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Prediction of Particulate Matter Concentrations Using
Artificial Neural Network

Surendra Roy

National Institute of Rock Mechanics, Kolar Gold Fields, Karnataka, 563117, India

Abstract Mill tailings at Kolar Gold Fields are creating particulate pollution on air environment. In the previous study,
multiple regression models were developed for the prediction of particulate matter concentrations using data of meteoro-
logical parameters (wind speed, wind direction, temperature, humidity and solar radiation) and particulate matter (PM,, and
TSP) monitored in different seasons[1]. Artificial neural network is an excellent predictive and data analysis tool for the
evaluation of air pollutants. Therefore, the data were used for the development of neural network models. During develop-
ment of models, the values 0.02, 0.5 and 0.7 were used as target error, learning rate and momentum respectively. Three
hidden layers were used to obtain acceptable values. Performance of the models was evaluated using those sets of data which
were not used during learning of neural network. Architecture of developed networks, number of hidden neurons and weights,

normalised and relative error, importance and sensitivity, etc have been discussed in this paper.
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1. Introduction

Nowadays, there is almost unanimous scientific consensus
that air quality degradation is one of the major environmental
hazards in many areas and a lot of research is therefore
conducted in the field of air pollution. The forecasting of the
airborne particulate matter concentrations is of particular
interest due to its well known adverse health impact to hu-
mans[2]. In the previous study, multiple regressions analysis
of data was carried out to develop the statistical equations for
the prediction of PMy, and TSP[1]. Different researchers
have developed several statistical techniques, artificial neu-
ral networks (ANN) are expected to show better particle
forecasting performance when compared to the traditional
ones (e.g. regression models). This is because they have the
better adaptation ability on fitting data to describe highly
nonlinear physical processes[2]. The artificial neural net-
work models has been used to predict different air pollutants
like atmospheric sulphur dioxide, nitrogen oxides and par-
ticulate matter[3- 5]. Compared to atmospheric modeling
systems, it requires limited input data and computer power[6]
and provides a highly effective tool to model atmospheric
dispersion[7]. Therefore, using the data generated, neural
network models have been developed to predict PMy, and
TSP concentrations in the study area.

2. Methodology
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2.1. Monitoring Station and Data Generation

Monitoring was carried out at the National Institute of
Rock Mechanics (NIRM), Kolar Gold Fields (KGF). Details
of monitoring station, particulate and meteorological meas-
urements have been explained in Roy and Adhikari[1].

2.2. Artificial Neural Network

The artificial neural networks arise as a mechanism to
mimic the human brain’s processes. Its objective is to
compute output values from input data by some internal
calculations. In fact, this method based on a highly inter-
connected system and a simple processing element (known
as neuron), which can learn the interrelationship between
independent and dependent variables[8]. The most popular
ANN is the multi-layer feed-forward neural network, where
the neurons are arranged into layers of input, hidden and
output. Feed-forward neural network usually has one or
more hidden layers, which enable the network to model
non-linear and complex functions. Each neuron consists of a
transfer function expressing internal activation level. Output
from a neuron is determined by transforming its input using a
suitable transfer function. Transfer functions may be linear
or non-linear. Sigmoidal function is commonly employed for
non-linear relationship. The most popular transfer function is
the logarithmic sigmoid. The sigmoid function is bounded
between 0 and 1, so the input and output data should be
normalized to the same range as the transfer function used.
Normalisation of inputs leads to avoidance of numerical
overflows due to very large or very small weights[9].

Among possible neural net simulators available like
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Matlab, WEKA and EasyNN, many researchers have used
Matlab for the prediction of air pollutants. In this study,
EasyNN-plus software was used for the development of
ANN model. This software is easiest in use, simplifies many
of the steps needed for creating simple and efficient neural
network models[10]. The EasyNN-plus package uses a
back-propagation algorithm and a sigmoidal function to
build the models. The data needed for training the network
can be generated with simple text or spreadsheet software. In
addition, the program can either assume values for the
learning rate and momentum or let it up to the user. After the
models are built, they can be used for estimating output
values[11]. According to Razavi et al.[9], it is simple to build
a network for modelling and prediction with EasyNN.

3. Model Development and Evaluation

The meteorological data were downloaded to the com-
puter once in a month. Though these data were generated for
about one year, the data used in this study correspond to the
dust monitoring period. As meteorological parameters such
as wind speed, wind direction, temperature, humidity and
solar radiation influences the particulate concentrations,
therefore, considering TSP and PMy, as dependent and me-
teorological parameters as independent variables, a total of
72 sets of data, consisting of 24 sets for each season, were
used for the models development[1]. Out of 72 data sets, 70
sets were used for training the network and 2 sets for que-
rying. The training data was used for learning the ANN
whereas the querying data was used to test the neural net-
works predictability.
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Figure 1. Architecture of network for (a) PMyo and (b) TSP (input, three
hidden and output layers)

3.1. Architecture of Network for Particulate Assessment

Before training or learning started, all the sets of data were
checked for conflict. No any conflict was observed in any set
of data indicating that monitored data are suitable for train-
ing purpose. During training, software assigns a weightage to
various inter-related parameters and attempts to limit the
error. This process is repeated until the error converges to the
set limits. The final weightages are obtained after train-
ing[12]. For learning the network, the target error value was
set to 0.02. The control of learning was stopped when all the
errors were below the target value. The learning rate and
momentum was set to 0.5 and 0.7 respectively. The network
developed for PMy, consisted of 5 inputs (wind speed, wind
direction, temperature, humidity and solar radiation), 19
hidden (3 layer system) and 1 output neuron (PMy). In TSP
neural network, the input parameters were same as PM;, but
3 hidden layers consisted of total 29 neurons. For both the
particulate, the architecture was below the targeted error
(Figure 1a, b). As acceptable results occurred with three
hidden layers; therefore, three hidden layers were used in the
network[13, 12]. The thickness of the connections repre-
sented the weights of different processing elements.

