural design of the
system followed by more detailed design of the system.
During this phase a decision has to be made about the
possible use of the component model as this decision plays a
crucial role in the architecture design of the system as well as
the quality of the system.

2.3. Implementation

Finding candidate component as per requirement is the
main focus of this phase. Theoretically no coding is required
during this phase but practically coding is usually required as
all functionality is rarely found in a component and some
functionality need to be coded which is not provided by
component.

2.4. Integration

This is a very important and critical phase of CBSE as at
this point components integration (mismatch) most likely
occurs because of lack of communication, capability issue, if
the component is not made for the architecture. It is like if we
want to build a car by integrating different car parts. System
quality and functionality need to be validated and verified in
this phase. To know the effectiveness of the assembled
components a metrics is usually developed.

2.5. Testing

Since components is developed by third party the need
for component verification is apparent since the system
developers typically have no control over component
quality or component functions[15].

2.6. Release and Maintenance

Release phase is similar to any other software released of a
traditionally software development methodology. Released
is made in such a way that it is suitable for delivery and
installation. While maintenance phase is usually involved
replacement of old / obsolete component with the new
component to the system. Testing and verification have to be
done to check the proper integration of component into the
system.

3. Literature Review
There are different CBSD models appear in industry as

well as in academia. We referred to some of them, Some of
the popular state of art has been discussed in the following
section:

3.1. The V Model

140 Asif Irshad Khan et al.: An Improved Model for Component Based Software Development

The V model[5] adopted the traditional software
development approach for building a system from reusable
software components. The development activities have been
shown in figure 1. It consists of several steps and provides
the details information at the design phases. The main
emphasis of V-Development is component development
lifecycle.

Component development lifecycle was considered as
different process. The selection phase gets input from the
separate system that usually finds and evaluates the suitable
components to be composed into the system.

The V Model is an adaptation of the rigid traditional
waterfall model for modular system development with little
flexibility. Each phase must be completed before the next
phase begins. Testing is emphasized in this model more than
the waterfall model.

The testing procedures are developed early in the life
cycle before any coding is done, during each of the phases
preceding implementation. Requirements begin the life cycle
model just like the waterfall model.

Before development is started, a system test plan is created.
The test plan focuses on meeting the functionality specified
in requirements gathering.

Figure 2. V development process for CBD[5]

3.2. The Y Model

Capretz[6][7] proposed a new life cycle model known as
Y model for component-based development. This model
described software creation by change and instability
therefore the “Y” CBSD life cycle model as shown in Figure
2 and Figure 3 facilitates over lapping and iteration where
appropriate.

This model consists of following planned phases; domain
engineering, frameworking, assembly, archiving, system
analysis, design, implementation, testing, deployment and
maintenance.

 In this model, the new phases were basically proposed for
example domain engineering frameworking, assembly and
archiving with the other traditional life cycle phases stated
for the previous models.

This model focuses on software reusability explicitly
during CBSD and put more emphasis on reusability during
software development, evolution and building of
significantly reusable software components that will be built
on the assumption to use them in future projects.

Figure 3. Y Model for CBSD[6]

Figure 4. The Y. Model[8]

3.3. The W Model

Two V models have conjoined, one for component life
cycle and one for system lifecycle in the W lifecycle
model[9]. Component based development process comprises
of a component life cycle and a system life cycle and is
shown in figure 4. It is the base of W lifecycle model[9].
However, in component based development process
component life cycle is slightly different from others because
it is a more complete one, namely the idealized one[10] as it
fulfills all the requirements of component based
development.

 Software Engineering 2012, 2(4): 138-146 141

Component lifecycle comprises of two major phases:
component design and component deployment, and is set in
the context of a problem domain. In the design phase,
software components are identified, designed and
constructed according to the domain requirements or
knowledge[11], and put into a software components
repository. The components that are contained by repository
are domain-specific but not system-specific.

Figure 5. X-MAN CBSD Process with V&V[9]

The X-MAN component based development process with
V&V in Figure 4 can be adapted directly as a process with
two combined V Models, one for the component life cycle
and one for the system lifecycle. These two V Models are
combined via the step of component selection, adaptation,
and deployment. This ‘double V’ process is shown in Figure
5. This model is known as W Model.

