
Journal of Mechanical Engineering and Automation 2012, 2(6): 114-134 

DOI: 10.5923/j.jmea.20120206.02 

 

Parametric Study of Nonlinear Beam Vibration Resting 

on Linear Elastic Foundation 

Salih N Akour 

Sustainable and Renewable Energy Program, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, UAE 

 

Abstract  Nonlinear beam resting on linear elastic foundation and subjected to harmonic excitation is investigated. The 

beam is simply supported at both ends. Both linear and nonlinear analyses are carried out. Hamilton’s principle is utilized 

in deriv ing the governing equations. Well known forced duffing oscillator equation is obtained. The equation is analyzed 

numerically using Runk-Kutta technique. Three main  parameters are investigated: the damping coefficient, the natural 

frequency, and the coefficient of the nonlinearity. Stability reg ions for first mode analyses are unveiled. Comparison 

between the linear and the nonlinear model is presented. It is shown that first mode shape the natural frequency could be 

approximated as square root of the sum of squares of both natural frequency of the beam and the foundation. The stretching 

potential energy is proved to be responsible for generating the cubic nonlinearity in the system.  
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1. Introduction 

Beams on elastic foundations received great attention of 

researches due to its wide applicat ions in engineering. The 

model of the beam resting on a nonlinear support represents 

a large class of mechanical systems, such as, vibrating 

machines on elastic foundations, pipelines transversally 

supported, disc brake pad, shafts supported on ball, roller, 

or journal bearings, network of beams in the construction of 

floor systems for ships, buildings, bridges, submerged 

floating tunnels, railroad tracks etc. The elastic foundation 

for the beam part is supplied by the resilience of the 

adjoining portions of a continuous elastic structure. Hetenyi

[1] and Timoshenko[2] p resented an analytical solution for 

beams on elastic supports using classical differential 

equation approach, and considering several loading and 

boundary conditions. 

It is well known in engineering that a beam supported by 

discrete elastic supports spaced at equal intervals acts 

analogously to a beam on an elastic foundation and that the 

appropriateness of that analogy depends on the flexural 

rig idity of the beam as well as the stiffness and spacing of 

the supports. Ellington investigated conditions under which 

a beam on discrete elastic supports could be treated as 

equivalent to a beam on elastic foundation[3].  

Beams resting on elastic foundations have been studied 

extensively over the years due to the wide application of   
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this system in engineering. This system according to the 

literature can be d ivided at least into three categories.  

The first category is “linear beam on linear elastic founda

tion”. Example of this type can be found in references[4]-[1

5]. The applications in this category include but not limited 

to Euler - Bernoulli beam, Timoshenko beam, Winkler 

foundation, Pasternak foundation, tensionless foundation, 

single parameter or two parameter foundation, static loading, 

harmonic loading and moving loading.  

For example the Winkler foundation model represents the 

simplest form of these types of beams. In this model the 

foundation is treated essentially as an array of closely 

spaced but non-interacting springs, each having a spring 

stiffness that equals the foundation modulus divided by the 

spacing between springs. The Pasternak foundation is 

extension of Winkler foundation by introducing shear 

interaction between springs. It is assumed that the top ends 

of the springs are connected to an incompressible layer that 

resists only transverse shear deformation. Tensionless 

foundation is similar to Winkler foundation but the springs 

do not carry any tension load. 

The second category is “linear beam on nonlinear elastic 

foundation[16]-[20]. In this category the foundation is 

considered to have nonlinear stiffness. Also this type 

includes different boundary and loading conditions 

according to the engineering application.  

The third category is nonlinear beam on linear elastic 

foundation[21]-[33]. Usually the beam nonlinearity means 

large deflections. Most of the studies related to this category 

have analyzed the system either using boundary element 

method or boundary integral equation method. Similar to 

the above two categories, there is wide variety of boundary 
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and loading conditions being applied to such system 

according to the application. 

Nonlinear beam subjected to harmonic d istributed load 

resting on linear elastic foundation is investigated in this 

research. The study is carried out in the view of the 

linearized model of the system. Well known duffing 

equation is obtained using Hamilton’s princip le. Three main 

parameters are investigated: the damping coefficient, the 

natural frequency, and the coefficient o f the nonlinear term. 

The effect of these parameters on the system stability is 

unveiled. Up to the author’s knowledge, this work is not 

published in the literature. 

2. Problem Statement 

Nonlinear beam resting on elastic foundation that is 

shown in Fig. 1 is subjected to the following conditions: 

1. The beam material properties are linear.  

2. The damping () and stiffness (kf) of the foundation 

are linear. 

