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Abstract  Predicting detailed flow properties of a confined, isothermal, and swirling flow field in an axisymmetric sudden 
expansion combustor is of great importance. In this regard, the current paper makes use of Artificial Neural Networks to 
enhance the experimental results obtained using a two-component laser Doppler velocimetry capable of measuring the mean 
velocity components and their statistics. Neural networks such as generalized feed forward, radial basis function, and 
coactive neuro-fuzzy inference system were tested. Their predictions were compared to experimental data and used in the 
reconstruction of the axial and tangential mean velocity and turbulence intensity profiles. For the profiles considered, the 
generalized feed forward networks resulted in the best prediction with the highest correlation coefficients. 
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1. Introduction 
Studying fluid flow characteristics is vital for designing 

more efficient combustors. Many methods have been used 
to realize an efficient design (e.g., one major way is 
achieved by reducing emissions of undesired products, such 
as NOx, CO and unburned hydrocarbons). Recently, 
designers have used swirlers to generate a swirl flow inside 
the chamber to get a reversal flow that entrains and 
recirculates a part of combustion products in order to be 
mixed with the fuel and incoming air. A swirling fluid flow 
is created when a spiral motion is formed along its axial 
axis; it causes a complex three dimensional flow. This swirl 
phenomenon is studied because of its importance in 
increasing combustion efficiency. In addition, it minimizes 
combustors’ sizes since it reduces flame length and 
enhances the stability of the flame and gives better mixing 
between fuel and oxidizer thus achieving uniform pattern 
factor. 

Turbulent swirling flows have highly complex, 
three-dimensional, unsteady flow fields which include 
reverse flow regions. Therefore, they have been the subject 
of many experimental, numerical and theoretical 
investigations and have been reviewed extensively in the 
literature during the last five decades (see for example 
[1-12]). Most of the studies are based on experimental 
results using several types of sensors and actuators to  
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measure velocities, forces and pressures on several 
coordinate locations. Particle image velocimetry (PIV) and 
laser Doppler anemometry/velocimetry are some of the 
techniques used to measure swirl flow field velocity 
components.  

Turbulent swirling flows modelling remains a challenge 
in fluid mechanics and a large body of literature has been 
published to deal with various flow configurations 
(confined and unconfined, reacting and non-reacting) and/or 
specific phenomena such as flow structure and instabilities, 
and/or vortex breakdown. A comprehensive treatment on 
swirl flows can be found in the book by Gupta and Liley[2].  

The axisymmetric sudden expansion geometry is relevant 
to many swirling applications, particularly swirl burners and 
combustors. Sudden expansion flows combine geometric 
simplicity with complex flow features such as separation 
and reattachment. They share many similarities with the 
flow past a backward facing step (i.e., the existence of three 
distinct flow regions: recirculation, reattachment and 
redevelopment). The reverse flow region size is an 
important feature of sudden expansion flows and it depends 
on swirl strength and type (e.g., free/forced vortex or 
constant angle), Reynolds number, expansion ratio, and free 
stream turbulence (for example, see[3-10]). 

The structure of swirling flows is very sensitive to the 
way the swirl is introduced (i.e.; the inlet conditions). The 
effects of inlet or initial swirl profile and expansion angle 
on the characteristics of the swirling flow were investigated 
by Nejad and Ahmed[4]. They introduced swirl by three 
different types of swirlers: free vortex, forced vortex and 
constant angle, respectively. They showed that there are 
significant differences in the flowfield and turbulence 
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characteristics when a different swirler is employed. In their 
study, for the same swirl number, a central recirculation 
was only observed in the case of free vortex type of 
swirling flow after the expansion. However, the centreline 
turbulence levels were the greatest for constant-angle 
swirling flow due to the large motion of the vortex centre 
precession.  

Hallett and Toews[5] showed that a lower velocity near 
the axis or a reduced radius of the solid body vortex core in 
the inlet will reduce the critical number required for central 
recirculation. An increase in the expansion ratio up to 1.5 
will also reduce the critical swirl number. For expansion 
ratios greater than 1.5, either a reduction or an increase of 
the critical swirl number is reported, depending on inlet 
conditions. 

