Simultaneous Equations as a Tool in the Spectrophotometric Analysis of Two Non-interacting Substances in a Binary Mixture: Senior Undergraduate Physical and Physical-Organic Chemistry Laboratory Experiment

R. Sanjeev¹, V. Jagannadham^{2,*}, R. Ravi², R. Veda Vrath³, Arijit Das⁴

¹Departments of Chemistry, Avanthi Degree and PG College, Hyderabad, 500029, India
²Departments of Chemistry, Osmania University, Hyderabad, 500007, India
³Departments of Chemistry, L N Gupta Evening College, Hyderabad, 500002, India
⁴Departments of Chemistry, Government Degree College, Dharman agar, Tripura, India

Abstract A simple and lucid spectrophotometric way of analyzing a mixture of two compounds is explained in this article for senior undergraduate level students. The essential feature of this method is that there should be at least 30-40 nm difference in the λ_{max} of the two compounds so that there will not be any overlap of the two individual spectra of the two compounds when recorded together in a mixture.

Keywords Analysis of Binary Mixtures, Spectrophotometric Analysis, Simultaneous Equations

1. Introduction

Interest in the analysis of drugs and some organic compounds in binary mixtures by spectrophotometric method have become seriously interesting among analytical chemists and pharmacists. As a sample some references are given at the end of the article[1-8]. In all these articles the aim of the authors was much focused on the determination of the concentration/purity of the two components in the mixture. Therefore we have tried to make the analysis much lucid and simple for a senior undergraduate laboratory experiment using the method of solving simultaneous equations[9].

2. Experimental

All the chemicals were of analytical grade. $KMnO_4$ and $K_2Cr_2O_7$ are from Aldrich (Bangalore, India). Distilled water used was from all glass still. The UV-visible spectra are recorded on UVIKON-323 (Italy) spectrophotometer. All the analytical data were stored in a personal computer and

* Corresponding author:

jagannadham1950@yahoo.com (V. Jagannadham)

Published online at http://journal.sapub.org/jlce

analyzed using KaleidaGraph software (Synergy Software, Reading, PA, USA).

3. Theory

3.1. Discussion

According to Beer-Lambert law[10]

Absorbance = $\varepsilon t C$ (1)

where ' ε ' is the molar absorptivity of any substance, 't' is the path length in cm of the cuvette through which light passes and 'C' is the concentration of the substance taken. The conditions that need to be fulfilled in order for Beer-Lambert law to be valid are also to be valid here[10]. The conditions are: The absorption spectra of the two components must be independent of each other i.e. non-interfering, the solutions must be homogeneous, the incident radiation must be monochromatic, and the radiation must not do any photochemistry or photophysics with the substances. For all practical purposes to make the situation simple let a cuvette of 1 cm path length be chosen so that equation (1) becomes

Absorbance =
$$\varepsilon$$
 C (2)

Let a mixture contain two compounds say A and B. Let the compounds A and B have their λ_{max} at λ_1 and λ_2 . Figure 1 shows the UV-Vis absorption spectrum of compound A with maximum absorbance at its λ_{max} i.e. λ_1 and a small absorbance at λ_2 which is the λ_{max} of compound B.

Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

60 R. Sanjeev *et al.*: Simultaneous Equations as a Tool in the Spectrophotometric Analysis of Two Non-interacting Substances in a Binary Mixture: Senior Undergraduate Physical and Physical-Organic Chemistry Laboratory Experiment

Let Abs_1 and Abs_2 be the absorbencies of compound A at λ_1 and λ_2 respectively. Therefore according to equation 2, the absorbencies at λ_1 and λ_2 are:

$$Abs_1 = \boldsymbol{\varepsilon}_A^1 C_A \quad \text{at } \lambda_1 \tag{3}$$

$$Abs_2 = \boldsymbol{\varepsilon}_A^2 C_A \quad \text{at } \lambda_2 \tag{4}$$

Similarly Figure 2 shows the UV-Vis absorption spectrum of compound **B** with maximum absorbance at its λ_{max} i.e. λ_2 and a small absorbance at λ_1 which is the λ_{max} of compound **A**.

