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Parametric Study of Nonlinear Beam Vibration Resting
on Linear Elastic Foundation
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Abstract Nonlinear beam resting on linear elastic foundation and subjected to harmonic excitation is investigated. The
beam is simply supported at both ends. Both linear and nonlinear analyses are carried out. Hamilton’s principle is utilized
in deriving the governing equations. Well known forced duffing oscillator equation is obtained. The equation is analyzed
numerically using Runk-Kutta technique. Three main parameters are investigated: the damping coefficient, the natural
frequency, and the coefficient of the nonlinearity. Stability regions for first mode analyses are unveiled. Comparison
between the linear and the nonlinear model is presented. It is shown that first mode shape the natural frequency could be
approximated as square root of the sumof squares of both natural frequency of the beamand the foundation. The stretching
potential energy is proved to be responsible for generating the cubic nonlinearity in the system.
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1. Introduction

Beams on elastic foundations received great attention of
researches due to its wide applications in engineering. The
model of the beam resting on a nonlinear support represents
a large class of mechanical systems, such as, vibrating
machines on elastic foundations, pipelines transversally
supported, disc brake pad, shafts supported on ball, roller,
or journal bearings, network of beams in the construction of
floor systems for ships, buildings, bridges, submerged
floating tunnels, railroad tracks etc. The elastic foundation
for the beam part is supplied by the resilience of the
adjoining portions of a continuous elastic structure. Hetenyi
[1] and Timoshenko[2] presented an analytical solution for
beams on elastic supports using classical differential
equation approach, and considering several loading and
boundary conditions.

It is well known in engineering that a beam supported by
discrete elastic supports spaced at equal intervals acts
analogously to a beam on an elastic foundation and that the
appropriateness of that analogy depends on the flexural
rigidity of the beam as well as the stiffness and spacing of
the supports. Ellington investigated conditions under which
a beam on discrete elastic supports could be treated as
equivalent to a beamon elastic foundation[3].

Beams resting on elastic foundations have been studied
extensively over the years due to the wide application of
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this system in engineering. This system according to the
literature can be divided at least into three categories.

The first category is “linear beamon linear elastic founda
tion”. Examp le of this type can be found in references[4]-[1
5]. The applications in this category include but not limited
to Euler - Bernoulli beam, Timoshenko beam, Winkler
foundation, Pasternak foundation, tensionless foundation,
single parameter or two parameter foundation, static loading,
harmonic loading and moving loading.

Forexample the Winkler foundation model represents the
simplest form of these types of beams. In this model the
foundation is treated essentially as an array of closely
spaced but non-interacting springs, each having a spring
stiffness that equals the foundation modulus divided by the
spacing between springs. The Pasternak foundation is
extension of Winkler foundation by introducing shear
interaction between springs. It is assumed that the top ends
of the springs are connected to an incompressible layer that
resists only transverse shear deformation. Tensionless
foundation is similar to Winkler foundation but the springs
do not carry any tension load.

The second category is “linear beam on nonlinear elastic
foundation[16]-[20]. In this category the foundation is
considered to have nonlinear stiffness. Also this type
includes different boundary and loading conditions
according to the engineering application.

The third category is nonlinear beam on linear elastic
foundation[21]-[33]. Usually the beam nonlinearity means
large deflections. Most of the studies related to this category
have analyzed the system either using boundary element
method or boundary integral equation method. Similar to
the above two categories, there is wide variety of boundary
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and loading conditions being applied to such system
according to the application.

Nonlinear beam subjected to harmonic distributed load
resting on linear elastic foundation is investigated in this
research. The study is carried out in the view of the
linearized model of the system. Well known duffing
equation is obtained using Hamilton’s principle. Three main
parameters are investigated: the damping coefficient, the
natural frequency, and the coefficient of the nonlinear term.
The effect of these parameters on the system stability is
unveiled. Up to the author’s knowledge, this work is not
published in the literature.