Because of the limited (discrete) data provided by such 
techniques, however, an interpolation tool should be 
utilized to precisely implement the turbulence statistics. A 
new methodology has to be considered to provide enough 
set of information. Artificial Neural Networks (ANN) 
analysis is suggested to predict turbulence statistics and to 
enlarge the experimental data, therefore, enhancing dump 
combustors design. 

2. Literature Review 
Artificial neural networks are one of the artificial 

intelligence concepts that have proved to be useful in various 
engineering applications[13-23]. Their greatest advantage is 
in their ability to model complex non-linear, 
multi-dimensional functional relationships without any prior 
assumptions about the nature of the relationships. The 
network is built directly from experimental data by its 
self-organizing capabilities and can therefore be considered 
as a black box and it is unnecessary to know the details of the 
internal behavior. These nets may therefore offer an accurate 
and cost effective approach for modeling engineering 
problems. ANN have already been used in medical 
applications, image and speech recognition, classification 
and control of dynamic systems, prediction of mechanical 
properties of materials among others[17-23]; but only a few 
studies have used them in swirl flow velocity field 
reconstruction[13-16]. Pruvost et al.[13] used ANN to 
determine hydrodynamical parameters obtained using 
particle image velocimetry (PIV) on the entire geometry of 
an annular test-cell involving a swirling decaying flow. They 
concluded that this method reduces the investigation time 
through reducing the number of needed experimental 
measurements while leading to a better understanding of the 
flow field by establishing pertinent hydrodynamical 
parameters. 

Ghorbanian et al.[14] used a general regression ANN to 
optimize the design of pressure-swirl injectors. Measureme
nts obtained from Phase Doppler Anemometry (PDA) 
measurements of the velocity distributions were used to train 
the network. The model used was shown to accurately 

reconstruct the velocity flow field of a single swirl spray as 
well as the interaction of two sprays. Ahmed and El Kadi 
[15,16] used generalized feed forward network to predict the 
flowfield characteristics downstream of a sudden expansion 
dump combustor model. The results obtained for free vortex 
swirler (S = 0.4) indicated that generalized feed forward 
network is capable of predicting the mean velocity 
components and the turbulence intensities of the velocity 
components. 

The general objective of the current study is to report 
detailed experimental database to help in the understanding 
of the behavior of axisymmetric, recirculating, and 
incompressible turbulent flows. Because the obtained 
velocity-field is not continuous and the acquisition area 
remains limited, a complete investigation of the flow field 
would request numerous measurements. Thus, an extensive 
experimental investigation would be expensive and require a 
very long time to obtain sufficient data. Since ANN can deal 
with non-linear modeling, they seem to be an efficient tool 
for the reconstruction of data linked to multiple parameters, 
and thus an interesting alternative solution to common 
interpolation schemes. To evaluate the accuracy of the 
different networks, a large set of flowfield characteristics 
downstream of a sudden expansion dump combustor model 
(measured using laser Doppler velocimetry) is used. Earlier  
results obtained by Ahmed and El Kadi[15,16] for free 
vortex swirler (S = 0.4) indicated that ANN are capable of 
predicting the mean velocity components and the turbulence 
intensities of the velocity components.  

In this study, the turbulence statistics are predicted for a 
constant angle swirler (S = 0.5) using several ANN 
architectures and are compared to obtain the best network 
that could be used in this problem.  

3. Experimental Facilities 
3.1. Combustor Design 

The model where data is captured consists of two major 
parts; an inlet assembly and a combustion chamber. The inlet 
assembly contains a settling chamber of 300 mm diameter, a 
Plexiglas inlet pipe with 2850 mm length and 101.6 mm 
inner diameter, and a cylindrical Teflon swirler housing that 
has 104.5 mm inner diameter, 152.4 mm outer diameter, and 
154 mm in length. A distinctive characteristic of this model 
is its capability of dump plane (swirler housing) positioning 
with respect to the plane of measurement inside the 
combustion chamber. This is accomplished by supporting 
the entire inlet assembly on a traversing mechanism 
controlled by a stepper motor. The inlet average velocity is 
monitored with a flow meter located far upstream of the 
swirler housing, and maintained at average velocity 
𝑈𝑈𝑜𝑜 = 16 ± 0.4 m/s, corresponding to Reynolds number of 
1.5x105. This velocity is high enough to ensure a turbulent 
flow in the combustor. 