Figure 6. The W Model[9]

V&V activities in the W Model have been highlighted by
boxes with black borders. In the context of component based
development, the W Model is same as the standard
component based development processes that have been
discussed in the literature, in those same concepts have been
used that is separate life cycles for components and systems.

However, unlike these processes, this component life
cycle is the idealized one, which fulfills all the component
based development. The W Model accommodates a V model
for both component and system life cycles.

3.4. The X Model

Tomar and Gill[12] proposed the X Model in which the
processes started in the usual way by requirement
engineering and requirement specification as shown in the
Figure 7[12]. This software life cycle model mainly focuses
on the reusability where software is built by building
reusable components for software development and software
development from reusable and testable components.

In software development, there are two major approaches,
build generic software components or develop software
component for reuse and software development with or
without modification in reusable component.

Figure 7. The X Model[12]

The X model lifecycle consists of four sub cycles for
component based software development as shown in Figure
5. It basically considers three different cases and one
component based software development that normally
occurs in component based software development:
Development for reuse, development after modification,
development without modification and component based
software development.

It also separates the component development from
component-based software development like other
component based software development life cycles. These
cases are described in the sections to follow.

3.5. Elite Life Cycle Model (ELCM)

Lata Nautiyal, Umesh and Sushil[13] proposed Elite Life
Cycle Model (ELCM) for the development of new product
using component based technology as a viable alternative to
address software reusability during component-based
software production as shown in figure 8.

ELCM mainly focuses on the reusability during software
development, evolution and the production of potentially
reusable components that are meant to be useful in future
software projects.

Reusability implies the use of composition techniques
during software development; this is achieved by initially
selecting reusable components and assembling them, or by

142 Asif Irshad Khan et al.: An Improved Model for Component Based Software Development

adapting the software to a point where it is possible to pick
out components from a reusable library.

Figure 8. Elite Life Cycle Model (ELCM)[13]

4. Proposed CBSD Model
Some of the popular State of art has been discussed in our

literature review section. From the literature review we came
to the conclusion that all CBSD lifecycle have some
drawbacks and there is a need of a new lifecycle for
component based software development. Figure 10 shows
details of our proposed improved CBSD Model. Reusing of
existing artifacts is the most important concern of the
Component Based Software Development. These reusable
artifacts can be previously done system requirement,
architecture, components and case study. The main phases of
our improved CBSD model are ‘Project Feasibility Study,
System Requirement and Analysis’, ‘System Design’,
‘Component Identification and Adaption’, ‘Component
Integration Engineering’, ‘System Testing and Acceptance’
and ‘System Release and Deployment’ as shown in figure
9.The details about the proposed model are as follows:

4.1. Component Based Software Development Lifecycle

4.1.1. System Requirement, Specification and
Decomposition

First and foremost step in developing an application for a
client or stakeholders is to study the system requirements by
a team of software analyst to elicit the requirements. In
CBSD this is done by reviewing old System Requirement
documents if any available, interviewing with the
stakeholders.

Once the requirements are thoroughly collected,
requirement analysis process starts to identify common
requirements of the system and subsystems, to identify and
find possible reusable software components[18]. The major
outcomes of this phase are : detail system requirements,
identification of the components that can be reuse on the

common requirements as system analysts has knowledge of
available components in the in-house repository.

Figure 9. An Improved Model for Component Based Software
Development

Main Function and non-functional requirements of the
System is also identified in this phase, a system architecture
model is drawn as per stakeholder’s requirements and needs
which have to be validated and verified with the stakeholders
for any ambiguity or contradiction while requirements are
collected and documented.

System requirements composition are decomposed into
sub- requirements and searching for reusable component
started to implement the requirement. This process may be
repeated several times until there is an agreement between
stakeholders and system analyst to go ahead from next stage
in the lifecycle.

System engineering management plan must be used to
document all methods which define system architecture and
software. Evaluation through audits must be conducted
frequently and regularly by an independent program
organization[16].