3. The beam is slender and pris matic.  

4. The beam is simply supported (pin-pin ends) 

5. The load applied is harmonic and distributed over the 

length of the beam. 

 

Figure 1.  schematic drawing of the beam on elastic foundation 

3. Mathematical Formulation 

3.1. Kinetic Energy 

The rotary inertia of the beam will be neglected since the 

beam is slender. 
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Where : material density, A: beam cross sectional area, L: 

beam length, w=w(x,t): beam transverse displacement (in 

y-direction). 

3.2. Potential Energy 

The potential energy due to bending can be calculated as 

the following: 
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The formulation of the due to stretching potential energy 

can be casted as the following[35]: 
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The elastic foundation is assumed to have constant linear 

spring modulus. This results in, 

𝑈𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 =
1
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The load is uniform along the length of the beam and 

varies harmonically with respect to time. Therefore,  
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Where P: amplitude of excitation and e: excitation 

frequency  

3.3. Derivation Of Governing Equation 

The lagrangian is defined as the following: 

𝐿 = 𝑇 − 𝑈𝑏𝑒𝑛𝑑 − 𝑈𝑠𝑡𝑟𝑒𝑐 ℎ − 𝑈𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 − 𝑈𝑙𝑜𝑎𝑑  
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By applying Hamilton’s princip le  
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Denote the first and the second integral by F1 and F2 

respectively. This gives 
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Integrating the first and the second term by parts with 

respect to x the result is the following equation: 
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Since w is arbitrary, the fo llowing can be concluded 

from the above equation: 
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The governing equation comes from setting the 

expression within the brackets in Equation (6) equal to zero. 

Upon carrying out the indicated differentiations, the 

governing can be rewritten as  
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It is obvious that Equation (7) is the duffing  oscillator 

equation. This equation is going to be recasted into a more 

familiar form in  the next section. The boundary and init ial 

conditions can be obtained from the remain ing terms in 

Equation (6). 

The boundary conditions at x=0 and x=L are 

Either  EIw ′′  is zero or w ′  is prescribed        (8a) 

Either  EIw ′′  is zero or w is prescribed          (8b) 

Either  
EA

2 L
(w ′ )3  is zero or w is prescribed    (8c) 

Boundary conditions  Equation (8a) correspond to end 

moments and slopes respectively. In Equation (8b), w 

corresponds to end displacement, and in Equation (8c) the 

first condition corresponds to pre-stretching. For the pinned 

ends, the boundary conditions are: 

𝑤 0 = 𝑤 𝐿 = 0 

𝐸𝐼𝑤 ′′  0 = 𝐸𝐼𝑤 ′′  𝐿 = 0 

These boundary conditions must be satisfied by the mode 

shapes of the system. This fact will be used in the following 

sections as the criteria fo r selecting the form of the mode 

shape equation. 

Finally the in itial conditions for t = t1  and t = t2  are  

Either  
𝜌𝐴

2
(𝑤) 2  is zero or 𝑤 is prescribed  

In this case, it will be assumed that the system starts from 

rest i.e. the initial d isplacement and velocity is zero.  

3.4. Discretization and linearization 

The following expression is used for w(x, t) in order to 

discretize the problem  
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For simplicity the limits of the above summat ion, the 

subscript of w, and the time dependence of w will be 

implied in the equations that follow. It is evident from 

Equation (9) that the pinned ends boundary condition 

Equation (8a) are satisfied since transverse displacements at 

0 and L are zero, and the end slopes are free (implying  zero 

bending moments at the ends). Equation (9) represents 

series summation of N modes each has time dependent 

amplitude response, 𝑤𝑛 (𝑡)  with spatial sine function. 

Substituting Equation (9) into the original integral 

expressions for the kinetic and potential energy of Equation 

(1) through Equation (5) then applying the Lagrangian and 

utilizing the orthogonality, the following equation comes 

out:  

𝐿 = 𝑇 − 𝑈 =
𝜌𝐴

4
 𝑤 2 −

𝐸𝐼𝜋4

4𝐿3
 𝑛4𝑤2 

−
𝜋4𝐴𝐸

32𝐿3
  𝑛2𝑤2 2 −

𝑘𝑓 𝐿

4
 𝑤2    (10) 

