
Software Engineering 2012, 2(2): 29-35
DOI: 10.5923/j.se.20120202.03

GA-driven Automatic Refactoring based on Design
Patterns

Takao Shimomura

Dept. of Information Science and Intelligent Systems, University of Tokushima, Tokushima, 770-8506, Japan

Abstract Refactoring is a process of applying behavior-preserving transformations to improve the design, readability,
structure, performance, abstraction, and maintainability of existing code. This paper presents an approach to GA-driven
refactoring for Java programs to automatically judge the qualities of programs based on design patterns. If a program is
judged to be bad, this GA-driven refactoring method will further recommend that the program should be transformed using
an appropriate design pattern.

Keywords Design Patterns, Discriminant Analysis, Genetic Algorithm, Refactoring, Syntax Analysis

1. Introduction
Refactoring is a process of applying behavior-preserving

transformations to improve the design, readability, structure,
performance, abstraction, and maintainability of existing
code[1-3]. It applies some transformations to programs such
as extracting interface for re-routing the access to a class via
a newly created interface and pulling up members for mov-
ing members into a superclass. Griffith, et al.[4] developed
an automated system utilizing Evolutionary Algorithms to
manipulate refactorings correctly without requiring an un-
derlying understanding of the software.

Briand et al.[5] empirically explore the relationships be-
tween existing object-oriented coupling, cohesion, and in-
heritance measures and the probability of fault detection in
system classes during testing. The frequency of method
invocations and the depth of inheritance hierarchies seem to
be the main driving factors of fault-proneness.

Daikon[6] demonstrates the feasibility of automatically
finding places in the program that are candidates for spe-
cific refactorings. The approach uses program invariants:
when a particular pattern of invariant relationships appears
at a program point, a specific refactoring is applicable.
Hanenberg et al.[7] introduce a number of new as-
pect-oriented refactorings which help to migrate from ob-
ject-oriented to aspect-oriented software and to restructure
existing aspect-oriented code. Hannemann et al.[8] intro-
duce a role-based refactoring approach to aid developers in
re-structuring the implementation of crosscutting concerns
using aspect-oriented programming. Tip et al.[9] present an

* Corresponding author:
simomura@is.tokushima-u.ac.jp (Takao Shimomura)
Published online at http://journal.sapub.org/se
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

approach in which type constraints are used to verify pre-
conditions and to determine allowable source code modifi-
cations for a number of generalization-related refactorings.
As object-oriented class libraries evolve, classes are occa-
sionally deprecated in favor of others with roughly the same
functionality. In Java's standard libraries, for example, class
Hashtable has been superseded by HashMap, and Iterator is
now preferred over Enumeration. Balaban et al.[10] present
an approach in which mappings between legacy classes and
their replacements are specified by the programmer. Then,
an analysis based on type constraints determines where
declarations and allocation sites can be updated.

A variety of metrics have been proposed to estimate the
qualities of programs[11,12]. For example, a class situated
deeper in the inheritance hierarchy is more likely to be
fault-prone than a class situated higher up (i.e., closer to the
root) in the inheritance hierarchy. However, the cost of de-
tecting candidates for refactoring and of choosing an ap-
propriate refactoring transformation could be high.

Genetic algorithm (GA) has been used to obtain the op-
timal solution in a variety of fields such as aesthetic design
of bridge structures, logistics networks, and grid comput-
ing[13-15]. This paper presents an approach to GA-driven
refactoring for Java programs to automatically judge the
qualities of the programs based on design patterns[16]. If a
program is judged to be bad, refactoring will be further
recommended so that the program can be transformed using
an appropriate design pattern.

2. GA-driven Refactoring
2.1. Design Patterns

A design pattern is a general reusable solution to a com-
monly occurring problem in software design. If we appro-

30 Takao Shimomura: GA-driven Automatic Refactoring based on Design Patterns

priately apply design patterns to software development, we
can efficiently make programs of high quality that can be
easily enhanced. This GA-driven refactoring uses design
patterns to judge a program to be bad if a design pattern can
be applicable to the program. There are a number of design
patterns, some of which are shown in Table 1.