4.1.2. Component Requirement and Selection

Once the system requirements are collected a system
architecture model is designed based on the matching
requirement. The software team determines from the system
requirements which of the software requirements can be
considered to composition rather than building them from
the scratch.

A complete cost benefit analysis is required to know
various cost involved is adopting the component like (full
life cycle costs, maintenance costs, update requirement cost,
licensing and warranty costs). These cost benefits analysis
helps in making a decision to reuse a component or to
acquire COTS[16].

Following points are considered for choosing the
candidate components to implement the requirement.
Candidate component is being searched first in the internally
maintained repository for the availability of already
developed reusable components.

 Software Engineering 2012, 2(4): 138-146 143

Figure 10. A detail view of An Improved Model for Component Based Software Development

If the candidate component is not available in repository,
Commercial off the shelf (COTS) component is being
searched in the market, which is a 3rd party tool and need to
be purchased. If the candidate component is not available
either in the internally maintained repository or in the market,
a decision is being made to develop the Component from the
scratch as per the requirement as shown in figure 10.

The use of reuse components, COTS, or any other
non-developmental items should be treated as a risk and
managed through risk management[16].

4.1.3. Component Adaptation and Verification

Once candidate component is selected its capability and
fitness in the architecture issues need to be addressed, the
selected component need to be fit in the system architecture
design, a study usually being done to know how far the
selected component is compatible with the system
architecture.

In CBSE Requirement negotiation activity is mostly likely
come in the picture since it is very difficult to find a
component exactly matching with the requirement,
component adaptation deals with making decision either to
negotiation with the requirement so as to adapt the matching
component, or to discard the selected component since it
doesn’t fit within the system architecture.

Verification of the component is being made through the
software metrics and cost benefit analysis techniques[18].
The software architecture must be scalable, so that,
components can be easily integrated into the system.

Prior to release for testing all reusable components
including COTS need to be individually tested again the
requirements[16].

4.1.4. Component Assembly, Wrapping and Gluing

Developing an application by integrating components
needs communication among the components through an
interface or “glue”. Gluing components helps in controlling
information flow among the components by interchange of
data as well as adding functionality layer.

Component wrappers help in isolating a component from
other components of the system. Component wrappers are
helpful in mapping data representations, mapping data
representations. Some critical functionality which COTS
components don’t provide internally can be achieved by
wrappers.

4.1.5. System Implementation

Theoretically no coding is required during this phase but
practically coding is usually required as all functionality is
rarely found in a component and some functionality need to

144 Asif Irshad Khan et al.: An Improved Model for Component Based Software Development

be coded which is not provided by component.

4.1.6. System Testing and Verification

Testing an application investigate is the software going to
deliver to a customer is a quality product and it really works
as per the given requirement and specification.

In CBSD it lack of detail about component source code
and design make it very difficult to track the faults specially
occurs while using COTS components, addressing these
issues are studied while integrating components in the
architecture model of the system.

There is a need to investigate system's dynamic behavior
in component integration testing. Some of the challenges of
CBSD testing are often it is very difficult to evaluate
component suitability for a particular use and framework,
Missing functionality, misunderstood of Application
Programming Interface (API). Customer's environment must
be considered for System integration testing.

4.1.7. System Deployment

System Deployment phase evolved releasing product to a
customer in other word software is made available to the
customer for use. System deployment must be delivered
using some specialized tool to make the deployment easy for
the customer.

Different version of system release must be maintain and
handle properly. If there is an up gradation in the system it
must be maintain in a metadata and repository.
Reconfiguration, adaptation, reinstallation of installed
system need to be address properly to avoid run time issues
usually found in installing system.

4.1.8. System Maintenance

Up-gradation and substitution of components are the main
job of the system maintenance. System Up gradation usually
occurs when a COTS supplier releases a new version of a
component or when a new COTS component is obsolete.
Modifications to the code wrappers and glue code are
required in system maintenance.

4.2. Component Development Lifecycle

If the candidate component is not available either in the

internally maintained repository or in the market, a decision
is being made to develop the Component from the scratch,
following are the stages of the component development for
the reuse

4.2.1. Domain Engineering, Specification and Architecture

Domain engineering main aim is to have a generic system
or component that can be used efficiently in different
systems with little or no change. Development of reusable
software is the main concern of domain engineering. Thus,
Domain Engineering has to take into account different sets of
customers which also including potential ones and usage
contexts[14].