Let Abs_3 and Abs_4 be the absorbencies of compound B at λ_1 and λ_2 respectively. Therefore again according to equation 2, the absorbencies at λ_1 and λ_2 are:

$$Abs_3 = \boldsymbol{\varepsilon}_B^1 C_B \quad \text{at } \lambda_1 \tag{5}$$

$$Abs_4 = \mathbf{\epsilon}_B^2 C_B \quad \text{at } \lambda_2 \tag{6}$$

Figure 3 shows the UV-Vis absorption spectrum of the mixture of compounds A and B.

Let Abs₅ be the total absorbance of the mixture of the compounds A and B at λ_1 and Abs₆ is the total absorbance of the mixture of the compounds A and B at λ_2 respectively. Therefore again according to equation 2, the total absorbancies of the two components in the mixture at λ_1 and λ_2 are:

Abs₅ =
$$\boldsymbol{\varepsilon}_{\mathbf{A}}^{\mathbf{1}} \mathbf{C}_{\mathbf{A}} + \boldsymbol{\varepsilon}_{\mathbf{B}}^{\mathbf{1}} \mathbf{C}_{\mathbf{B}}$$
 at $\lambda_{\mathbf{I}}$ (7)

Abs₆ =
$$\boldsymbol{\varepsilon}_{\mathbf{A}}^2 C_{\mathbf{A}} + \boldsymbol{\varepsilon}_{\mathbf{B}}^2 C_{\mathbf{B}}$$
 at λ_2 (8)

 ϵ_A^1 , ϵ_A^2 , ϵ_B^1 and ϵ_B^2 , the molar absorptivities are independently experimentally determinable quantities of compounds A and B using equation 2 from the concentration dependencies of absorbvity, the so called Beer-Lambert law. Abs₅ and Abs₆ are also experimentally determinable quantities from figure 3. Now equations 7 and 8 are two simultaneous equations with two unknowns in the mixture i.e. C_A and C_B . Using simple algebra one can eliminate one unknown to calculate the other. So first let C_B be eliminated. To do this let equation 7 be multiplied by ϵ_B^2 and equation 8 by ϵ_B^1 . Therefore we get

$$\boldsymbol{\varepsilon}_{\mathbf{B}}^{2} \bullet Abs_{5} = \boldsymbol{\varepsilon}_{\mathbf{B}}^{2} \boldsymbol{\varepsilon}_{\mathbf{A}}^{1} C_{\mathbf{A}} + \boldsymbol{\varepsilon}_{\mathbf{B}}^{2} \boldsymbol{\varepsilon}_{\mathbf{B}}^{1} C_{\mathbf{B}} \qquad (9)$$

$$\boldsymbol{\varepsilon}_{\mathbf{B}}^{1} \bullet \operatorname{Abs}_{6} = \boldsymbol{\varepsilon}_{\mathbf{B}}^{1} \boldsymbol{\varepsilon}_{\mathbf{A}}^{2} \operatorname{C}_{\mathbf{A}} + \boldsymbol{\varepsilon}_{\mathbf{B}}^{1} \boldsymbol{\varepsilon}_{\mathbf{B}}^{2} \operatorname{C}_{\mathbf{B}} \quad (10)$$

Subtraction of equation 10 from equation 9, the quantities $\epsilon_B^2 \epsilon_B^1 C_B$ and $\epsilon_B^1 \epsilon_B^2 C_B$ would be canceled and we get

$$\boldsymbol{\varepsilon}_{\mathbf{B}}^{2} \bullet \operatorname{Abs}_{5} - \boldsymbol{\varepsilon}_{\mathbf{B}}^{1} \bullet \operatorname{Abs}_{6} = \operatorname{C}_{\mathbf{A}} [\boldsymbol{\varepsilon}_{\mathbf{B}}^{2} \boldsymbol{\varepsilon}_{\mathbf{A}}^{1} - \boldsymbol{\varepsilon}_{\mathbf{B}}^{1} \boldsymbol{\varepsilon}_{\mathbf{A}}^{2}] \quad (11)$$