The combustion chamber itself contains a Plexiglas tube 
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with 152.4 mm inner diameter and 1850 mm in length, 
terminating into a larger pipe (exhauster). The measurement 
station is designed to accept different window assemblies. 
One is designed to provide optical access for LDV traversing 
in the horizontal plane (see Figure 1). 

The swirler is at a constant angle type, similar to the one 
used by Ahmed and Nejad[24]. The current facility 
employed a swirler that has 12 curved vanes. Swirler 
dimensions are 19 mm inner diameter (central hub) and 
101.6 mm outer diameter. 

3.2. Measurements Techniques 

The measurements of velocity are performed using a TSI 
Inc. 9100-7 four-beam, two-color, back scatter fiber-optic 
LDV system. It has two TSI 9180-3A frequency shifters to 
provide directional sensitivity. The entire optics is mounted 
on a three-axis traversing table with a resolution of ±2.5 µm. 
The system is configured so that the fringe inclinations are at 
45.67º and 134.17º to the combustor centerline. The 

approximate measurement volume dimensions based on 
1 𝑒𝑒2⁄  intensity points are 390 µm length and 60 µm width.   

The photomultipliers signals were processed by two TSI 
burst counters - models 1990 B\C with low pass filters, set at 
20 MHz, and high pass filters set at 100 MHz on each 
processor. Calculations of statistical moments from standard 
formulae were done at each measurement location using 
double precision data (48 bit). The problem of velocity bias 
in LDV measurements was corrected in this study by the use 
of the time between individual realizations as a weighing 
factor (interarrival bias correction techniques, see 
Ahmed[10]). 

The swirl number is 0.5, the measured profiles are located 
at x/H=.38, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, and 18. At each 
profile, the radial coordinate changes from 0 to 3 with a step 
size of 0.1. The purpose of this study is to test the ability of 
neural network in implementing such a model and compare 
the results obtained from the network with the experimental 
data. 

 

 
Figure 1.  Schematic of the experimental set-up; (A) Dump combustor model; (B) Section A-A; (C) Assembly for measurements in the horizontal (U-V) 
plane; (D) Assembly for measurements in the vertical (U-W) plane 
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Figure 2.  General configuration of artificial neural networks 

4. Artificial Neural Networks 
Artificial neural networks can generally be defined as a 

structure composed of a number of interconnected units 
called neurons[25]. Each neuron has an input/output (I/O) 
characteristic and implements a local computation or 
function. The output of each neuron is determined by its I/O 
characteristic, its interconnection to other neurons and 
(possibly) external inputs, as well as its internal function (see 
Figure 2). The network usually develops an overall 
functionality through one or more forms of training. As in 
nature, some of the neurons interface with the real world to 
receive its input (input layer), while others provide the world 
with the network’s output (output layer). All remaining 
neurons are hidden (hidden layers). Each input to a neuron 
has a weight factor that determines the contribution of this 
neuron to the whole network. In addition, it has a bias term, a 
threshold value that has to be reached or exceeded for the 
neuron to produce a signal, a nonlinearity function that acts 
on the produced signal, and an output. Learning is the 
process by which the neural network adapts itself to a 
stimulus and eventually (after adjusting its synaptic weights) 
produces the desired response. Many publications discuss 
the development and theory of ANN (for example, see 
references[25-27]). 

In this study, the predictions obtained using 3 neural 
networks architectures are compared to determine the type of 
network that best predicts the velocity profiles. The networks 
used here are: the generalized feed forward (GFF), the radial 
basis function (RBF), and the coactive neuro-fuzzy inference 
system (CANFIS). 

4.1. Generalized Feed Forward Network 

Multilayer feedforward ANN with backpropogation 
training have been the most popular and commonly used 
because of their adequate generalizing capabilities. 
However, they could suffer from some drawbacks such as 
local convergence and the need for large training cases in 
order to make adequate generalization. Therefore other 
types of neural networks such as RBF are considered to 
overcome such problems and other problems the training 
data may have. 