Ernest G. Allen's in his books give the following
definition of Domain Engineering “Domain Engineering is
the activity of collecting, organizing, and storing past
experience in building systems or parts of systems in a
particular domain in the form of reusable assets (i.e. reusable
work products), as well as providing an adequate means for
reusing these assets (i.e. retrieval, qualification,
dissemination, adaptation, assembly, etc.) when building
new systems”[14].

The component specification describes different
properties that are important to realize by the corresponding
component implementation. Some of the important
properties are[15]:
• Functionality: what the main functionality of the

component and how a component does.
• Behavior: What are the actions of a component and how

it does perform those behaviors?
• Interaction potential: What are the possible ways in

which a component interacts with other software?
• Quality properties: what are the Characteristics of a

component such as performance, portability and stability?
The interface of a component also plays an important role

in execution time. Components communicate with each
other through interface. Interfaces are offered by one
component in order to be used by other components. The
component that offers an interface is responsible for
realizing the actions of the interface[15].

4.2.2. Implementation

Table 1. Comparison among different CBD Models

Activity V Model Y Model W Model X Model ELCM Our Improved CBSD Model

Domain analysis ✓ ✓ ✓ ✓ ✓ ✓

Component search ✗ ✗ ✓ ✓ ✓ ✓

Component evaluation ✓ ✓ ✓ ✓ ✓ ✓

Component selection ✓ ✓ ✓ ✓ ✓ ✓

Component adaptation ✓ ✓ ✓ ✓ ✗ ✓

Component integration ✓ ✓ ✓ ✓ ✓ ✓

Component evolution ✗ ✗ ✗ ✗ ✓ ✓

 Software Engineering 2012, 2(4): 138-146 145

In This phase Implementation tools and techniques are
understood. The main concern of this phase is to develop a
generic component which can be easily reusable and
adaptable in similar other domain. Study of the framework is
required as component usually developed based on an
architectural framework and follow come model like
CORBA, RMI, DCOM etc

4.2.3. Packing

Before pacing all the reusable components are given a
rank based on the percentage of reuse and on the basic of cost
benefit analysis[18]. Ranking helps the concerned person to
identify and select the components.

In packing stages components are reshaped in such a way
that it can be easily understood in the hierarchy. A bundled of
single unit is prepared in this stage which contains files that
form the component. Implementation manuals are also
prepared in this stage[18].

4.2.4. Verification and Testing

This is a very important phase of component development
for reuse, in this phase verification and testing of the
component is being done to know the capability and
accuracy of the component. The new components are
designed, developed and tested on unit basis. Integration and
system tests of the newly developed and of the reused
components are performed. A customer is requested to
evaluate and verify software, whether it meets his/her
requirements or not during the testing phase. The software is
ready to deploy at customer site

4.2.5. Deployment and Release

Unpackaged in a form that can be installed on the target
machine [15]

5. Comparison among different CBD
Models

Table 1. List comparison among the different CBD
Models with our improved CBD model, clearly the table 1
shows our Improved CBSD Model provides improvement in
CBSD life cycle activities.

6. Conclusions and Future Work
In this paper we have explained a systematic software

process to apply the reused based approaches successfully in
software development and software process for reuse based
approaches is different from traditional process. The
traditional software processes do not consider the software
reuse explicitly and cannot support the risks that are attached
with the use of reusable software components. Component
based software engineering is a systematic way to achieve
the software reuse. In this paper we have discussed various
CBSD lifecycle models and described different phases of

these lifecycles.
The major difference between the traditional software

development processes and CBSD processes is a separation
of system development from component development. We
have surveyed different software lifecycle models for CBSD
and all have their own advantages and disadvantages. CBSE
is still an emerging field in software engineering and there is
much space for research in this field. Although CBSE has
advantages but it has also disadvantages such as component
maintenance costs, changing requirements (project specific
requirements), unsatisfied requirements, repository
management and component’s version handling etc.