2. Problem Statement

Nonlinear beam resting on elastic foundation that is
shown in Fig. 1 is subjected to the following conditions:

1. The beam material properties are linear.

2. The damping () and stiffness (ki) of the foundation
are linear.

3. The beam is slender and pris matic.

4. The beam is simply supported (pin-pin ends)

5. The load applied is harmonic and distributed over the
length of the beam.
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Figure 1. schematic drawing of the beam on elastic foundation

3. Mathematical Formulation

3.1. Kinetic Energy
The rotary inertia of the beam will be neglected since the

beam is slender.
j N [ jdydzdx—%Ajo (?t'vjzdx @)

Where p: material density, A: beamcross sectionalarea, L:
beam length, w=w(x,t): beam transverse displacement (in
y-direction).

3.2. Potential Energy

The potential energy due to bending can be calculated as
the following:

et =211, (
=§ N (‘;—“2”) dx )

] dydzdx

Where
| = .[.[Azzdydz

The formulation of the due to stretching potential energy
can be casted as the following[35]:

EA (1 ow )2 z
Ustrete n = L (2 fo (E) dx) (3)
The elastic foundation is assumed to have constant linear
spring modulus. This results in,
1 rL
Ufoundation = ;fo kfwzdx (4)
The load is uniform along the length of the beam and
varies harmonically with rgspect to time. Therefore,
Uload = _Lf q(X,t).W(X,t) dx
= — [, B.sin(w,. ). w(x, t) dx (5)
Where P: amplitude of excitation and w,: excitation
frequency

3.3. Derivation Of Gowerning Equation

The lagrangian is defined as the following:
L=T- Ubend - Ustrec h — Ufoundation - Uload

1 fL pAw? — EI(w")?
“2Jy \=ksw?+ 2P wsin(w,t)
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By applying Hamilton’s principle
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Denote the first and the second integral by F1 and F2
respectively. This gives

0F 0F 0F;
f f (— Sw 4+ — 6w’ +—6w> dxdt
e Jo \NOw ow’ ow

_5(1)}:'2 =0

Integrating the first and the second term by parts with
respect to x the result is the following equation:

f2 0%Fy (pA 2\ _ 92 0 (Bl . w2
f f [_6t6w( )_axzaw” (2 (W))+
dow—kf2w2+Pw
sinwett OrAL2L(W)3 Swdxdt+0L0wpA2 w2 Swil 2d

x—f [—(ﬂ ”)Z)SW] dt +
P (o) o e

ARAE2LW3Sw0Ld =0 (6)

Since dw is arbitrary, the following can be concluded
fromthe above equation:
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The governing equation comes from setting the
expression within the brackets in Equation (6) equal to zero.
Upon carrying out the indicated differentiations, the

governing can be rewritten as
aw)?

w+aw? +kw — g —, = psiniiw, ©) @)
where
El ke E
a=—,k=— and f = —
pA pA 2pL

It is obvious that Equation (7) is the duffing oscillator
equation. This equation is going to be recasted into a more
familiar form in the next section. The boundary and initial
conditions can be obtained from the remaining terms in
Equation (6).

The boundary conditions at x=0 and x=L are

Either Elw’ is zero orw’ is prescribed (8a)
Either Elw’ is zero or w is prescribed (8b)
Either % (w")? is zero or w is prescribed  (8c)

Boundary conditions Equation (8a) correspond to end
moments and slopes respectively. In Equation (8b), w
corresponds to end displacement, and in Equation (8c) the
first condition corresponds to pre-stretching. For the pinned
ends, the boundary conditions are:

w() =wl)=0
EIw" (0) =EIw" (L) =0

These boundary conditions must be satisfied by the mode
shapes of the system. This fact will be used in the following
sections as the criteria for selecting the form of the mode
shape equation.

Finally the initial conditions for t =t, and t = t, are

A
Either p7 (w)? is zero or w is prescribed

In this case, it will be assumed that the system starts from
rest i.e. the initial displacement and velocity is zero.

