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Abstract  Refactoring is a process of applying behavior-preserving transformations to improve the design, readability, 
structure, performance, abstraction, and maintainability of existing code. This paper presents an approach to GA-driven 
refactoring for Java programs to automatically judge the qualities of programs based on design patterns. If a program is 
judged to be bad, this GA-driven refactoring method will further recommend that the program should be transformed using 
an appropriate design pattern. 
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1. Introduction 
Refactoring is a process of applying behavior-preserving 

transformations to improve the design, readability, structure, 
performance, abstraction, and maintainability of existing 
code[1-3]. It applies some transformations to programs such 
as extracting interface for re-routing the access to a class via 
a newly created interface and pulling up members for mov-
ing members into a superclass. Griffith, et al.[4] developed 
an automated system utilizing Evolutionary Algorithms to 
manipulate refactorings correctly without requiring an un-
derlying understanding of the software. 

Briand et al.[5] empirically explore the relationships be-
tween existing object-oriented coupling, cohesion, and in-
heritance measures and the probability of fault detection in 
system classes during testing. The frequency of method 
invocations and the depth of inheritance hierarchies seem to 
be the main driving factors of fault-proneness.  

Daikon[6] demonstrates the feasibility of automatically 
finding places in the program that are candidates for spe-
cific refactorings. The approach uses program invariants: 
when a particular pattern of invariant relationships appears 
at a program point, a specific refactoring is applicable. 
Hanenberg et al.[7] introduce a number of new as-
pect-oriented refactorings which help to migrate from ob-
ject-oriented to aspect-oriented software and to restructure 
existing aspect-oriented code. Hannemann et al.[8] intro-
duce a role-based refactoring approach to aid developers in 
re-structuring the implementation of crosscutting concerns 
using aspect-oriented programming. Tip et al.[9] present an  
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approach in which type constraints are used to verify pre-
conditions and to determine allowable source code modifi-
cations for a number of generalization-related refactorings. 
As object-oriented class libraries evolve, classes are occa-
sionally deprecated in favor of others with roughly the same 
functionality. In Java's standard libraries, for example, class 
Hashtable has been superseded by HashMap, and Iterator is 
now preferred over Enumeration. Balaban et al.[10] present 
an approach in which mappings between legacy classes and 
their replacements are specified by the programmer. Then, 
an analysis based on type constraints determines where 
declarations and allocation sites can be updated.  

A variety of metrics have been proposed to estimate the 
qualities of programs[11,12]. For example, a class situated 
deeper in the inheritance hierarchy is more likely to be 
fault-prone than a class situated higher up (i.e., closer to the 
root) in the inheritance hierarchy. However, the cost of de-
tecting candidates for refactoring and of choosing an ap-
propriate refactoring transformation could be high.  

Genetic algorithm (GA) has been used to obtain the op-
timal solution in a variety of fields such as aesthetic design 
of bridge structures, logistics networks, and grid comput-
ing[13-15]. This paper presents an approach to GA-driven 
refactoring for Java programs to automatically judge the 
qualities of the programs based on design patterns[16]. If a 
program is judged to be bad, refactoring will be further 
recommended so that the program can be transformed using 
an appropriate design pattern. 

2. GA-driven Refactoring 
2.1. Design Patterns 

A design pattern is a general reusable solution to a com-
monly occurring problem in software design. If we appro-
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priately apply design patterns to software development, we 
can efficiently make programs of high quality that can be 
easily enhanced. This GA-driven refactoring uses design 
patterns to judge a program to be bad if a design pattern can 
be applicable to the program. There are a number of design 
patterns, some of which are shown in Table 1.  

Abstract Factory design pattern can create a set of in-
stances easily. Figure 1 shows two sample programs for the 
pattern. Figure 1 (a) illustrates a bad program to which the 
pattern can be applicable, and Fig. 1 (b) illustrates a good 
program that is obtained after the pattern is applied to the bad 
program. If the number of products is p, and the number of 
factories is f, the bad program requires the invocations of p*f 
new operations. On the other hand, the good program only 
requires the invocations of f create() methods.  

Template Method design pattern can customize a series of 
common processes partly. Figure 2 shows two sample pro-
grams for the pattern. Figure 2 (a) illustrates a bad program 

to which the pattern can be applicable, and Fig. 2 (b) illus-
trates a good program that is obtained after the pattern is 
applied to the bad program. If the number of classes that use 
a template method is c, and the number of sub-operations of 
the template method is s, the bad program requires c*s 
method invocations. On the other hand, the good program 
only requires c*t method invocations, where t is much less 
than s.  

