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Abstract  We build a model of cooperative economic network to study the relations among three types of agents: 
companies, universities, and local government or federal agents. First, we study the pairwise stability and efficiency of the 
network without restricting the research capacity of member universities. Under these circumstances, a network including 
only the "best" member universities ("good" in the sense of research capabilities) is pairwise stable. The number of 
universities included in the network depends on the strength of return for member companies. However, as long as the 
minimum effective return for government is large enough, an incomplete pairwise stable network does not necessarily have 
maximum efficiency. The network exhibits "tension" between stability and efficiency. Secondly, as a natural extension, we 
study a more refined model with restrictions on research capacities of member universities. Optimization methods are used to 
study the resource allocation of member companies to universities in order to maximize the utility function of member 
companies. We are able to show that by taking into account research capacity, "weaker" universities could be included in the 
network when "stronger" universities are over their capacities and a possibly greater efficiency of the entire network could 
thus be obtained. 
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1. Introduction 
Network structures play an important role in 

organizations having strong social or economic interactions. 
Networks include the relationships among companies 
regarding with whom and how they conduct their business. 
The place of a company in the network affects not only its 
own productivity, but also its bargaining position within the 
network, which can be reflected in the structure of such 
organizations. Such networks may also include the 
relationships among relatives and friends with whom we 
share information in our daily life. A cooperative economic 
network through which relevant information is shared 
among its members can be formed by a group of companies 
that are of similar type or of supplementary type. Such 
collaborations bear important significance on the overall 
productivity of the group. In the era of global business, 
more and more cooperative networks are formed among all 
kind of business types. 

In particular, cooperative economic networks among  
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companies, universities, and local governments (CUG) have 
shown its potential power in the area of advanced 
manufacturing. Such network provides a platform for 
collaborations between manufacturers and research 
institutions and aims at delivering “production ready” 
solutions to manufacturing factories. It is a game changer in 
that it provides a faster and more affordable approach to 
turn new finding and new ideas in the academic forefront 
into cutting edge technologies that brings in business profits. 
In the US, President Obama announced a proposal to create 
a National Network for Manufacturing Innovation (NNMI) 
consisting of up to 15 Institutes for Manufacturing 
Innovation around the country. The Institutes will bring 
together industry and academia, research universities and 
community colleges, federal agencies and state 
organizations to accelerate innovations by investing in 
industrially-relevant manufacturing technologies that have 
broad applications. The President’s Budget for Fiscal Year 
2013 proposes a 1 billion, one-time investment to create the 
new National Network for Manufacturing Innovation (See 
program information at http://www.manufacturing.gov/amp 
/nnmi.html). 

It is possible to conduct a scientific study of such 
networks because of the similar regularities among different 
network structures across applications. It is necessary to 
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make such study because of the profound impact that the 
networks have nowadays. 

Regarding the network formation, there are two major 
approaches: the random graph approach and the more 
economic focused game theoretic approach. The random 
graph approach explains how links in a network are built 
either through a stochastic process where links appear 
random and satisfy certain distributions, or through specific 
algorithms, while the game theoretic approach aims at 
analysing the equilibrium networks where links are formed 
at the discretion of agents who are in control of nodes. A 
key feature of the game theory approach is that the agents 
derive utility functions from the network, and thus by 
incorporating costs and benefits into the analysis of 
networks, the question of whether a right network is formed 
in the sense of maximizing the overall societal welfare 
could be answered. Another key feature of the game theory 
approach is that the participating agents can control the 
nodes, therefore, the ultimate formation of the network 
could be predicted through (various) notions of equilibrium. 
This integrated equilibrium/stability analysis enables one to 
analyse and understand potential conflicts that arise 
between networks due to the choices of involved parties and 
networks, which are optimal from a societal perspective. In 
a nutshell, the "random" approach answers the question of 
"how" while the "game theory" approach answers the 
"why". 

In this paper we investigate the network structure of 
CUG mainly focusing on the game theoretical approach. 
We wish to find in which situations the pair-wise stability 
or efficiency of this CUG network model can be achieved. 
The study of stability and efficiency of social or economic 
networks via game theory methods has drawn a lot of 
attentions since the pioneer work of Jackson and Wolinsky 
[9], in which the tension between stability and efficiency of 
a network was established. Following this work, the 
subsequent[5],[6],[7] continue the study on the tension 
between the member incentives and the overall network 
efficiency in several contexts and under different definitions 
of network efficiency.[8] extends the above results from 
static case to dynamic process, that is, it places networks in 
a dynamic framework and studies the pairwise stability in 
this scenario. Our approach in the CUG network model is 
close to[9],[5],[6],[7]. We adapt the notion of pair-wise 
stability to the CUG model and discuss when the network 
will be stable and how to achieve the overall efficiency of 
the network. Other important literature regarding the 
formation (stability) and efficiency of network structure 
including Currarini and Morelli[4], Mutuswami and 
Winter[11], both solve the tention between individual 
member incentive and overall network efficiency under 
certain conditions (compromise among members). Slikker 
and van den Nouweland[12] more focus on the formation 
and efficiency of cooperative network while Bala and 
Goyal[1] on noncooperative network structures. 