Lagrangian’s equation for each mode can be written as 

the following: 
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A simplified form of Equation (12) results after 

rearranging the coefficients and defining some new 

coefficients. The concise form and the coefficient 

definit ions are 
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Writing Equation (13) for a single mode and inserting the 

linear damping term g ives, 

w n+ 2μ𝑤 𝑛 + ω
0
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ω0
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Where µ is the damping coefficient 

This makes it clear that the above equation represent 

unforced damped duffing oscillator. Recasting Equation (14) 

into the following: 

𝑤 + 2μ𝑤  + 𝜔2𝑤 +  𝛼 𝑤3 = 0   (15) 

Where 
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2n4  1+
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In order to linearize the system for the first mode (n=1) 

the system is converted into first order ordinary differential 

equations by the following substitution 

𝑋 = 𝑤 →  𝑋 = 𝑤  
𝑌 = 𝑤 →  𝑌 = 𝑤  

Applying this to Equation (15)  

𝑋 = 𝑌 , 𝑌 = − 2μ𝑌 − 𝜔2𝑋 − 𝛼 𝑋3  

𝑌 = 0 ,  − 2μ𝑌 − 𝜔2𝑋 − 𝛼 𝑋3 = 0 

From the above equations it is obvious that (0, 0) is the 

only critical point for the system. So the equivalent linear 

system is obtained by expanding the above equation using 

Taylor series about (0, 0), so the remain ing linear terms are  

𝑋 = 𝑌 , 𝑌 = − 2μ𝑌 − 𝜔2𝑋 

The corresponding Jacobi matrix is  

 𝐽 =  
0 1

−𝜔2 − 2μ
  

So the Eigenvalues of J are  

1 ,2 = −𝜇 ±  𝜇2 − 𝜔2  


2 − 𝑝 + 𝑞 = 0, 

    𝑤ℎ𝑒𝑟𝑒   
𝑝 = −2µ      𝑎𝑛𝑑      𝑞 = 𝜔2  

Introducing  as 

 = µ2 − 𝜔2  

the following can be said about (0, 0): 

a. For 𝜇 > 0 : 
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Stable attractive node for  ≥ 0 

Stable spiral attractive node  < 0 

b. Stable center if 𝜇 = 0 ; 

c. Unstable if 𝜇 < 0. 

The general solution of the linearized unforced system is  

𝑋 𝑡 = 𝐶1𝑒
1 𝑡 + 𝐶2𝑒

2 𝑡  

𝑋 𝑡 = 𝑒−µ𝑡(𝐶1𝑒
− 𝑡 + 𝐶2𝑒

 𝑡) 

Applying the init ial conditions (0) = 𝑥0 , 𝑋 (0) = 𝑥 0  the 

constants of integration are going to be as the following: 

𝐶1 =
   − 𝜇  𝑥0 − 𝑥 0

2 
,      

     𝐶2 =
   + 𝜇  𝑥0 + 𝑥 0

2 
 

3.5. Simulation of the nonlinear system 

𝑤  + 2μ𝑤  + 𝜔2𝑤 +  𝛼 𝑤3 = 𝑃 sin⁡(𝜔𝑒  𝑡)   (16) 

where  
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
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It is obvious that the strength of the nonlinearity is 

inversely proportional to the square of the radius of gyration 

of the beam. This indicates that the nonlinearity remains 

weak as long as the beam is relat ively slender as assumed in 

this study. Finally, the frequency equation can be simplified 

to 𝜔2 = ω0
2 + ωf

2. 

The apparent natural frequency of the system  is the 

square root of the sum of the squares of the natural 

frequencies of the beam and the elastic foundation.  

The nonlinear second order ordinary d ifferential equation 

is converted into a system of first order o rdinary d ifferential 

equations. This is suitable fo r numerical study using 

Runge-Kutta Techniques.  

𝑍 = 𝑤  
𝑍 = 𝑤  = 𝑃  sin⁡(𝜔𝑒  𝑡) − 2μ𝑤  − 𝜔2𝑤 − 𝛼 𝑤3    (17) 