Decorator design pattern can enhance a class without 
modifying the class. Figure 3 shows two sample programs 
for the pattern. Figure 3 (a) illustrates a bad program to 
which the pattern can be applicable, and Fig. 3 (b) illustrates 
a good program that is obtained after the pattern is applied to 
the bad program. If the number of components is c, and the 
number of decorators, which will enhance each component is 
d, the bad program requires c*d more classes. On the other 
hand, the good program only requires d more classes. 

 
Figure 1.  Sample programs for Abstract Factory 

 
Figure 2.  Sample programs for Template Method 
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Figure 3.  Sample programs for Decorator 

Table 1.  Example of design patterns 

Classi-
fication 

Design pat-
terns Features 

Creation 

Factory 
Method Create an specified instance 

Builder Create an instance with compli-
cated parameters 

Abstract 
Factory Create a set of instances 

Behav-
ior 

Template 
Method 

Customize a series of common 
processes partly 

Interpreter Interpret a hierarchical structure 

Mediator Leave message passing to a 
mediator 

Observer Notify listeners of events 

State Invoke a process according to a 
state 

Strategy Leave a process to another class 

Visitor Add an operation to a class 
without modification 

Command Capsulate operations 

Struc-
ture 

Adapter Provide a standard interface to a 
class 

Composite Form a hierarchical structure 

Decorator Enhance a class without modifi-
cation 

 
Figure 4.  Automatic refactoring flow 

2.2. Automatic Refactoring Flow 
Figure 4 shows a flow of GA-driven automatic refactoring. 

(1) First, for each design pattern, we make bad sample pro-
grams to which the design pattern should be applied. Then, 
we make good programs by applying the design pattern to 
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each of them. (2) Then, the system read these bad and good 
programs to obtain a quality criterion with which a target 
program will be judged to be bad or good. The quality crite-
rion is obtained based on the metrics of the bad and good 
programs. A genetic algorithm is used to determine the 
weight of each metric, which indicates how much impact the 
metric has to distinguish bad programs from good programs. 
(3) A target program is judged to be good or bad based on the 
obtained quality criterion. (4) If the target program is judged 
to be bad, the system will recommend design patterns ap-
plicable to the target program. 

Table 2.  Example of metrics that determine program quality 

Categories Metrics Values GA 
Weights 

Method mIf number of if statements 0.815 
mNew number of new operators 0.828 

Class 

cSim 
number of methods that 

contain the same method call 
as the others 

0.919 

cLayer number of super classes 0.715 

cComp number of fields that refer to 
other source classes 0.762 

cMethod number of methods 0.708 

Program pSim 
number of methods that 

contain the same method call 
as the other classes 

0.999 

pSub number of subclasses 0.782 

 
Figure 5.  Determine the criterion of program quality 

 
Figure 6.  GA-driven discriminant analysis of program quality 

2.3. Metrics and Their Weights 

We introduce some metrics of a program to estimate its 
quality. These metrics are expected to become important 
factors that determine the quality of the program. However, 
it is not easy to judge whether each metric will have a good 
or bad influence on the program quality. Moreover, it is not 
easy to estimate to what extent each metric will give an 
impact to the program quality. Therefore, we introduce a 
weight for each metric, and define a factor as the value of a 
metric multiplied by some weight. Table 2 shows an exam-
ple of some metrics of a program. For example, metric mIf 
is a factor that is derived from the number of if statements. 
The program quality of a program that consists of multiple 
source files will be calculated from the class qualities of the 
classes defined in the program. The class quality of a class 
will be calculated from the method qualities of the methods 
defined in the class. 

The value of a metric (m) is normalized to range from 0.0 
to 1.0. For example, the normalized value of metric mIf is 
defined as 

1 - (1- mIf) / (1 + steps) 
where steps indicates the number of lines of program 

code in a method. A weight (w) also ranges from 0.0 to 1.0. 
A weight indicates to what extent each metric will give an 
impact to the program quality. When a metric (m) is intro-
duced, we also introduce its dual metric (md) because we 
cannot know in advance whether the metric will have a 
good or bad influence on the program quality. The dual 
metric md of a metric m is defined as (1 - m). A factor (f) is 
defined as  

f = (m * w) + md * (1 - w) 
which ranges from 0.0 to 1.0. Each weight will be deter-
mined by a genetic algorithm as described in Section 2.4. If 
weight w becomes close to 1.0, a metric m will become an 
important factor. If weight w becomes close to 1/2, neither 
of metric m nor dual metric md will have an impact on pro-
gram qualities. If weight w becomes close to 0.0, a dual 
metric md will become an important factor. 