This paper is organized as follows: In the remaining part 

of Section 1, we introduce the CUG model and propose our 
problem of interest. In Section 2, the main results on 
stability and efficiency of the CUG model is presented; In 
Section 3, a detailed proof of stability and efficiency of the 
CUG model using game theoretic approach is given; In 
Section 4, we slighted modified the assumptions in Section 
2 and 3 by incorporate the consideration that research 
institutions are not unlimited in their research capacities. In 
this case, some interesting results are obtained regarding 
maximizing overall network utility, or specifically, the 
optimal allocation of funding from business companies to 
universities. 

1.1. The Structure of CUG Model 

In a CUG model, three types of key agents are involved: 
manufacturing companies, local research universities, and 
local government. Each one of these three types of key 
agents plays a different role in the network formed among 
them. The main source of funding comes from 
manufacturing companies. Member companies pool their 
R&D money together to fund projects solving problems too 
big for one single company to tackle. Depending on 
research specialty, equipment availability, etc..., a member 
university is then selected to complete a project. The result 
of a project is then shared among member companies. By 
pooling resources and sharing results, member companies 
could benefit from reducing the risk of wasting money on a 
failed project and obtaining more advanced manufacturing 
technologies. Companies can share access to cutting-edge 
capabilities and some rare-use but key equipments. Member 
universities on the other hand, gain experiences from the 
research on project, which should help further advanced 
research. Students get new skills and trainings on 
state-of-the art equipments. Local government also has 
strong interest in supporting this kind of research centers. 
By providing tax incentives or start-up fund, the local 
government is hoping that the state-of-art technology 
developed in the center could ultimately help the member 
companies to keep and create jobs in the US. 

One interesting part of the CUG research center is that 
the companies may have different level of competition and 
the universities may be in different tiers. Will all the agents 
in the network benefit from participating in the network? 
Will the difference within the universities or companies 
stabilize the network or destabilize the network? How about 
efficiency? The model in this paper will take into 
consideration the difference. 

1.2. Goal of the Project 
The main goal of this paper is to study the network of 

relations within the CUG research center. We want to 
present some understandings of the stability of the network, 
when self-interested industries choose to form new 
cooperation with a new university or to serve existing 
cooperation. We also check the efficiency of the network 
and address the balance of the stability and efficiency. 
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1.3. Methods for Studying a Social (economic) Network 

There are basically two different approaches to study a 
social (economic) network: the random graph approach and 
the game theory approach[6]. The former largely answers 
"how" a network is formed, while the latter answers the 
"why". "Hybrid" models, the so called evolutionary network, 
(an example,[8]) could be also built. Although the 
formation of the network is a very interesting and important 
question to investigate, we here focus on the game theory 
approach on the existing CUG research centers. 

1.4. Preliminary Concepts 

Jackson introduces the concept of "pairwise stability", 
which helps to apply cooperative game theory in the 
framework of social (economic) network. A social 
(economic) network is pairwise stable if for any linked pair 
of agents in the network, neither will have an increased 
utility if either a link to one of their neighbors is severed or 
a link to an agent who is not one of their neighbors is added. 
This is a key point of distinguishing an equilibrium of a 
strategic network game from a traditional Nash equilibrium. 
It makes sense because the formation of a link in the 
network needs the consent of both parties. An interesting 
observation made by Jackson and Wolinsky[9] is that there 
is tension between stability and efficiency, which means a 
(pairwise) stable network might not generate the maximum 
total utility and a network which generates the maximum 
total utility might not be (pairwise) stable. This might be an 
interesting point to investigate for the network model we 
want to build. 

2. Model and Main Results 
2.1. Analysis/ideas on how to Construct the Utility 

Functions 

In the model to be built, agents in the network are divided 
into three groups: companies, universities and government 
or federal agents. 

Assumption 2.1: Links are formed between a company 
and a school only. No links are formed between different 
companies or different schools. 

This assumption might seem a little bit too simple at first, 
which means University A could not take part in a project 
given to University B. However, if two universities 
collaborate on one project proposed by a company, the 
project can be ideally divided into two parts and links are 
only formed between the company and the two universities. 
Thus, it makes sense not to consider links between schools. 
Simplicity of this assumption might open the door for a 
possible improvement of stability. 