4. Results and Discussion  

The results for simply supported beam on elastic 

foundation are presented in Figures 2 through 6, Table 1 

and Table 2. Figures 2 through 6 present the results of the 

linearized model whereas Table 1, 2 and 3 represent the 

results of the nonlinear model. Figure 2 present the linear 

system behavior for µ>0 and ∆≥0. It is obvious that the 

system is stable attractive node. Table 1 represents sample 

phase diagrams of the studied ranges. Figure 3 shows stable 

centre for the linear system of µ=0 and ∆≥0. Figure 4 

presents stable spiral for the linear system behavior of µ>0 

and ∆<0. In Figures 2, 3 and 4 the system is  stable however 

in Figures 5 and 6 it is not stable. The behavior in both 

Figures 5 and 6 is unstable node. Table 2 shows the time 

response for those cases that are presented in Table 1, 

whereas the corresponding frequency spectra (Fast Fourier 

Transform-FFT) for those cases presented in both Tables 1 

and 2. The phase portraits and the time response are 

collected after long period of t ime to be sure that the system 

has passed the transient range. The duffing Equation (16) is 

converted into system of first order ord inary d ifferential 

equation as shown in Equation (17) and solved using 

MATLAB package by utilizing the Runga-Kutta ODE 

(Ordinary Differential Equation) solver. The equation 

which represents the system under investigation is of cubic 

nonlinearity with harmonic excitation. 

The sample results present the effect of damping when 

the system has weak, medium and strong nonlinearity for 

excitation frequencies below, at and above resonance. The 

whole study is considering weak nonlinearity that does not 

exceed α  =0.1 and those levels of weak, medium and 

strong within  that range. Only the first mode is considered 

in this study. The parameters range covered in this 

investigation are for =0.0 through 0.1, α  = 0.001 through 

0.1 and natural frequency = 0.7 through 1.4. It can be seen 

from Table 1 that when there is no damping the system is 

tending toward chaos however when little damping is 

applied the system is tending towards limit cycle.  

It is obvious that the damping and the nonlinearity are the 

most effective parameters in controlling the chaotic 

behavior of the system. As long as the radius of gyration for 

the beam under consideration is large i.e., the beam is more 

towards slender, the nonlinearity is going to be weak. This 

means that the contribution of the stretching energy to the 

behavior of the system is going to  be low. The damping 

system dissipates the oscillat ing energy and provides a 

control over the system behavior. For the linear system, as 

long as damping coefficient is positive, the transient 

response is going to decrease exponentially and the forcing 

excitation response is bounded even at resonance. For 

undamped linear system the forcing excitation response is 

not bounded and the response is increasing with time. For 

the nonlinear system, the response is tending toward chaos 

as it can be seen in Tab le 1 for =0.0. However when the 

damping increases the system is transferring from chaos to 

limit  cycle. It is obvious in Table 3 that all cases of =0.0 

have Double period, Trip le period, or, Chaotic response. 

The response of those double period cases shows amplitude 

modulation whereas those cases where their frequencies are 

very close show beating phenomenon. For the resonance 

case of no damping i.e., the excitation frequency equals the 

natural frequency, the linear system has increasing 

amplitude response whereas the nonlinear system is tending 

towards chaos with bounded amplitude. It is obvious that 

the nonlinear cases (within the range of investigation) are 

tending towards chaos as long as there is no  damping in the 

system. 
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Figure 2.  Presentation of the linear system behavior for µ>0 and ∆≥0. 

Where µ=0.7,ω=0.6,  𝑥0 = 1, 𝑣0 = 1 . The system is a stable, attractive 

node 

 

Figure 3.  Presentation of the linear system behavior for µ=0 and ∆≥0. 

Where µ=0 ω=0.6 𝑥0 = 1 𝑣0 = 1. The system is a stable center 

 

Figure 4.  Presentation of the linear system behavior for µ>0 and ∆<0. 

Where µ=0.4 ω=0.6 𝑥0 =  𝑣0 = 1, The system is a stable spiral point 

 

Figure 5.  Presentation of the linear system behavior for µ<0 and ∆≥0. 

Where µ=-0.7 ω=0.6  𝑥0 = 1 𝑣0 = 1, The system is an unstable node 

 

Figure 6.  Presentation of the linear system behavior for µ<0 and ∆<0. Where µ=-0.4 ω=0.6 x0 = 1 v0 = 1 , The system is an unstable node 
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5. Conclusions 

The behavior of nonlinear beam on elastic foundation is 

unveiled. It is found that the system is stable and 

controllable as long as the damping coefficient is non zero 

and positive. As the nonlinearity increases more damping  is 

required to prevent it from moving towards chaos. For first 

mode shape the natural frequency could be calculated as 

square root of the sum of squares of both natural frequency 

of the beam and the foundation. The strength of the 

nonlinearity is inversely proportional to the square of the 

radius of gyration, i.e. as long as the beam more towards 

slender the nonlinearity is weaker. The stretching potential 

energy is responsible for generating the cubic nonlinearity 

in the system. 
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