2.4. Determine the Criterion of Program Quality 

To define the quality of a program, we need to determine 
the weight of each metric. We do not have any preconcep-
tion about the metrics we have introduced. Therefore, we 
determine the weight of each metric by using a genetic al-
gorithm. To automatically determine the weights, we need 
to give some information about which program has a high 
quality and which program has a poor quality to the genetic 
algorithm. We have made some programs of high and poor 
qualities based on several design patterns, such as Abstract 
Factory, Template Method, and Decorator patterns. For 
example, in an Abstract Factory pattern, bad programs re-
quire more conditional statements than good programs. In a 
Template Method pattern, bad programs have some classes, 
where a method contains a sequence of the same method 
calls as a method another class defines. In a Decorator pat-
tern, bad programs have more pairs of a superclass and a 
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subclass and more instantiations than good programs.  
The genetic algorithm program calculates the program 

qualities of both of good and bad programs. Its fitness func-
tion returns a range 

(min{good programs' qualities} - max{bad programs' 
qualities}), 

as shown in Fig. 5. The optimal weights are determined 
so that this range will be as large as possible. We take the 
middle point as a criterion to judge whether a program has a 
good or bad quality. If the quality of a program that is cal-
culated with the optimal weights is less than the criterion, 
this program will be judged to be a bad program, and refac-
toring is recommended so that the program will be trans-
formed using an appropriate design pattern. 

2.5. GA-Driven Discriminant Analysis 
Figure 6 illustrates a sequence of processes from collect-

ing metrics to judging program qualities. 
(1) We first prepare several pairs of good and bad pro-

grams based on design patterns. Then, we execute Met-
ricRefactor program to compile them and collect metrics. 

(2) We execute QualityGA program, which is a genetic 
algorithm program, to calculate the optimal weights of the 
metrics. It first reads the metrics that are output by Met-
ricRefactor program. By using the fitness function de-
scribed before, it determines the optimal weights of the 
metrics and periodically outputs them into a quality crite-
rion file. This file contains the criterion to judge the quality 
of a program as well as a set of the optimal weights of the 
metrics.  

(3) If we execute QualifyRefactor program by specifying 
a target program, it will read the latest quality criterion file 
to calculate the quality of the target program and finally 
judge whether it is a good or bad program. Both of Met-
ricRefactor and QualifyRefactor programs collect the met-
rics of a program. The way to collect metrics from a pro-
gram will be described in detail in Section 3. 

2.6. Recommendation of Applicable Design Patterns 
If the target program is judged to be bad, the system will 

recommend design patterns that are most applicable to the 
target program. Figure 7 shows how applicable design pat-
terns are determined. Each bad program Bad.i.dp represents 
a point (mi*wi) in a multi-dimensional affine space of met-
rics, where mi is a metric and wi is its weight. If the target 
program is located most close to Bad.i.dp, its design pattern 
dp will be recommended. More than one design patterns can 
also be recommended. 

3. Refactoring Analysis 
3.1. Collecting Metrics by Using Java Compiler Visitor 

Pattern 
We have revised a Java compiler to collect metrics from 

a source program. The Java compiler is developed by using 
Visitor design pattern[16] so that its abstract syntax tree can 

be traversed without modifying the nodes of the syntax tree. 
Therefore, we have inserted some code to start traversing 
the syntax tree after compilation. Figure 8 shows a mecha-
nism to compile a program and get metrics. 

 
Figure 7.  Recommendation of applicable design patterns 

 
Figure 8.  Collecting metrics by using the Visitor pattern of Java compiler 

(1) For example, to execute MetricRefactor program for 
the i-th bad program, we run a command "java MetricRe-
factor Bad i */*.java". 

(2) Java compile starts to create the abstract syntax tree 
of the program that consists of multiple classes. 

(3) After compilation, for each class definition, "class-
Def.accept(ast)" is invoked. 