Suppose there are a total of m companies and n 
universities. By Assumption 2.1, an m by n 0-1 matrix V 
could be constructed to save information on connections 
between a company and a university. If company i 
cooperates with university j, then the ij - th entry 𝒗𝒗𝒊𝒊𝒊𝒊  in V 

is 1. Otherwise, 𝒗𝒗𝒊𝒊𝒊𝒊 = 𝟎𝟎. Let 𝑽𝑽(𝒊𝒊) denote the i - th row of V 
which records the cooperations of universities with 
company i. Let 𝑽𝑽(𝒋𝒋)  denote the j - th column of V which 
records the cooperation of companies with university j. 
Superscripts and subscripts are associated with companies 
and universities respectively. 

The utility function 𝒖𝒖𝒊𝒊(𝒈𝒈)   for company i in network G: 
Utility function of a company i is determined by three 

parts: 
1. Funding to all connected schools; 
2. Tax incentives received from the government; 
3. Return from funded projects; 
An m by n matrix 𝑪𝑪 = (𝒄𝒄𝒊𝒊𝒊𝒊)𝒎𝒎×𝒏𝒏 stores the contribution 

of member companies, where 𝒄𝒄𝒊𝒊𝒊𝒊  is the contribution of 
company i to fund projects done by university j. Let 𝑪𝑪(𝒊𝒊) 
be the i -th row of C. Then, 

Cost of company i is [𝑪𝑪(𝒊𝒊)]𝑻𝑻 ∙ 𝑽𝑽(𝒊𝒊) 
Let an m by 1 vector 𝑻𝑻 = (𝒕𝒕𝒊𝒊)𝒎𝒎×𝟏𝟏 be the tax incentive 

given by the government. Then, 
Tax incentive received by company i is 𝒕𝒕𝒊𝒊 
As mentioned, member universities might belong to 

different tiers. In the model, we will use an n by 1 vector 
𝑷𝑷 = (𝒑𝒑𝒋𝒋)𝒏𝒏×𝟏𝟏 to reflect this fact. 𝒑𝒑𝒋𝒋 is a number between 0 
and 1 representing the success rate of projects done by a 
member school j. 𝒑𝒑𝒋𝒋 may also represent the cooperation 
preference of the companies to school j. Depending on the 
research strength of a member school, 𝒑𝒑𝒋𝒋 's should have 
different values. 

To model the return for company i from projects done by 
school j, we have the following assumption: 

Assumption 2.2: The return for company i from 
successfully completed projects done by school j is 
modelled by 𝒓𝒓𝒑𝒑𝒋𝒋, where r is a constant uniform for all 
companies and all schools. 

We assume that r is uniform for all companies, because 
the result of a project is shared among all member 
companies. Then, 

Return of company i from funded projects is 𝒓𝒓𝒓𝒓 ∙ 𝑽𝑽(𝒊𝒊) 
ssemble all three parts together, the utility function for 
company i in network G is given by 

𝒖𝒖𝒊𝒊(𝒈𝒈) = 𝒓𝒓𝒓𝒓 ∙ 𝑽𝑽(𝒊𝒊) + 𝒕𝒕𝒊𝒊 − 𝑪𝑪(𝒊𝒊) ∙ [𝑽𝑽(𝒊𝒊)]𝑻𝑻 
• The utility function 𝒖𝒖𝒋𝒋(𝒈𝒈) for university j in network 

G: 
Utility function for a school j is determined by two parts: 
1. Funding received from all connected companies; 
2. Costs generated from participating in activities 

conducted in the center; 
For school j, the funding it receives is the sum of all 𝒄𝒄𝒊𝒊𝒊𝒊's 

from all connected companies. The cost for school j could 
be modeled by an n by 1 vector: 𝑫𝑫 = (𝒅𝒅𝒊𝒊𝒊𝒊)𝒏𝒏×𝟏𝟏 

Let 𝑪𝑪(𝒋𝒋)  be the j -th column of C. Then, the utility 
function 𝒖𝒖𝒋𝒋(𝒈𝒈) for university j in network G is given by 

𝒖𝒖𝒋𝒋(𝒈𝒈) = [𝑪𝑪(𝒋𝒋)]𝑻𝑻 ∙ 𝑽𝑽(𝒋𝒋) − 𝒅𝒅𝒋𝒋 

• The utility function 𝒖𝒖𝒍𝒍(𝒈𝒈) for government in network 
G: 
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Utility function for the government is determined by two 
parts: 

1. Return from funded projects; 
2. Tax incentives giving to the member companies; 
The return of government from successfully completed 

projects could be measured by a positive constant a, 
uniform for all schools and all companies. This constant, 
however, should be different from the constant r, since a 
should model the broader impacts to the entire society such 
as newly created jobs, taxes from the companies who bring 
profits back to local etc. 