3.4. Discretization and linearization

The following expression is used for w(x, t) in order to
discretize the problem
wie, ) = IV, w, Osin (") 9)
For simplicity the limits of the above summation, the
subscript of w, and the time dependence of w will be
implied in the equations that follow. It is evident from
Equation (9) that the pinned ends boundary condition
Equation (8a) are satisfied since transverse displacements at
Oand L are zero, and the end slopes are free (implying zero
bending moments at the ends). Equation (9) represents
series summation of N modes each has time dependent
amplitude response, w,(t) with spatial sine function.
Substituting Equation (9) into the original integral
expressions for the kinetic and potential energy of Equation
(1) through Equation (5) then applying the Lagrangian and
utilizing the orthogonality, the following equation comes

out:
A Elm*
L=T—U=p—zv'v2— Zn4wz
4 ¢ 413

_mAE 2. 212 KL 2
3218 [Xn?w?] . w (10)

Lagrangian’s equation for each mode can be written as
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the following:

d (oL oL
” (m) — = 0forn=1,2,.... ,N (1)

Substituting Equation (10) in Equation (11) and carry out
the differentiation yields,

pAL Elm*n* kel
7t o et
EAn*n

2
ol QV_ m*wiw, =0 (12
A simplified form of Equation (12) results after
rearranging the coefficients and defining some new
coefficients. The concise form and the coefficient
definitions are

. 2.4 Cz
Wyt o n [1+ i

2N _ m? w,fl] w, =0 (13)

4n2n2
Where
5 _ EInt
U pA A
2
('Of f 1

andn = |—

Writing Equation (13) for a single mode and inserting the
linear damping termgives,

W, + 20w, + o2n* [1+ﬁ] wo+ 30 (14)
n n 0 nt n 4112 n
Where pLis the damping coefficient
This makes it clear that the above equation represent
unforced damped duffing oscillator. Recasting Equation (14)

into the following:

W+2uw + w?w+ aw3 =0 (15)
Where
2 2.2
o3n
w? = o3n* [1+ —4] and @ = — >
n 4n

In order to linearize the system for the first mode (n=1)
the system is converted into first order ordinary differential
equations by the following substitution

X=w-> X=w
Y=w-o>Y=w
Applying this to Equation (15)
X=Y,Y=-2uY —w?X—ax®
Y=0, —2uY —w?’X—aXx® =0

From the above equations it is obvious that (0, 0) is the
only critical point for the system. So the equivalent linear
system is obtained by expanding the above equation using
Taylor series about (0, 0), so the remaining linear terms are

X=Y,Y=-2p —w?X
The corresponding Jacobi matrix is
[] = [ 0 1 ]
=10z - 2u
So the Eigenvalues of J are

N
M —ph+qg=0,
where
p=-2u and
Introducing A as

q=w

A= HZ _ 0)2
the following can be said about (0, 0):
a.For u>0:
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Stable attractive node for A > 0
Stable spiral attractive node A < 0
b. Stable center if u =0 ;
c. Unstable if u < 0.
The general solution of the linearized unforced system is
X(@©) =CeMt +C et
X(@®) = e (Cre™VB 4 ¢ eVBty
Applying the initial conditions (0) = x, , X(0) = %, the
constants of integration are going to be as the following:
_ VA - #) Xo— X
! 2VA '
c (VA + ) xo+ %,
: 2VA

3.5. Simulation of the nonlinear system

W+2uw + w’w+ aw? = Psinifw, t)  (16)
where
Cz
w? =c0%n4[l+ F]'
PR
o)g 4n?
Eln* k
2 _ 2 _
’(’)O_pAL4’n lwf_pA’
and
I
= a2

It is obvious that the strength of the nonlinearity is
inversely proportional to the square of the radius of gyration
of the beam. This indicates that the nonlinearity remains
weak as long as the beam is relatively slender as assumed in
this study. Finally, the frequency equation can be simplified
0 w? = 0 + o?.

The apparent natural frequency of the system o is the
square root of the sum of the squares of the natural
frequencies of the beamand the elastic foundation.