Abstract Factory design pattern can create a set of in-
stances easily. Figure 1 shows two sample programs for the
pattern. Figure 1 (a) illustrates a bad program to which the
pattern can be applicable, and Fig. 1 (b) illustrates a good
program that is obtained after the pattern is applied to the bad
program. If the number of products is p, and the number of
factories is f, the bad program requires the invocations of p*f
new operations. On the other hand, the good program only
requires the invocations of f create() methods.

Template Method design pattern can customize a series of
common processes partly. Figure 2 shows two sample pro-
grams for the pattern. Figure 2 (a) illustrates a bad program

to which the pattern can be applicable, and Fig. 2 (b) illus-
trates a good program that is obtained after the pattern is
applied to the bad program. If the number of classes that use
a template method is c, and the number of sub-operations of
the template method is s, the bad program requires c*s
method invocations. On the other hand, the good program
only requires c*t method invocations, where t is much less
than s.

Decorator design pattern can enhance a class without
modifying the class. Figure 3 shows two sample programs
for the pattern. Figure 3 (a) illustrates a bad program to
which the pattern can be applicable, and Fig. 3 (b) illustrates
a good program that is obtained after the pattern is applied to
the bad program. If the number of components is c, and the
number of decorators, which will enhance each component is
d, the bad program requires c*d more classes. On the other
hand, the good program only requires d more classes.

Figure 1. Sample programs for Abstract Factory

Figure 2. Sample programs for Template Method

 Software Engineering 2012, 2(2): 29-35 31

Figure 3. Sample programs for Decorator

Table 1. Example of design patterns

Classi-
fication

Design pat-
terns Features

Creation

Factory
Method Create an specified instance

Builder Create an instance with compli-
cated parameters

Abstract
Factory Create a set of instances

Behav-
ior

Template
Method

Customize a series of common
processes partly

Interpreter Interpret a hierarchical structure

Mediator Leave message passing to a
mediator

Observer Notify listeners of events

State Invoke a process according to a
state

Strategy Leave a process to another class

Visitor Add an operation to a class
without modification

Command Capsulate operations

Struc-
ture

Adapter Provide a standard interface to a
class

Composite Form a hierarchical structure

Decorator Enhance a class without modifi-
cation

Figure 4. Automatic refactoring flow

2.2. Automatic Refactoring Flow
Figure 4 shows a flow of GA-driven automatic refactoring.

(1) First, for each design pattern, we make bad sample pro-
grams to which the design pattern should be applied. Then,
we make good programs by applying the design pattern to

32 Takao Shimomura: GA-driven Automatic Refactoring based on Design Patterns

each of them. (2) Then, the system read these bad and good
programs to obtain a quality criterion with which a target
program will be judged to be bad or good. The quality crite-
rion is obtained based on the metrics of the bad and good
programs. A genetic algorithm is used to determine the
weight of each metric, which indicates how much impact the
metric has to distinguish bad programs from good programs.
(3) A target program is judged to be good or bad based on the
obtained quality criterion. (4) If the target program is judged
to be bad, the system will recommend design patterns ap-
plicable to the target program.

Table 2. Example of metrics that determine program quality

Categories Metrics Values GA
Weights

Method mIf number of if statements 0.815
mNew number of new operators 0.828

Class

cSim
number of methods that

contain the same method call
as the others

0.919

cLayer number of super classes 0.715

cComp number of fields that refer to
other source classes 0.762

cMethod number of methods 0.708

Program pSim
number of methods that

contain the same method call
as the other classes

0.999

pSub number of subclasses 0.782

Figure 5. Determine the criterion of program quality

Figure 6. GA-driven discriminant analysis of program quality

2.3. Metrics and Their Weights

We introduce some metrics of a program to estimate its
quality. These metrics are expected to become important
factors that determine the quality of the program. However,
it is not easy to judge whether each metric will have a good
or bad influence on the program quality. Moreover, it is not
easy to estimate to what extent each metric will give an
impact to the program quality. Therefore, we introduce a
weight for each metric, and define a factor as the value of a
metric multiplied by some weight. Table 2 shows an exam-
ple of some metrics of a program. For example, metric mIf
is a factor that is derived from the number of if statements.
The program quality of a program that consists of multiple
source files will be calculated from the class qualities of the
classes defined in the program. The class quality of a class
will be calculated from the method qualities of the methods
defined in the class.