Let 𝟏𝟏��⃗  be a 1 by m vector where any entry of 𝟏𝟏��⃗  is a 
constant 1. Then, the utility function 𝒖𝒖𝒍𝒍(𝒈𝒈)  for 
government in network G could be modeled as 

𝒖𝒖𝒍𝒍(𝒈𝒈) = 𝒂𝒂𝟏𝟏��⃗ ∙ 𝑽𝑽 ∙ 𝑷𝑷 − 𝟏𝟏��⃗ ∙ 𝑻𝑻 = 𝒂𝒂��𝒗𝒗𝒊𝒊𝒊𝒊𝒑𝒑𝒊𝒊 −�𝒕𝒕𝒊𝒊

𝒎𝒎

𝒊𝒊=𝟏𝟏

𝒏𝒏

𝒋𝒋=𝟏𝟏

𝒎𝒎

𝒊𝒊=𝟏𝟏

 

which is the difference between the total return received by 
the government from the funded projects and the total tax 
incentives the government distributed to the member 
companies. 
• Value function 𝒗𝒗(𝒈𝒈): 
The efficiency function which accounts for the total 

utility of this network is given by 

𝒗𝒗(𝒈𝒈) = �𝒖𝒖𝒊𝒊(𝒈𝒈) + �𝒖𝒖𝒋𝒋(𝒈𝒈) + 𝒖𝒖𝒍𝒍(𝒈𝒈)
𝒏𝒏

𝒋𝒋=𝟏𝟏

𝒎𝒎

𝒊𝒊=𝟏𝟏

= (𝒓𝒓 + 𝒂𝒂)��𝒗𝒗𝒊𝒊𝒊𝒊𝒑𝒑𝒋𝒋

𝒏𝒏

𝒋𝒋=𝟏𝟏

𝒎𝒎

𝒊𝒊=𝟏𝟏

−�𝒅𝒅𝒋𝒋

𝒏𝒏

𝒋𝒋=𝟏𝟏

= (𝒓𝒓 + 𝒂𝒂)𝟏𝟏��⃗ ⋅ 𝑽𝑽 ⋅ 𝑷𝑷 − 𝟏𝟏��⃗ ⋅ 𝑫𝑫 

which is the sum of the total benefits received by the 
government and member companies minus the net cost for 
companies to fund the projects. Note that the tax incentives 
terms are cancelled out. 

2.2. Main Results 

Before we give our main results, we provide two 
definitions on pairwise stability and efficiency of a network. 
Let 𝒖𝒖𝒊𝒊(𝒈𝒈) denote the utility that agent 𝒊𝒊 receives under 
the network 𝒈𝒈, inclusive of all costs and benefits. 

Definition 2.1. A network 𝒈𝒈 is pairwise stable if 
For all 𝒊𝒊𝒊𝒊 ∈ 𝒈𝒈, 𝒖𝒖𝒊𝒊(𝒈𝒈) ≥ 𝒖𝒖𝒊𝒊(𝒈𝒈 − 𝒊𝒊𝒊𝒊) and 𝒖𝒖𝒋𝒋(𝒈𝒈) ≥

𝒖𝒖𝒋𝒋(𝒈𝒈 − 𝒊𝒊𝒊𝒊), and 
For all 𝒊𝒊𝒊𝒊 ∉ 𝒈𝒈, if 𝒖𝒖𝒊𝒊(𝒈𝒈 + 𝒊𝒊𝒊𝒊) > 𝒖𝒖𝒊𝒊(𝒈𝒈), then 

𝒖𝒖𝒋𝒋(𝒈𝒈 + 𝒊𝒊𝒊𝒊) < 𝒖𝒖𝒋𝒋(𝒈𝒈). 
Definition 2.2. A network 𝒈𝒈  is efficient if 𝒗𝒗(𝒈𝒈)  is 

maximized relative to 𝒗𝒗 among all possible networks that 
could be formed. 

We want to investigate the following problems for the 
model mentioned in the previous section: 
• Which networks are pairwise stable? 
• Does a pairwise stable network also have maximum 

efficiency? 
To obtain useful observations to these two problems, in

addition to Assumption 2.1-2.2, we assume: 
Assumption 2.3. Let 𝒏𝒏𝒋𝒋(𝒈𝒈) denote the number of 

companies that school j connects to and let 𝒏𝒏𝒊𝒊(𝒈𝒈) denote 
the number of schools that company i connects to. 
• 𝒄𝒄𝒊𝒊𝒊𝒊 is a constant c>0, for all 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎,𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒏𝒏. 
• 𝒅𝒅𝒋𝒋 = 𝒅𝒅 × 𝒏𝒏𝒋𝒋(𝒈𝒈) for all 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒏𝒏. 
• 𝒕𝒕𝒊𝒊 = 𝒕𝒕 × 𝒏𝒏𝒊𝒊(𝒈𝒈) where 𝒕𝒕 > 0  is a constant. 
• c>t+d. 
The last assumption in Assumption 2.3 is very natural, 

which asserts that the contribution a member company 
makes in maintaining the relation with a member school 
should outweigh the tax incentives it receives from the 
government and the cost for a member school to maintain a 
relation with that company combined. This avoids any 
arbitrage opportunity in the network. 

Without loss of generality, the school can be rearranged 
as its research strength. So school 1 is the strongest, while 
school n is the weakest in terms of research ability. 