The nonlinear second order ordinary differential equation
is converted into a system of first order ordinary differential
equations. This is suitable for numerical study using
Runge-Kutta Techniques.

Z=w

Z =W =P sinifw, t) — 2uw — 0?w— aw?® (17)

4. Results and Discussion

The results for simply supported beam on elastic
foundation are presented in Figures 2 through 6, Table 1
and Table 2. Figures 2 through 6 present the results of the
linearized model whereas Table 1, 2 and 3 represent the
results of the nonlinear model. Figure 2 present the linear
system behavior for p>0 and A>0. It is obvious that the
system is stable attractive node. Table 1 represents sample
phase diagrams of the studied ranges. Figure 3 shows stable
centre for the linear system of p=0 and A>0. Figure 4
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presents stable spiral for the linear system behavior of | .50
and A<O0. In Figures 2, 3 and 4 the system is stable however
in Figures 5 and 6 it is not stable. The behavior in both
Figures 5 and 6 is unstable node. Table 2 shows the time
response for those cases that are presented in Table 1,
whereas the corresponding frequency spectra (Fast Fourier
Transform-FFT) for those cases presented in both Tables 1
and 2. The phase portraits and the time response are
collected after long period of time to be sure that the system
has passed the transient range. The duffing Equation (16) is
converted into system of first order ordinary differential
equation as shown in Equation (17) and solved using
MATLAB package by utilizing the Runga-Kutta ODE
(Ordinary Differential Equation) solver. The equation
which represents the system under investigation is of cubic
nonlinearity with harmonic excitation.

The sample results present the effect of damping when
the system has weak, medium and strong nonlinearity for
excitation frequencies below, at and above resonance. The
whole study is considering weak nonlinearity that does not
exceed a =0.1 and those levels of weak, medium and
strong within that range. Only the first mode is considered
in this study. The parameters range covered in this
investigation are for u=0.0 through 0.1, & = 0.001 through
0.1 and natural frequency w= 0.7 through 1.4. It can be seen
from Table 1 that when there is no damping the system is
tending toward chaos however when little damping is
applied the systemis tending towards limit cycle.

It is obvious that the damping and the nonlinearity are the
most effective parameters in controlling the chaotic
behavior of the system. As long as the radius of gyration for
the beam under consideration is large i.e., the beamis more
towards slender, the nonlinearity is going to be weak. This
means that the contribution of the stretching energy to the
behavior of the system is going to be low. The damping
system dissipates the oscillating energy and provides a
control over the system behavior. For the linear system, as
long as damping coefficient is positive, the transient
response is going to decrease exponentially and the forcing
excitation response is bounded even at resonance. For
undamped linear system the forcing excitation response is
not bounded and the response is increasing with time. For
the nonlinear system, the response is tending toward chaos
as it can be seen in Table 1 for p=0.0. However when the
damping increases the system is transferring from chaos to
limit cycle. It is obvious in Table 3 that all cases of p=0.0
have Double period, Triple period, or, Chaotic response.
The response of those double period cases shows amplitude
modulation whereas those cases where their frequencies are
very close show beating phenomenon. For the resonance
case of no damping i.e., the excitation frequency equals the
natural frequency, the linear system has increasing
amp litude response whereas the nonlinear system is tending
towards chaos with bounded amplitude. It is obvious that
the nonlinear cases (within the range of investigation) are
tending towards chaos as long as there is no damping in the
system.
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5. Conclusions

The behavior of nonlinear beam on elastic foundation is
unveiled. It is found that the system is stable and
controllable as long as the damping coefficient is non zero
and positive. As the nonlinearity increases more damping is
required to prevent it from moving towards chaos. For first
mode shape the natural frequency could be calculated as
square root of the sum of squares of both natural frequency
of the beam and the foundation. The strength of the
nonlinearity is inversely proportional to the square of the
radius of gyration, i.e. as long as the beam more towards
slender the nonlinearity is weaker. The stretching potential
energy is responsible for generating the cubic nonlinearity
in the system.
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