Therefore
$$C_A = \frac{\varepsilon_{\overline{B}} \cdot Abs_5 - \varepsilon_{\overline{B}} \cdot Abs_6}{[\varepsilon_B^2 \varepsilon_A^1 - \varepsilon_B^1 \varepsilon_A^2]}$$
 (12)

Knowing all the quantities on right hand side of equation 12, C_A , the concentration of the compound A in the mixture could be obtained. Substituting C_A in either the equation 9 or 10 and knowing other quantities, C_B , the concentration of the compound B in the mixture could be calculated.

4. Practice

4.1. UV-Vis Spectra of KMnO₄, K₂Cr₂O₇ and the Mixture of the Two

As a specific example for the practice in the laboratory we have performed the experiments using KMnO₄, K₂Cr₂O₇ and the mixture of the two. First we have recorded the spectra of KMnO₄ (4.0 X 10⁻⁴ M), K₂Cr₂O₇ (4.8 X 10⁻⁴ M) and the mixture (containing 2.0 X 10⁻⁴ M of KMnO₄ and 2.40 X 10⁻⁴ M of K₂Cr₂O₇) so that it is necessary to identify the wavelengths where the analysis is to be carried out. Figure 4 shows the spectra of these solutions in the range 250 nm to 650 nm. But unfortunately there was no absorbance at 525 nm for K₂Cr₂O₇ which is the λ_{max} of KMnO₄. So it was thought worthwhile to choose another range of wavelength region for the analysis. Figure 5 is the reproduction of part of the figure 4 which shows that there are appreciable absorbvities for the two samples of solutions and the mixture.

Figure 4. UV-VIS spectra of KMnO₄, K₂Cr₂O₇ and the mixture

Figure 5. UV-Vis spectra of KMnO₄ and K₂Cr₂O₇ and the mixture

From figure 5 two wavelengths were identified λ_{obs1} (372 nm) and λ_{obs2} (290 nm) at which all the individual samples and the mixture have absorbancies[11]. First it is necessary to determine the molar absorbance of KMnO₄ and K₂Cr₂O₇. These were determined at 372 nm and 290 nm for both the samples. In recording the spectra the 1 cm path length optical quartz cuvettes were used. Hence to determine the molar absorbancies (ϵ) again equation 2 is used. Figures 6 and 7 show the Beer-Lamberts law plots of KMnO₄ and K₂Cr₂O₇. From the slopes of these plots molar absorbancies (ϵ) of KMnO₄ and K₂Cr₂O₇ were obtained. They were 805 mol⁻¹ cm⁻¹ ($\epsilon_{KMnO_4}^1$) at 372 nm, 1030 mol⁻¹ cm⁻¹ ($\epsilon_{KMnO_4}^2$) at 290 nm for KMnO₄. And for K₂Cr₂O₇ they were 1652 mol⁻¹ cm⁻¹ ($\epsilon_{K_2Cr_2O_7}^1$) at 372 nm and 853 mol⁻¹ cm⁻¹ ($\epsilon_{K_2Cr_2O_7}^2$) at 290 nm.

From figure 5, for the mixture abs_{total} at 372 nm is 0.732. Therefore

$$0.732 = \varepsilon_{\rm KMn0}^{1} \bullet C_{\rm KMn0} + \varepsilon_{\rm K_2Cr_2O_7}^{1} \bullet C_{\rm K_2Cr_2O_7}$$
(13)

$$0.732 = 805 \text{ X } C_{\text{KMn0}_{4}} + 1652 \text{ X } C_{\text{K}_2 \text{Cr}_2 0_7}$$
(14)

And at 290 nm

$$0.588 = \varepsilon_{\text{KMn0}}^2 \bullet C_{\text{KMn0}} + \varepsilon_{\text{K}_2 \text{Cr}_2 0_7}^2 \bullet C_{\text{K}_2 \text{Cr}_2 0_7}$$
(15)