Assumption 2.4. 𝒑𝒑𝟏𝟏 > 𝒑𝒑𝟐𝟐 > ⋯ > 𝒑𝒑𝒏𝒏. 
In our model, the contribution made by member 

companies (measured by c), the tax incentives (measured by 
t), the success rate P (measured by 𝒑𝒑𝒋𝒋) and the cost of 
member schools (measured by d) could all be 
predetermined. The major factors uncontrollable in the 
model are the return for member companies (measured by r) 
and for the government (measured by a) from funded 
projects. 

With regard to the pairwise stability problem, we will 
show below that a member company has the ultimate power 
to determine if it wants to connect to a member school. 
Therefore, the pairwise stability result depends mainly on 
the strength of r. We will show that if r is large, a complete 
network with each member company connecting to all 
member schools is pairwise stable. As r becomes smaller 
than certain thresholds determined by c, t and 𝒑𝒑𝒋𝒋  , however, 
in order to form a pairwise stable network, the weakest 
schools will be excluded from the network. A member 
company maximizes its utility in a pairwise stable network 
by maintaining connections with the strongest schools. 

A subsequent problem to investigate is if total utility of 
the entire network (efficiency) is maximized for a pairwise 
stable network. We discover that if the smallest effective 
return, 𝒑𝒑𝒏𝒏𝒂𝒂  for government from the weakest member 
school exceeds the cost d, then a complete network always 
obtain maximum efficiency. Therefore, only if r is large 
enough to support a complete pairwise stable network, an 
incomplete pairwise stable network does not have the 
maximum efficiency. 

A natural question to ask next is how to lower the 
threshold for r to obtain a complete pairwise stable network 
which also has a maximum efficiency. Our result shows that 
a possible way is through government regulation. The 
government could encourage the member company to keep 
a connection with weaker schools by increasing tax 
incentives it offers. 

We need the following preliminary definitions to state 
our main results: 
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Definition 2.3. We will use 𝑮𝑮𝒏𝒏 to denote the network 
where the relation matrix V has entries specified as 

𝒗𝒗𝒊𝒊𝒊𝒊 = 𝟏𝟏 for 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎, 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒏𝒏 
Definition 2.4. We will use 𝑮𝑮𝒉𝒉 (𝟏𝟏 ≤ 𝒉𝒉 ≤ 𝒏𝒏 − 𝟏𝟏 ) to 

denote the network where the relation matrix V have entries 
specified as  
𝒗𝒗𝒊𝒊𝒊𝒊 = 𝟏𝟏 for 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎, 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒉𝒉 
𝒗𝒗𝒊𝒊𝒊𝒊 = 𝟎𝟎 for 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎, 𝒉𝒉 + 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒏𝒏 
Definition 2.5. We will use 𝑮𝑮𝟎𝟎 to denote the network 

where the relation matrix V have entries specified as 
𝒗𝒗𝒊𝒊𝒊𝒊 = 𝟎𝟎 for 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎, 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒏𝒏 
Thus we have the following main results based on the 

game theoretical approach: 
Theorem 2.4. (Pairwise stability) 
1. If   𝒓𝒓 > (𝑐𝑐 − 𝑡𝑡)/𝒑𝒑𝒏𝒏 , then network 𝑮𝑮𝒏𝒏  is pairwise 

stable. 
2. If 𝒄𝒄−𝒕𝒕

𝒑𝒑𝒉𝒉−𝟏𝟏
< 𝑟𝑟 < 𝒄𝒄−𝒕𝒕

𝒑𝒑𝒉𝒉
 for 𝟐𝟐 ≤ 𝒉𝒉 ≤ 𝒏𝒏, 

then network 𝑮𝑮𝒉𝒉−𝟏𝟏 is pairwise stable. 
3. If 𝒓𝒓 < (𝑐𝑐 − 𝑡𝑡)/𝒑𝒑𝟏𝟏 , then network 𝑮𝑮𝟎𝟎  is pairwise 

stable. 
Theorem 2.5. (Efficiency) 
1. If 𝑮𝑮𝒉𝒉 (𝟎𝟎 ≤ 𝒉𝒉 ≤ 𝒏𝒏) is pairwise stable, then severing a 

link from 𝑮𝑮𝒉𝒉 always results in a smaller efficiency of the 
entire network. 

2. If 𝒂𝒂 > 𝑑𝑑/𝒑𝒑𝒏𝒏, then the complete network 𝑮𝑮𝒏𝒏 has the 
maximum efficiency among all networks that could be 
possibly formed. 

Remark 1. A direct implication of this result is that a 
pairwise stable network does not have maximum efficiency 
unless it is a complete one. This is in line with the 
phenomenon of "tension between stability and efficiency" 
often observed on a social network. In Section 4, we gives a 
detailed analysis of such “tension” phenomenon under a 
further assumption that the capacity for a university’s 
research resource is not unlimited. This is a natural 
assumption. It implies a university cannot accept unlimited 
projects from member companies in the network because 
this will drastically reduce the university’s performance on 
each project. 