(4) Then, "visitClassDef(classDef)" in AST class, which 
extends Visitor, is invoked. AST is defined to traverse child 
nodes for each node in the abstract syntax tree. AST class 
provides visitNode(node) method for each node type. This 
visitNode(node) method invokes child.accept(this) for a 
child node of the node. After an instance ast of AST class is 
created, when node.accept(ast) is invoked for a node in the 
abstract syntax tree, ast.visitNode(node) will be invoked. 
Therefore, when topLevel.accept(ast) is invoked for the top 
level node of the abstract syntax tree, all nodes of the tree 
can be traversed in turn. 
topLevel.accept(ast)---> 
ast.visitTopLevel(topLevel)--->....--->child.accept(ast) 
--->ast.visitChild(child)--->.... 

(5) The process() method of MetricRefactor class invokes 
a variety of methods defined in Refactor superclass to cal-
culate the metrics of the program. The methods of Refactor 
superclass refer the syntactic information that is created by 
the visitNode(node) methods of AST class. 
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Table 3.  Example of methods provided by Refactor class 

Categories Methods Functions 

Class 
int getClassCount() returns the number of classes 

String getClassName(int classIndex) returns the name of a class 

Method 

int getMethodCount(int classIndex) returns the number of methods in a class 
String getMethodName(int classIndex, int methodIndex) returns the name of a method in a class 

int getNumOfIfStms(int classIndex, int methodIndex) returns the number of if statements in a method of a class 
int getNumOfLoopStms(int classIndex, int methodIndex) returns the number of loop statements in a method of a class 

int getNumOfAssignStms(int classIndex, int methodIndex) returns the number of assign statements in a method of a class 
int getNumOfMethodCalls(int classIndex, int methodIndex) returns the number of call statements in a method of a class 
String [] calledMethodName(int classIndex, int methodIn-

dex, int callIndex) 
for a method call in a method of a class, returns the names of 

the method and the class that defines it 

int [] calledMethodIndex(int classIndex, int methodIndex, int 
callIndex) 

for a method call in a method of a class, returns the indexes of 
the method and the class that defines it; 

returns null if it is not defined in the source code. 
 

3.2. Calculation of Program Qualities Using the methods 
of Refactor Superclass 

Table 3 shows an example of methods provided by 
Refactor class. Because both of MetricRefactor and Quali-
fyRefactor classes are Refactor subclasses, they can directly 
invoke these methods to collect metrics. For example, if we 
use calledMethodIndex(int classIndex, int methodIndex, int 
callIndex), we can know about each method call contained in 
a method definition of a class, including whether the invoked 
method is defined in the source code or not. 

4. Observation 
Table 4.  GA parameters 

GA type real value 
Number of genes 12 (metrics) 

Number of individuals 20 
Minimum value of a 

gene 0.0 

Maximum value of a 
gene 1.0 

Selection roulette wheel selection 
Crossover one-point blend crossover 

Mutation pseudorandom value uniformly dis-
tributed between 0.0 and 1.0 

Crossover rate 0.6 
Mutation rate 0.1 

Interval of generation 
outputs 60 (seconds) 

Number of generations 172369766 
Number of design pat-

terns 6 

Number of pairs of good 
and bad programs 3 

To investigate the effectiveness of the method this paper 
proposes, we have prepared three pairs of good and bad 
programs for each of six design patterns, which amount to 
thirty-six small programs in total. The number of lines of 
program code ranges from 142 to 226. Table 4 summarizes 
the parameters of the genetic algorithm this method uses. We 

have introduced twelve metrics and their corresponding dual 
metrics. The range that discriminates between good and bad 
programs has converged to 0.0157, which is not big. How-
ever, because this range is positive, we can judge the quality 
of a target program based on the result of these example 
programs. A pair of a target good and bad programs were 
able to be judged to be good and bad respectively by the 
criterion obtained from a set of the other pairs of the pro-
grams. Appropriate design patterns were able to be recom-
mended to fifteen out of eighteen bad programs, whose 
probability amounts to 0.833.  

The weights of the metrics that are related to class cohe-
sion have shown their impacts on program quality. Although 
we need to have more experiments, the advantages of this 
GA-driven method are as follows: (1) A new metric can be 
easily introduced to this system. We have only to revise 
Refactor subclasses to calculate the metric, and add one gene 
to the genetic algorithm program for the metric. (2) The 
GA-driven system gives some information about which 
metrics have significant impacts on program qualities. 

5. Conclusions 
This paper has presented an approach to discriminate 

between programs of high and poor qualities by using a 
genetic algorithm based on design patterns. Like corpuses in 
the natural language processing, we need to collect more 
samples for bad and good programs. At present, this system 
uses one-dimensional quality. We intend to classify some 
metrics into groups and apply multivariate analysis.  
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