In this network, neurons in the input layer act as buffers 
for distributing input signals 𝑥𝑥𝑖𝑖  to neurons in the hidden 
layer. Each neuron in the hidden layer 𝑗𝑗 gets its value by 
summing up the input signals after weighting them with 
weighting factor  𝑤𝑤𝑗𝑗𝑖𝑖 , thus the output 𝑦𝑦𝑗𝑗  can be written 
as[28]: 

yj = f�∑wji xi�                (1) 

4.2. Radial Basis Function Network 

He RBF is a classification and functional approximation 
paradigm developed by M.J.D. Powell[29]. These networks 
are non-linear hybrid networks usually containing a single 
hidden layer. The hidden layer consists of locally tuned units, 
where the response is localized and decreases as a function of 
inputs distances from the unit’s center. The output layer 
consists of linear units in most cases[29]. It is claimed that 
these networks learn faster than the MLP and need less 
number of training data, their generalization capabilities is 
however limited. 

Usually, a hidden layer in RBF network employs a 
Gaussian activation function, which can be described by: 

oi = e−‖i−wi‖2              (2) 
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Where 𝑤𝑤𝑖𝑖  corresponds to the weight of the 𝑖𝑖th unit and 
‖𝑖𝑖 − 𝑤𝑤𝑖𝑖‖2  is called the net activation. These weights are 
used with Gaussian function to determine the center of units. 
The centers and widths of the activation functions are 
obtained by unsupervised learning while supervised learning 
is used to update the connection weights between the hidden 
and output layers. Note that the units have maximum net 
activation, which means a maximum output value occurs 
when 𝑖𝑖 = 𝑤𝑤; this shows that the sensitivity of units depends 
on distance. 

The output units are implemented linearly, where: 

yi = ∑ wij
h−ooj

n
1                  (3) 

Where 𝑜𝑜𝑗𝑗  is the output of the previous hidden layer 
neurons, 𝑤𝑤𝑖𝑖𝑗𝑗ℎ−𝑜𝑜  is the weight of the interconnection between 
the last hidden layer and the output layer. 

It is recommended to use the RBF network when the 
system model has a radial tendency, in other words, the 
model behaves always towards the center of the system. 

4.3. Coactive Neuro-Fuzzy Inference System Network 

This network is a combination between classification and 
regression trees (CART) and the adaptive neuro-fuzzy 
inference system (ANFIS) in a two step procedure. CART is 
a tree-based algorithm used to optimize the process of 
selecting suitable predictors from a large set of predictors. 
Using the selected predictors, ANFIS builds a model for 
continuous output of the predictions[30-32]. 

The fundamental component for CANFIS is a fuzzy 
neuron that applies membership functions (MFs) to the 
inputs. Two membership functions commonly used are 
general Bell and Gaussian[33]. The network also contains a 
normalization axon to expand the output into a range of 0 to 
1. The second major component in this type of CANFIS is a 
modular network that applies functional rules to the inputs. 
The number of modular networks matches the number of 
network outputs, and the number of processing elements in 
each network corresponds to the number of MFs. CANFIS 
also has a combiner axon that applies the MFs outputs to the 
modular network outputs. Finally, the combined outputs are 
channeled through a final output layer and the error is 
back-propagated to both the MFs and the modular networks.  

The CANFIS neuro-fuzzy modular network computes a 
weighted sum of the outputs of a certain number of MLPs, 
this leads to optimize all the parameters by minimizing the 
sum over all data of squared errors[34]. 

5. Results and Discussion 
5.1. Influence of Network 

The target of this study is to find out the neural network 
structure that most accurately predicts the velocity 
components and the turbulence intensities at the different 
locations. The input parameters of the network are the x and r 
coordinates, while the non-dimensional mean axial and 
tangential velocities (U and W) and the turbulence intensity 

components 𝑢𝑢′ and 𝑤𝑤′ are the possible outputs from the 
network. Rather than having one complex neural network to 
predict all the velocity components and turbulence intensities, 
a simpler network was used to separately predict each 
parameter. NeuroSolutions 5 software package[35] is used to 
construct, train and test the networks. 