There are essentially two ways to reduce the lower bound 
in Theorem 2.5: decreasing d or increasing 𝒑𝒑𝒏𝒏. The first 
criterion requires that the cost for member schools to 
participate is not too big, while the second criterion 
demands a higher success rate from all member schools. If 
either of these two criterion is applicable, then it is more 
likely that the maximum efficiency is obtained when a 
complete network is formed. 

3. Proof of Main Results 
3.1. Proof of Theorem 2.4 

First of all, we claim that the member companies have to 
carefully determine whether a link shall be added or served 
in the network in order to maximize their utility functions 

but the member universities always want to serve more 
links with companies. 

Under Assumption 2.3, the utility function of school j is 
𝒖𝒖𝒋𝒋(𝒈𝒈) = 𝒏𝒏𝒋𝒋(𝒈𝒈) ∙ (𝒄𝒄 − 𝒅𝒅). Since 𝒄𝒄 − 𝒅𝒅 > 0, (this is because 
c>t+d>d by last bullet of Assumption 2.3), a school always 
want to build relations to increasing its utility with as many 
companies as possible. On the other hand, the utility of a 
company does not always increase if new relations to a 
school are added. A company will benefit from connecting 
to more member schools only if the return r is large enough. 
This could be seen by analyzing the utility function of a 
company: 

1. If company i has a relation with each school, then 

𝒖𝒖𝒊𝒊(𝒈𝒈𝒏𝒏) = �� 𝒑𝒑𝒋𝒋
𝒏𝒏

𝒋𝒋=𝟏𝟏
� ∙ 𝒓𝒓 + 𝒏𝒏(𝒕𝒕 − 𝒄𝒄) 

2. Suppose school k is not connected with company i. But 
all the other schools are connected with company i. Then, 

𝒖𝒖𝒊𝒊(𝒈𝒈𝒏𝒏−𝟏𝟏) = �� 𝒑𝒑𝒋𝒋
𝒏𝒏

𝒋𝒋=𝟏𝟏,𝒋𝒋≠𝒌𝒌
� ∙ 𝒓𝒓 + (𝒏𝒏 − 𝟏𝟏)(𝒕𝒕 − 𝒄𝒄) 

There could be a total of n different utilities for a 
company if it is connected with n-1 schools. In this 
circumstance, the maximum utility for a company is 
obtained if the unconnected school is the weakest school, 
school n (recalling that 𝒑𝒑𝟏𝟏 > 𝒑𝒑𝟐𝟐 > ⋯ > 𝒑𝒑𝒏𝒏): 

𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒏𝒏−𝟏𝟏) = �� 𝒑𝒑𝒋𝒋
𝒏𝒏−𝟏𝟏

𝒋𝒋=𝟏𝟏
� ∙ 𝒓𝒓 + (𝒏𝒏 − 𝟏𝟏)(𝒕𝒕 − 𝒄𝒄) 

3. Similarly, let 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒏𝒏−𝒌𝒌) be the maximum utility for 
a company if it is connected to n-k schools. Then, in 
general, 

𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒏𝒏−𝒌𝒌) = �� 𝒑𝒑𝒋𝒋
𝒏𝒏−𝒌𝒌

𝒋𝒋=𝟏𝟏
� ∙ 𝒓𝒓 + (𝒏𝒏 − 𝟏𝟏)(𝒕𝒕 − 𝒄𝒄) 

for 𝟎𝟎 ≤ 𝒌𝒌 ≤ 𝒏𝒏. 
Let's prove the first part of the main theorem. If 

𝒓𝒓 > (𝑐𝑐 − 𝑡𝑡)/𝒑𝒑𝒏𝒏, then 𝒑𝒑𝒏𝒏 ∙ 𝒓𝒓 + 𝒕𝒕 − 𝒄𝒄 > 0, which leads to 
𝒑𝒑𝒉𝒉 ∙ 𝒓𝒓 + 𝒕𝒕 − 𝒄𝒄 > 0 for all 𝟎𝟎 ≤ 𝒉𝒉 ≤ 𝒏𝒏, since 𝒑𝒑𝒏𝒏 < 𝒑𝒑𝒏𝒏−𝟏𝟏 <
⋯𝒑𝒑𝟏𝟏. But  

𝒑𝒑𝒉𝒉 ∙ 𝒓𝒓 + 𝒕𝒕 − 𝒄𝒄 = 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒉𝒉) − 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒉𝒉−𝟏𝟏) 
for all 𝟏𝟏 ≤ 𝒉𝒉 ≤ 𝒏𝒏, therefore, 

𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒏𝒏) > 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒏𝒏−𝟏𝟏) > ⋯𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝟎𝟎) 
This implies that as long as 𝒓𝒓 > (𝑐𝑐 − 𝑡𝑡)/𝒑𝒑𝒏𝒏, the overall 

maximum utility of a company is obtained when it is 
connected to all schools. So the complete network in this 
case should be pairwise stable. 