The value of a metric (m) is normalized to range from 0.0
to 1.0. For example, the normalized value of metric mIf is
defined as

1 - (1- mIf) / (1 + steps)
where steps indicates the number of lines of program

code in a method. A weight (w) also ranges from 0.0 to 1.0.
A weight indicates to what extent each metric will give an
impact to the program quality. When a metric (m) is intro-
duced, we also introduce its dual metric (md) because we
cannot know in advance whether the metric will have a
good or bad influence on the program quality. The dual
metric md of a metric m is defined as (1 - m). A factor (f) is
defined as

f = (m * w) + md * (1 - w)
which ranges from 0.0 to 1.0. Each weight will be deter-
mined by a genetic algorithm as described in Section 2.4. If
weight w becomes close to 1.0, a metric m will become an
important factor. If weight w becomes close to 1/2, neither
of metric m nor dual metric md will have an impact on pro-
gram qualities. If weight w becomes close to 0.0, a dual
metric md will become an important factor.

2.4. Determine the Criterion of Program Quality

To define the quality of a program, we need to determine
the weight of each metric. We do not have any preconcep-
tion about the metrics we have introduced. Therefore, we
determine the weight of each metric by using a genetic al-
gorithm. To automatically determine the weights, we need
to give some information about which program has a high
quality and which program has a poor quality to the genetic
algorithm. We have made some programs of high and poor
qualities based on several design patterns, such as Abstract
Factory, Template Method, and Decorator patterns. For
example, in an Abstract Factory pattern, bad programs re-
quire more conditional statements than good programs. In a
Template Method pattern, bad programs have some classes,
where a method contains a sequence of the same method
calls as a method another class defines. In a Decorator pat-
tern, bad programs have more pairs of a superclass and a

 Software Engineering 2012, 2(2): 29-35 33

subclass and more instantiations than good programs.
The genetic algorithm program calculates the program

qualities of both of good and bad programs. Its fitness func-
tion returns a range

(min{good programs' qualities} - max{bad programs'
qualities}),

as shown in Fig. 5. The optimal weights are determined
so that this range will be as large as possible. We take the
middle point as a criterion to judge whether a program has a
good or bad quality. If the quality of a program that is cal-
culated with the optimal weights is less than the criterion,
this program will be judged to be a bad program, and refac-
toring is recommended so that the program will be trans-
formed using an appropriate design pattern.

2.5. GA-Driven Discriminant Analysis
Figure 6 illustrates a sequence of processes from collect-

ing metrics to judging program qualities.
(1) We first prepare several pairs of good and bad pro-

grams based on design patterns. Then, we execute Met-
ricRefactor program to compile them and collect metrics.

(2) We execute QualityGA program, which is a genetic
algorithm program, to calculate the optimal weights of the
metrics. It first reads the metrics that are output by Met-
ricRefactor program. By using the fitness function de-
scribed before, it determines the optimal weights of the
metrics and periodically outputs them into a quality crite-
rion file. This file contains the criterion to judge the quality
of a program as well as a set of the optimal weights of the
metrics.

(3) If we execute QualifyRefactor program by specifying
a target program, it will read the latest quality criterion file
to calculate the quality of the target program and finally
judge whether it is a good or bad program. Both of Met-
ricRefactor and QualifyRefactor programs collect the met-
rics of a program. The way to collect metrics from a pro-
gram will be described in detail in Section 3.

2.6. Recommendation of Applicable Design Patterns
If the target program is judged to be bad, the system will

recommend design patterns that are most applicable to the
target program. Figure 7 shows how applicable design pat-
terns are determined. Each bad program Bad.i.dp represents
a point (mi*wi) in a multi-dimensional affine space of met-
rics, where mi is a metric and wi is its weight. If the target
program is located most close to Bad.i.dp, its design pattern
dp will be recommended. More than one design patterns can
also be recommended.

3. Refactoring Analysis
3.1. Collecting Metrics by Using Java Compiler Visitor

Pattern
We have revised a Java compiler to collect metrics from

a source program. The Java compiler is developed by using
Visitor design pattern[16] so that its abstract syntax tree can

be traversed without modifying the nodes of the syntax tree.
Therefore, we have inserted some code to start traversing
the syntax tree after compilation. Figure 8 shows a mecha-
nism to compile a program and get metrics.