The effect of varying the transfer function and learning 
algorithm on the accuracy of the predictions was investigated 
in[36]. Here, the results presented have all been obtained 
using a tanhaxon transfer function with a Levenberg- 
Marquardt learning algorithm[37-39]. For all the cases 
considered, the network is trained five times using all but one 
of the velocity or turbulence intensity distributions obtained 
experimentally at different values of x to overcome the effect 
of the initial guess. These networks were then tested by 
comparing the predicted results obtained from the ANN to 
the experimental results of the profile not used in training. 
Once we are confident of the accuracy of the network, one 
can use it to predict the velocity and turbulence intensity 
distributions at any location, x, for which no experimental 
data is available. Selecting the most appropriate network is 
based on evaluating the correlation coefficient (cc) and the 
normalized mean square error (NMSE), which are defined in 
equations (4) and (5), respectively, 

cc = ∑ ��oANN
i −o�ANN ��oEXP

i −o�EXP ��n
i=1

�∑ �oANN
i −o�ANN

i �
2n

i=1 �∑ �oEXP
i −o�EXP

i �
2n

i=1

    (4) 

NMSE = n ∑ �oANN
i −oEXP

i �
2n

i=1

n ∑ �oEXP
i �

2n
i=1 −�∑ �oEXP

i �n
i=1 �

2        (5) 

where 𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  is the output from the neural network at each 
coordinate (𝑥𝑥𝑖𝑖 , 𝑟𝑟𝑖𝑖), and 𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖  is the experimental value of the 
parameter at the same coordinate. �̅�𝑜𝐴𝐴𝐴𝐴𝐴𝐴  and �̅�𝑜𝐸𝐸𝐸𝐸𝐸𝐸  are the 
average predicted and experimental results, respectively, and 
𝑛𝑛 is the number of data points used in testing (exemplars). 
The results shown next are obtained using the following 
properties of the three neural networks considered: 
• For the GFF network, one hidden layer was used; the 

maximum number of epochs was set at 2000; and the number 
of processing elements was varied between 9 and 20.   
• For the RBF network, one hidden layer was also used; 

the competitive rule used is Conscience Full with Euclidean 
metric system[29]; the maximum number of epochs used in 
unsupervised and supervised learning was set to 500 and 
1000 respectively; and the number of cluster centers was 
varied between 10 and 20.  
• For the CANFIS network, the Takagi-Sugeno-Kang 

(TSK)[31] fuzzy model with Bell and Gaussian membership 
functions[32] was used; the maximum number of epochs 
used in supervised learning was set to 250; and the number of 
membership functions was varied between 3 and 10. 

As mentioned before, the selection of the most efficient 
network is based on calculating the average correlation 
coefficient obtained after training the network at all-but-one 
value of x. The network is then tested for the untrained value 
of x; the value of the correlation coefficient obtained is 
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referred to as the testing correlation coefficient. 
Figures 3-6 show the average testing correlation 

coefficients for all networks at x/H = 3, 6, 10 as a function of  
number of processing elements for GFF network, number of 
membership functions for CANFIS networks (Bell and 
Gaussian models), and number of clusters for RBF network 
for non-dimensional 𝑈𝑈,𝑊𝑊 ,𝑢𝑢′ , and 𝑤𝑤′ respectively. 

The best predictions obtained using the GFF network (Fig. 
3) for non-dimensional 𝑈𝑈,𝑊𝑊,𝑢𝑢′ , and 𝑤𝑤′ are obtained when 
the number of neurons is 19 for U, and 18 neurons for all of 
𝑊𝑊 ,𝑢𝑢′   and 𝑤𝑤′, with correlation coefficients of 0.966, 0.997, 
0.985 and 0.944, respectively.  

 
Figure 3.  Average cc of testing GFF network for non-dimensional 
𝑈𝑈,𝑊𝑊 ,𝑢𝑢′ , and 𝑤𝑤′ at x/H=3, 6, 10 as a function of number of neurons 

 
Figure 4.  Average cc of testing Bell CANFIS network for 
non-dimensional U, W , u′ , and w′ at x/H=3, 6, 10 as a function of number 
of membership functions 