In general, if (𝒄𝒄 − 𝒕𝒕)/𝒑𝒑𝒉𝒉−𝟏𝟏 <  r < (𝑐𝑐 − 𝑡𝑡)/𝒑𝒑𝒉𝒉 , 
𝟐𝟐 ≤ 𝒉𝒉 ≤ 𝒏𝒏, then 
𝒑𝒑𝒋𝒋 ∙ 𝒓𝒓 + 𝒕𝒕 − 𝒄𝒄 > 0 for 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒉𝒉 − 𝟏𝟏 

while 
𝒑𝒑𝒋𝒋 ∙ 𝒓𝒓 + 𝒕𝒕 − 𝒄𝒄 < 0 for 𝒉𝒉 ≤ 𝒋𝒋 ≤ 𝒏𝒏 
Therefore,  

𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒉𝒉−𝟏𝟏) > 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒉𝒉) > ⋯ > 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒏𝒏) 
and 
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𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒉𝒉−𝟏𝟏) > 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝒉𝒉−𝟐𝟐) > ⋯ > 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊 (𝒈𝒈𝟎𝟎) 
Thus, the overall maximum utility of a company is 

obtained when it is connected to the strongest h-1 schools 
but disconnected with the rest of the schools. Therefore, if 
(𝒄𝒄 − 𝒕𝒕)/𝒑𝒑𝒉𝒉−𝟏𝟏 <  r < (𝑐𝑐 − 𝑡𝑡)/𝒑𝒑𝒉𝒉 , 𝟐𝟐 ≤ 𝒉𝒉 ≤ 𝒏𝒏 , a network 
with the weakest n-h+1 schools excluded is pairwise stable. 

3.2. Proof of Theorem 2.5 

In this section, we study the efficiency (total utility) of the 
network. The efficiency function v(g) for a network G could 
be calculated as 

𝒗𝒗(𝒈𝒈) = (𝒓𝒓 + 𝒂𝒂)𝟏𝟏��⃗ ∙ 𝑽𝑽 ∙ 𝑷𝑷 − 𝟏𝟏��⃗ ∙ 𝑫𝑫 
Under Assumption 2.3, the efficiency function for the 

pairwise stable networks 𝑮𝑮𝒉𝒉 (𝟎𝟎 ≤ 𝒉𝒉 ≤ 𝒏𝒏) is given by 

𝒗𝒗(𝒈𝒈𝒉𝒉) = 𝒎𝒎�� 𝒑𝒑𝒋𝒋
𝒉𝒉

𝒋𝒋=𝟏𝟏
� ∙ (𝒓𝒓 + 𝒂𝒂) − (𝒎𝒎𝒎𝒎)𝒅𝒅 

• Our first observation is that severing any link in a 
pairwise stable network 𝑮𝑮𝒉𝒉 ( 𝟎𝟎 ≤ 𝒉𝒉 ≤ 𝒏𝒏 ) will result in 
smaller efficiency. 

If a link between company i (for any 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎) and 
school j (for 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒉𝒉) (note schools h+1, ..., n are not 
connected to any company in the pairwise stable network 𝑮𝑮𝒉𝒉) 
is severed, then efficiency of the network is reduced by an 
amount of 𝒑𝒑𝒋𝒋(𝒓𝒓 + 𝒂𝒂) − 𝒅𝒅: 

𝒗𝒗(𝒈𝒈𝒉𝒉) − 𝒗𝒗(𝒈𝒈𝒉𝒉 − 𝒊𝒊𝒊𝒊) = 𝒑𝒑𝒋𝒋(𝒓𝒓 + 𝒂𝒂) − 𝒅𝒅 
for 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎, 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒉𝒉. 

On the other hand, by Theorem 2.4, 𝑮𝑮𝒉𝒉 is pairwise stable 
if (𝒄𝒄 − 𝒕𝒕)/𝒑𝒑𝒉𝒉−𝟏𝟏 <  r < (𝑐𝑐 − 𝑡𝑡)/𝒑𝒑𝒉𝒉 , 𝟐𝟐 ≤ 𝒉𝒉 ≤ 𝒏𝒏 , which 
yields 

𝒑𝒑𝒉𝒉 ∙ 𝒓𝒓 > 𝑐𝑐 − 𝑡𝑡 > 𝑑𝑑 
Thus, 𝒑𝒑𝒉𝒉 ∙ 𝒓𝒓 − 𝒅𝒅 > 0. But 𝒑𝒑𝒉𝒉 is the smallest for all 𝒑𝒑𝒋𝒋's 

where 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒉𝒉, hence 
𝒑𝒑𝒋𝒋 ∙ 𝒓𝒓 − 𝒅𝒅 > 0 

This in turn implies that when 𝑮𝑮𝒉𝒉  is pairwise stable, 
regardless of the value the return constant for the 
government a (which we assume is positive) might take, 

𝒗𝒗(𝒈𝒈𝒉𝒉) − 𝒗𝒗(𝒈𝒈𝒉𝒉 − 𝒊𝒊𝒊𝒊) > 0 
for 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎, 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒉𝒉. 