We can overcome these advantages by merging CBSE and
traditional software engineering. Project specific
requirements should be satisfied by traditional software
engineering approach so that standard components can be
used as black-box components. It is needed to plan sequence
of experiments in which relative costs and benefits of
choosing a component based software development can be
weighed against the choice of a traditional software
development. So in future work we are planning to extend
the set of experiments and implementation. Also, we will
provide formal justification for the proposed model.

REFERENCES
[1] H. Hansson, M. Åkerholm, I. Crnkovic, M. Törngren, “a

Component Model for Safety-Critical Real-Time Systems”,
in Proceedings of 2004 30th EUROMICRO Conference
(EUROMICRO’04), France.

[2] “Research Areas of the Software Engineering Group”, Online
Available: http://www.cs.uni-paderborn.de/en/research-grou
p/software-engineering/research/research-areas.html

[3] “Basic Concepts of Component-based software”, Online
Available:http://www.idt.mdh.se/kurser/cdt501/2008/lecture
s/book%20Basic%20Concepts%20of%20CBSE.pdf

[4] Murat güneştaş , “A study on component based software
engineering”, a Master’s thesis in Computer Engineering,
Atılım University, JANUARY 2005

[5] Ivica Crnkovic; Stig Larsson; Michel Chaudron,
“Component-based Development Process and Component
Lifecycle.” Online Available: http://www.mrtc.mdh.se/publi
cations/0953.pdf

[6] Luiz Fernando Capretz, “Y: A New Component-based
software life cycle model”, Journal of Computer Science 1 (1):
76-82, 2005, ISSN 1549-3636 © Science Publications, 2005.

[7] K.Kaur;H Singh, “Candidate process models for component
based software development”, Journal of Software
Engineering 4 (1):16-29, Academic Journal Inc, India 2010.

[8] Syed Ahsan Fahmi; Ho-Jin Choi, “Life Cycles for
Component-Based Software Development”, IEEE 8th
International Conference on Computer and Information
Technology Workshops 2008.

[9] The W Model for Component-based Software

146 Asif Irshad Khan et al.: An Improved Model for Component Based Software Development

Development[online]. Online Available: http://www.cs.man.
ac.uk/~kung-kiu/pub/seaa11b.pdf.

[10] Kotonya G; Sommerville I; Hall S, “Towards A Classification
Model for Component-Based Software Engineering”, in
Proceedings of 2003, Euromicro Conference, 29th, Dept. of
Computer., Lancaster Univ., UK, 1-6.

[11] Ivica Crnkovic, “Component-based software engineering for
embedded systems”, ICSE '05 Proceedings of the 2005, 27th
international conference on Software engineering, ACM New
York, NY, USA.

[12] Tomar, P. ; Gill, N.S. , “Verification & Validation of
Components with New X Component-Based Model”, in
Proceedings of 2010 , Software Technology and Engineering
(ICSTE), 2nd International Conference, San Juan, PR, 3-5
Oct.

[13] Lata Nautiyal; Umesh, K; Sushil, C, “Elite: A New
Component-Based Software Development Model”,

Int.J.Computer Techology & Applications,Vol 3 (1),119-124.

[14] Ernest G. Allen's, Chapter 3, Domain Engineering, Online
Available:http://users.owt.com/eallen/other/domain_enginee
ring.pdf

[15] Online Available:http://centurion2.com/SEHomework/Com
ponentBasedSE/ComponentBasedSE.php#ProductLineDevel
opment.

[16] Critical software practices, Pro-Concepts LLC, Online
Available:
http://www.spmn.com/www2/16CSP.html#system

[17] John C. Dean, CD Dr. Mark R Vigder, System
Implementation Using Commercial Off-The-Shelf Software,
Software Engineering Group, NRC Report Number 40173,
Ottawa, Ontario, Canada, 97

[18] Sajid Riaz, Moving Towards Component Based Software
Engineering in Train Control Applications, Final thesis,
Linköpings universitet, sweden, 2012

	1. Introduction
	2. Component based Software Development life-cycle Phases
	3. Literature Review
	4. Proposed CBSD Model
	5. Comparison among different CBD Models
	6. Conclusions and Future Work