Using the RBF network (Fig. 4), the highest correlation 
coefficients for 𝑈𝑈,𝑊𝑊 ,𝑢𝑢′ , and 𝑤𝑤′ were obtained with 13, 19, 
16, and 16 clusters, respectively, with corresponding cc 
values of 0.889, 0.936, 0.688 and 0.617. The maximum 
correlation coefficients for the Gaussian-based fuzzy model 
(Fig. 5) for 𝑈𝑈,𝑊𝑊 ,𝑢𝑢′ , and 𝑤𝑤′  were found to be 0.989, 0.995, 
0.875, and 0.877, respectively at 10, 4, 3, and 6 membership 
functions. For the bell-based fuzzy model (Fig. 6), the 
highest correlation coefficients for 𝑈𝑈,𝑊𝑊 ,𝑢𝑢′ , and 𝑤𝑤′ were 
0.989, 0.995, 0.694, and 0.966, respectively at 9, 7, 3, and 8 
membership functions. 

These results show that, on average, GFF networks 
produce the best predictions for all of velocity and 
turbulence intensity components, while the Gaussian-based  
fuzzy model gives more accurate predictions than fuzzy 
model with bell membership functions for 𝑈𝑈, 𝑊𝑊, and 𝑢𝑢′, 
and RBF networks fail to give accurate results at any number 
of clusters. On that basis, the use of GFF networks to predict 

the velocity and fluctuating velocity profiles.   

 
Figure 5.  Average cc of testing Gaussian CANFIS network for 
non-dimensional U, W , u′ ,  and w′ at x/H=3, 6, 10 as a function of number 
of membership functions 

 
Figure 6.  Average cc of testing RBF network for non-dimensional 
U, W , u′ , and w′ at x/H=3, 6, 10 as a function of number of cluster size  

The generalized feed forward network will now be used to 
predict the velocities and turbulence intensities distributions 
obtained at values of x not used in training the network and 
compare these predictions to the experimental data.  

Table 1 shows the NMSE and cc values obtained when 
predicting the axial velocity using a GFF network with one 
hidden layer with 19 neurons. These results shows that, even 
at the lowest correlation factor (0.9683) obtained at x/H=12, 
the network accurately predicts the axial velocity. 

Similarly, Tables 2, 3, and 4 show the NMSE and cc 
values at each profile for the tangential velocity component, 
the tangential turbulence intensity, respectively. The 
network used in this case is a one-hidden layer GFF with 18 
neurons. Table 2 shows that the tangential velocity 
component profiles are more accurately predicted compared 
to the axial ones (Table 1) since the lowest correlation 
coefficient obtained (0.9791) is higher than that obtained for 
the axial case. 

The values listed in Table 3 show that the GFF network is 
unable to accurately reconstruct the last two axial turbulence 
intensity profiles (i.e. x/H=12 and 15). This could be due to 
the different shapes of these profiles compared to those at 
other locations.  

The NMSE and cc obtained when predicting the tangential 
turbulence intensity profiles are shown in Table 4. The 
NMSE values obtained here are the lowest compared to all 
other components. 
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Table 1.  NMSE and cc Values as a Function of x/H for Axial .Velocity 
Profiles 

x/H NMSE cc x/H NMSE cc 

1 0.00430 0.9980 6 0.02710 0.9958 

2 0.00769 0.9962 8 0.06978 0.9754 

3 0.00657 0.9972 10 0.04240 0.9820 

4 0.01119 0.9952 12 0.14999 0.9683 

5 0.01986 0.9952 15 0.04530 0.9839 

Table 2.  NMSE and cc Values as a Function of x/H for Tangential Velocity 
Profiles 

x/H NMSE cc x/H NMSE cc 

1 0.03482 0.9828 6 0.00627 0.9971 

2 0.11202 0.9843 8 0.01032 0.9969 

3 0.02368 0.9967 10 0.08327 0.9791 

4 0.05690 0.9861 12 0.00200 0.9992 

5 0.00803 0.9961 15 0.01920 0.9934 

Table 3.  NMSE and cc Values as a Function of x/H for Axial Turbulence 
Intensity Profiles 

x/H NMSE cc x/H NMSE cc 

1 0.02567 0.9891 6 0.11424 0.9573 

2 0.03568 0.9867 8 0.05621 0.9789 

3 0.02710 0.9904 10 0.15283 0.9687 

4 0.03313 0.9841 12 0.54409 0.8522 

5 0.09951 0.9591 15 0.25264 0.8682 

Table 4.  NMSE and cc Values as a Function of x/H for Tangential 
Turbulence Intensity Profiles 