 $0.588 = 1030 \text{ X } C_{\text{KMn0}_4} + 853 \text{ X } C_{\text{K}_2 \text{Cr}_2 0_7}$ (16)

Therefore equations 14 and 16 are two simultaneous equations with two unknowns i.e. C_{KMn0_4} and $C_{K_2Cr_2O_7}$. First to eliminate $C_{K_2Cr_2O_7}$ equation 14 is multiplied by 853 and equation 16 is multiplied by 1652. Then one would get

 $853 X 0.732 = 853 X 805 C_{KMn0_4} + 853 X 1652 C_{K_2Cr_2O_7}$ (17)

And

$$1652 X 0.588 = 1652 X 1030 C_{KMn0_4} + 1652 X 853 C_{K_2Cr_2O_7}$$
(18)

Subtracting equation 17 from equation 18, the second terms on right hand side of the both equations would be cancelled out and rearranging for the concentration of permanganate, we get $C_{KMnO_4} = 3.38 \times 10^{-4} \text{ M}$. The concentration of permanganate actually taken in the mixture is only 2.0 X 10⁻⁴ M. The deviation in this case most probably be due to the wavelength used is not the λ_{max} of KMnO₄. And substituting this value either in Equation 13 or 14 we get $C_{K_2Cr_2O_7} = 2.8 \times 10^{-4} \text{ M}$. And the concentration of dichromate used in the mixture is 2.4 X 10⁻⁴ M which is in good agreement with analysis of the mixture.

Figure 7. Determination of molar aborvity of $K_2Cr_2O_7$

REFERENCES

- Spectrohotometric analysis of binary mixtures of urinary steroids, Joel Bitman, Jean-Pierre Rosselet, Alvira De M. Reddy, and Seymour Lieberman, J. Biol. Chem., 1957, 225, 39-52
- [2] Spectrophotometric determination of binary mixtures of pseudoephedrine with some histamine H1-receptor antagonists using derivative ratio spectrum method, Hoda Mahgoub, Azza A Gazy, Fawzi A El-Yazbi, Mahmoud A El-Sayed, Rasha M Youssef, Journal of Pharmaceutical and Biomedical Analysis, 2003, 31, Pages 801–809
- [3] Analysis of binary mixtures of losartan potassium and hydrochlorothiazide by using high performance liquid chromatography, ratio derivative spectrophotometric and compensation technique, Nevin Erk, Journal of Pharmaceutical and Biomedical Analysis, 2001, 24, Pages 603–611
- [4] Spectrophotometric determination of sulphamethoxazole and trimethoprim (co-trimoxazole) in binary mixtures and in tablets, S Balyejjusaa, RO Adomeb, and D Musokec, African Health Science, 2002, page 56-62
- [5] A Rapid Spectrophotometric Method to Resolve a Binary

Mixture of Food Colorants Riboflavine and Sunset Yellow, Mahmure UST, Turk J Chem, (2004), 28, 325-333.

- [6] Simultaneous spectrophotometric determination of amlodipine besylate and atorvastatin calcium in binary mixture, R Sahu, and Vandana B Patel, Indian J. Pharma. Chem., 2007, 69, Page 110-111
- [7] Spectrophotometric determination of binary mixtures of prednisolone with some antibiotics Abd El-Maboud I. Mohamed, Hesham Salem and Eman Maher, Thai J. Pharm. Sci. 2006, 30, 63-81
- [8] Simultaneous spectrophotometric determination of diclofenac potassium and methocarbamol in binary mixture using chemometric techniques and artificial neural networks, Ehab F. Elkady, Drug Testing and Analysis, 2011, 3, pages 228-233
- [9] http://www.teacherschoice.com.au/maths_library/algebra/alg _10.htm
- [10] J. D. J. Ingle and S. R. Crouch, Spectrochemical Analysis, Prentice Hall, New Jersey (1988)
- [11] It is not necessary to perform the analysis at the max of the samples. This is possible only when first sample has appreciable absorbance at the max of the second sample and vice-versa. If the analysis is carried out at other convenient wavelengths then one can call those wavelengths as obs.