Figure 7. Recommendation of applicable design patterns

Figure 8. Collecting metrics by using the Visitor pattern of Java compiler

(1) For example, to execute MetricRefactor program for
the i-th bad program, we run a command "java MetricRe-
factor Bad i */*.java".

(2) Java compile starts to create the abstract syntax tree
of the program that consists of multiple classes.

(3) After compilation, for each class definition, "class-
Def.accept(ast)" is invoked.

(4) Then, "visitClassDef(classDef)" in AST class, which
extends Visitor, is invoked. AST is defined to traverse child
nodes for each node in the abstract syntax tree. AST class
provides visitNode(node) method for each node type. This
visitNode(node) method invokes child.accept(this) for a
child node of the node. After an instance ast of AST class is
created, when node.accept(ast) is invoked for a node in the
abstract syntax tree, ast.visitNode(node) will be invoked.
Therefore, when topLevel.accept(ast) is invoked for the top
level node of the abstract syntax tree, all nodes of the tree
can be traversed in turn.
topLevel.accept(ast)--->
ast.visitTopLevel(topLevel)--->....--->child.accept(ast)
--->ast.visitChild(child)--->....

(5) The process() method of MetricRefactor class invokes
a variety of methods defined in Refactor superclass to cal-
culate the metrics of the program. The methods of Refactor
superclass refer the syntactic information that is created by
the visitNode(node) methods of AST class.

34 Takao Shimomura: GA-driven Automatic Refactoring based on Design Patterns

Table 3. Example of methods provided by Refactor class

Categories Methods Functions

Class
int getClassCount() returns the number of classes

String getClassName(int classIndex) returns the name of a class

Method

int getMethodCount(int classIndex) returns the number of methods in a class
String getMethodName(int classIndex, int methodIndex) returns the name of a method in a class

int getNumOfIfStms(int classIndex, int methodIndex) returns the number of if statements in a method of a class
int getNumOfLoopStms(int classIndex, int methodIndex) returns the number of loop statements in a method of a class

int getNumOfAssignStms(int classIndex, int methodIndex) returns the number of assign statements in a method of a class
int getNumOfMethodCalls(int classIndex, int methodIndex) returns the number of call statements in a method of a class
String [] calledMethodName(int classIndex, int methodIn-

dex, int callIndex)
for a method call in a method of a class, returns the names of

the method and the class that defines it

int [] calledMethodIndex(int classIndex, int methodIndex, int
callIndex)

for a method call in a method of a class, returns the indexes of
the method and the class that defines it;

returns null if it is not defined in the source code.

3.2. Calculation of Program Qualities Using the methods
of Refactor Superclass

Table 3 shows an example of methods provided by
Refactor class. Because both of MetricRefactor and Quali-
fyRefactor classes are Refactor subclasses, they can directly
invoke these methods to collect metrics. For example, if we
use calledMethodIndex(int classIndex, int methodIndex, int
callIndex), we can know about each method call contained in
a method definition of a class, including whether the invoked
method is defined in the source code or not.

4. Observation
Table 4. GA parameters

GA type real value
Number of genes 12 (metrics)

Number of individuals 20
Minimum value of a

gene 0.0

Maximum value of a
gene 1.0

Selection roulette wheel selection
Crossover one-point blend crossover

Mutation pseudorandom value uniformly dis-
tributed between 0.0 and 1.0

Crossover rate 0.6
Mutation rate 0.1

Interval of generation
outputs 60 (seconds)

Number of generations 172369766
Number of design pat-

terns 6

Number of pairs of good
and bad programs 3

To investigate the effectiveness of the method this paper
proposes, we have prepared three pairs of good and bad
programs for each of six design patterns, which amount to
thirty-six small programs in total. The number of lines of
program code ranges from 142 to 226. Table 4 summarizes
the parameters of the genetic algorithm this method uses. We

have introduced twelve metrics and their corresponding dual
metrics. The range that discriminates between good and bad
programs has converged to 0.0157, which is not big. How-
ever, because this range is positive, we can judge the quality
of a target program based on the result of these example
programs. A pair of a target good and bad programs were
able to be judged to be good and bad respectively by the
criterion obtained from a set of the other pairs of the pro-
grams. Appropriate design patterns were able to be recom-
mended to fifteen out of eighteen bad programs, whose
probability amounts to 0.833.