x/H NMSE cc x/H NMSE cc 

1 0.01963 0.9918 6 0.01243 0.9941 

2 0.09243 0.9542 8 0.17840 0.9427 

3 0.06266 0.9730 10 0.05401 0.9760 

4 0.06793 0.9670 12 0.17202 0.9840 

5 0.12821 0.9867 15 0.06117 0.9876 

5.2. Comparison between Experimental and Network 
Velocity Profiles 

Figures 7-10 illustrate the comparison between the three 
networks and the experimental data at x/H=1, 3, 5, and 8. 
The experimental data are shown as open circles markers, the 
predictions done by the GFF network are plotted as solid red 
lines, RBF network data are presented as dashed green lines, 
and the CANFIS predictions are displayed as dashed-dotted 
blue lines. 

The plots show that GFF is the most accurate network 
between the three networks considered. The graphs clearly 
show that GFF network successfully predicts most of the 
profiles with better trend than RBF or Gaussian CANFIS 
networks. Thus, GFF network is recommended to 
reconstruct turbulence statistics for this combustor model. 

Detailed results of the flow field utilizing GFF will be 
presented in a separate paper. 

The mean non-dimensional velocity profiles are shown in 
Figures 7 and 8. GFF shows the recirculation zones at the 
corners and around the center line. Figures 9 and 10 show the 
turbulence intensities distributions at various values of the 
distance x. It is obvious that two peaks characterized the 
swirling flow around the inner and outer shear layers (i.e., 
the larger is seen in the boundaries of CTRZ, and the smaller 
occurred in the shear layer of CRZ). Turbulence activities are 
gradually reduced downstream of the reattachment point. It 
is interesting to note that the peak value of axial turbulence 
intensities is observed to move towards the combustor wall 
as it decays in strength and grows in size, indicating a 
progressive development of the outer shear layer. 
Turbulence activity is seen to be more concentrated in the 
central shear layer and the centers of the maximum values, 
for the two regions are located approximately at x / H = 3.0 . 

In the tangential direction, the flow did not completely 
recover near the core (due to the existence of CTRZ) as 
indicated by relatively higher values of stresses at each axial 
location, and downstream of x / H = 8.  

  
Figure 7.  Evolution of U/Uo profiles at x/H =1, 3, 5, and 8 for 
experimental and neural networks predictions 

 
Figure 8.  Evolution of W/Uo  profiles at x/H =1, 3, 5, and 8 for 
experimental and neural networks predictions 

 
Figure 9.  Evolution of u′/Uo  profiles at x/H =1, 3, 5, and 8 for 
experimental and neural networks predictions 
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Figure 10.  Evolution of w′/Uo  profiles at x/H =1, 3, 5, and 8 for 
experimental and neural networks predictions 

6. Conclusions 
The experimental data of turbulent swirling flowfield 

characteristics at a constant swirl number are obtained using 
two-component LDV and compared with the results obtained 
from three artificial neural networks architectures. This 
study of velocity-field reconstruction shows precise 
predictions of ANN in general and GFF network in 
particular. 

The successful predictions obtained using neural networks 
encourage producing more data and enhancing the ability of 
a better combustor design. 
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Nomenclature 
ANN: Artificial Neural Network 
BP: Back propagation 
CANFIS: Coactive Neuro-Fuzzy Inference System 
CC: Correlation Coefficient 
EXP: Experimental 
GFF: Generalized Feed Forward 
H: Step height 
LDV: Laser Doppler Velocimetry 
NMSE: Normalized Mean Square Error 
o: Previous layer output 
r: Radial coordinate 
R: Combustor radius 
RBF: Radial Basis Function 
U: Fluid mean axial velocity 
Uo: Upstream fluid mean axial velocity 
u’: Root Mean Square RMS of fluctuating component of 

axial velocity 
w’: Weighting factor 
W: Fluid mean tangential velocity 
w’: Root Mean Square RMS of fluctuating component of 

tangential velocity 
x: Axial coordinate 
y: Neural network output 
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