3.2. Cycles and Errors Status of Networks

The learning of PM;, and TSP was completed after 91718
and 38406 cycles respectively. The weights of the nodes or
neurons between different layers, maximum, average and
minimum training error values for PM,, and TSP are shown
in Figure 2 (a, b). The normalised error and relative error of
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the different sets of data are represented in Figure 3 (a, b).
Among 70 sets of data, the maximum and minimum training
error for PMy, occurred at 31 and 48 set (Figure 3a) whereas
for TSP at 66 and 16 set (Figure 3b) respectively. All in-

put/output column values for particulate are shown in Figure
4 (a, b). The left hand scale shows the normalised value from
0 to 1 and the right hand scale is the real value calculated
using the highest and the lowest values in the column.
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Figure 2. Normalised error against iterating cycles of (a) PM;o and (b) TSP (with layers, nodes and weights)
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Figure 3. Normalised and relative error for different data set of (a) PMy, and (b) TSP
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Figure 4. Column value graph showing the normalised and the real values of (a) PMy, and (b) TSP
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gure 5. Importance of different input on the output (a) PMy, and (b) TSP
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Untitled 91718 cycles. Target error 0.0200 Average training error 0.004952

The first 5 of 5 inputs in desending order.  Output column 5 PM10
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Figure 6. Relative sensitivity of different input parameter for (a) PM;, and (b) TSP

Table 1. Percentage difference between measured and predicted values of PM,, and TSP

Meteorological parameters Measured par- Predicted particu- Percentage
ticulate matter late matter (ug/m®) difference
(ug/m®)
Wind Wind Temperature Humidity  Solar radia- PMyq TSP PMio TSP PMio TSP
speed direction °c) (%) tion (kWh)
(km/hr) ®
8.5 76.0 21.0 76.0 1.8 473 64.8 50.5 75.9 6.3 14.6
2.0 79.0 16.0 99.0 0.0 425 50.8 42.9 67.9 0.9 25.1

3.3. Importance and Sensitivity of Input Parameters on
Outputs

The weights of different input parameters obtained from
the network and their relative importance for PMy, and TSP
are given in Figure 5 (a, b). The weight represents the im-
portance of input parameter in the network. In the input
column, the solar radiation shows the highest importance on
PM, (Figure 5a) and the wind direction on TSP (Figure 5b).
Insignificant difference between the weights of wind direc-
tion (86.27) and solar radiation (85.77) in the input column
of TSP reveals their analogous influence on TSP. Roy and
Adhikari (2009) also observed significant role of these pa-
rameters on particulates. The order of importance for wind
speed and temperature is same for both PM;, and TSP indi-
cating that these parameters have similar influence on par-
ticulates.

The sensitivity of different input parameters and their
relative sensitivity are shown in Figure 6 (a, b). The inputs
are shown in the descending order of sensitivity from the
most sensitive input. It shows how much an output changes
when the inputs are changed. The change in the output is
measured as each input is increased from the lowest to the
highest. In general, the order of different input parameters
for PMyo and TSP is different for importance and sensitivity,
but for TSP, the wind direction has similar rank in the input
column for importance and sensitivity indicating that it has a

significant role in variation of coarser particle concentrations.

The wind speed is the highest sensitive for PM,, showing

that slight change in wind speed can reveal a major fluctua-
tion in fine particle concentrations.

3.4. Prediction with Training Examples and Performance

Predictions of output for the training examples show av-
erage training error as 0.004952 and 0.004200 for PM,, and
TSP respectively (Figure 7). These values below target error
indicate performance of the models. The position of the
values on both axes is scaled from 0 to 1. Predicted outputs
for training examples get closer to the true values as training
progresses. If the predicted values are very close to the true
values then the dots will be on the diagonal line.

Untitled 91718 cycles. Target error 0.0200
Average training error 0.004952

70 training examples
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Output column (min to max values)
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Untitled 38406 cycles. Target error 0.0200
Average training error 0.004200
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Figure 7. Predictions of output for the training examples of (a) PM;, and

(b) TSP

For assessing the predictability performance of the ANN
models, query data sets were used and the predicted output
was compared with the measured values. The percentage of
difference between measured and predicted sets of data
assessed are shown in Table 1. The percentage difference for
PMy, was lower than TSP indicating higher correct predic-
tion of finer particulate.

4. Conclusions

Though target error, learning rate, momentum, number of
hidden layers were same for PMy, and TSP but number of
cycles, number of hidden neurons and weights in different
hidden layer, the order of relative error for different sets of
data, importance and sensitivity sequence of imput parame-
ters varied. It was observed that the solar radiation obtained
the highest rank of importance for PM; and the wind direc-
tion for TSP. The wind speed and temperature showed
similar order of importance for PM, and TSP indicating
their same influence on particulates. From the sensitivity
columns, it was found that the wind speed is the highest
sensitive on PMyand the wind direction on TSP indicating
that slight variation in these input parameters will have sig-
nificant fluctuations in particulate concentrations. Percent-
age difference between predicted and measured values re-
vealed that developed neural networks models can be used
for the assessment of particulate concentrations in the study
area using meteorological data as input parameters.
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