The weights of the metrics that are related to class cohe-
sion have shown their impacts on program quality. Although
we need to have more experiments, the advantages of this
GA-driven method are as follows: (1) A new metric can be
easily introduced to this system. We have only to revise
Refactor subclasses to calculate the metric, and add one gene
to the genetic algorithm program for the metric. (2) The
GA-driven system gives some information about which
metrics have significant impacts on program qualities.

5. Conclusions
This paper has presented an approach to discriminate

between programs of high and poor qualities by using a
genetic algorithm based on design patterns. Like corpuses in
the natural language processing, we need to collect more
samples for bad and good programs. At present, this system
uses one-dimensional quality. We intend to classify some
metrics into groups and apply multivariate analysis.

REFERENCES
[1] Fowler, M. and Beck, K., "Refactoring: improving the design

of existing code," Addison-Wesley Professional, 1999.

[2] Batory, D., "Program Refactoring, Program Synthesis, and
Model-Driven Development," Springer, 2007.

[3] Mens, T. and Tourwe, "A survey of software refactoring,"

 Software Engineering 2012, 2(2): 29-35 35

IEEE Transactions on Software Engineering, 30(2):126-139,
2004.

[4] Griffith, I., Wahl, S. and Izurieta, C., "Evolution of legacy
system comprehensibility through automated refactoring,"
Proceedings of the International Workshop on Machine
Learning Technologies in Software Engineering, ACM,
35-42, 2011.

[5] Briand, L. C., Wust, J., Daly, J. W. and Porter, D. V., "Ex-
ploring the relationships between design measures and soft-
ware quality in object-oriented systems," Journal of Systems
and Software, 51(3):245-273, 2000.

[6] Kataoka, Y., Notkin, D., Ernst, M. D. and Griswold, W. G.,
"Automated support for program refactoring using inva-
riants," IEEE International Conference on Software Main-
tenance, page 736, 2001.

[7] Hanenberg, S., Oberschulte, C. and Unl, R., "Refactoring of
aspect-oriented software," Proceedings of the 4th Annual
International Conference on Object-Oriented and Inter-
net-based Technologies, Concepts, and Applications for a
Networked World, pages 1-17, 2003.

[8] Hannemann, J., Murphy, G. C. and Kiczales, G., "Role-based
refactoring of crosscutting concerns," Proceedings of the 4th
international conference on Aspect-oriented software devel-
opment, pages 135-146, 2005.

[9] Tip, F., Kiezun, A. and Baumer, D., "Refactoring for genera-
lization using type constraints," ACM SIGPLAN Notices},

38(11):13-26, 2003.

[10] Balaban, I., Tip, F. and Fuhrer, R., "Refactoring support for
class library migration," ACM SIGPLAN Notices,
40(10):265-279, 2005.

[11] Kan, S. H., "Metrics and models in software quality engi-
neering," Addison-Wesley, 1998.

[12] Singh, S. and Kahlon, K, "Effectiveness of refactoring me-
trics model to identify smelly and error prone classes in open
source software," ACM SIGSOFT Software Engineering
Notes, 37(2):1-11, 2012.

[13] Furuta, H., Maeda, K. and Watanabe, E., "Application of
genetic algorithm to aesthetic design of bridge structures,"
Computer-Aided Civil and Infrastructure Engineering,
10(6):415-421, 2008.

[14] Min, H., Koa, H. J. and Ko, C. S., "A genetic algorithm ap-
proach to developing the multi-echelon reverse logistics
network for product returns," Omega, 34(1):56-69, 2006.

[15] Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B. and Lee, B.-S.,
"Efficient hierarchical parallel genetic algorithms using grid
computing," Future Generation Computer Systems,
23(4):658-670, 2007.

[16] Metsker, S. J. and Wake, W. C., "Design Patterns in Java,"
Addison-Wesley, 4 2006.

	1. Introduction
	2. GA-driven Refactoring
	2.1. Design Patterns
	2.2. Automatic Refactoring Flow
	2.3. Metrics and Their Weights
	2.4. Determine the Criterion of Program Quality
	2.5. GA-Driven Discriminant Analysis
	2.6. Recommendation of Applicable Design Patterns

	3. Refactoring Analysis
	3.1. Collecting Metrics by Using Java Compiler Visitor Pattern
	3.2. Calculation of Program Qualities Using the methods of Refactor Superclass

	4. Observation
	5. Conclusions