Therefore, severing a link from a pairwise stable network 
𝑮𝑮𝒉𝒉 will reduce the efficiency. 
• The interesting question to ask now is to find a network 

which has the maximum efficiency. 
To answer this question, we have to examine 

 𝒗𝒗(𝒈𝒈 + 𝒊𝒊𝒊𝒊) − 𝒗𝒗(𝒈𝒈) = 𝒑𝒑𝒋𝒋(𝒓𝒓 + 𝒂𝒂) − 𝒅𝒅 
where ij is not a link in network G. 

Obviously, if a is large enough, 𝒂𝒂 > 𝑑𝑑/𝒑𝒑𝒏𝒏, then for all 
𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒏𝒏, 𝒑𝒑𝒋𝒋𝒂𝒂 − 𝒅𝒅 > 𝒑𝒑𝒏𝒏𝒂𝒂 − 𝒅𝒅 > 0, thus, 

 𝒗𝒗(𝒈𝒈 + 𝒊𝒊𝒊𝒊) − 𝒗𝒗(𝒈𝒈) > 0 
for 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝒎𝒎, 𝒉𝒉 + 𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒏𝒏. 

Hence, adding a link to any network G will increase the 
efficiency if a has a lower bound 𝒅𝒅/𝒑𝒑𝒏𝒏.  

4. Optimization of Companies' Utility 
Function-Another Perspective  

Since companies are leading to form the network in this 
CUG model, a more detailed study of the company utility 
function is necessary to establish a more in-depth 
investigation of a member company's incentive and behavior 
when allocating their resources to the member schools in the 
research center network. 

Based on the analysis in Section 2 and taking 
consideration of the restrictions of universities' research 
capacity, an a slightly modified model is constructed to study 
the resource allocation of the companies to universities. In 
order to maximize the utility of a company, it is not always 
true that companies only choose to collaborate with the best 
university. 

4.1. Analysis and Setting 

Assumption 4.1: Links are formed between companies 
and schools only. No links are formed between different 
companies or different schools. 

This assumption is identical with Assumption 2.1. 
Assumption 4.2: The return for company i from 

successfully completed projects done by school j is modeled 
by 𝑟𝑟𝑝𝑝𝑗𝑗 𝑐𝑐𝑖𝑖𝑖𝑖 , where r is a constant uniform for all companies 
and all schools. 

Here in this section, the definition of return is slightly 
different from Section 2. The "return'' in Assumption 4.2 
includes both the profit from the successful projects by 
universities and the revenue from government's tax incentive 
policy for funding the non-profit institutions, as we assume 
the government return is proportional to the company's 
investment to universities. We make such modification 
because our focus in this section is on what happens if 
research projects from member companies are overflowing 
the research capacity of a university. 

Assumption 4.3: Different universities belong to different 
tiers. We use a concept "research capacity'' to describe the 
fact. One measurement of the research capacity given by 
Section 2 is the "success rate'', we keep using it here. 
Furthermore, we assume that the research capacity of each 
university is not unlimited, and represent the research 
capacity of university j by 𝑅𝑅𝑗𝑗 . This 𝑅𝑅𝑗𝑗  is described by the 
standard upper funding limit that university j can accept. 
This premise is reasonable. Though universities want to 
receive as much funding as possible, their amount of 
workforce (the faculty) are limited, which means the amount 
of projects they can work on at one time are limited. We use 
𝑅𝑅𝑗𝑗 , the standard upper funding limit to describe the standard 
amount of projects university j can hold at one time while 
maintaining its maximum research "success rate'' 𝑝𝑝𝑗𝑗0. And 
without loss of generality, we assume 

𝑝𝑝10 > 𝑝𝑝20 > ⋯ > 𝑝𝑝𝑛𝑛0             (1) 

On the other hand, we assume companies are rational 
enough in evaluating the budget of the proposed project, 
which only depends on the size and the difficulty of the 
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project. The total amount of funds that university j receives is 
𝐹𝐹𝑗𝑗 . Now we define the following function: 

𝑠𝑠𝑗𝑗 = �
0,                if   𝐹𝐹𝑗𝑗 ≤ 𝑅𝑅𝑗𝑗
𝐹𝐹𝑗𝑗 − 𝑅𝑅𝑗𝑗 ,    if  𝐹𝐹𝑗𝑗 > 𝑅𝑅𝑗𝑗

�             (2) 

𝑠𝑠𝑗𝑗  describes the excessive research loads university j has 
received. 𝑠𝑠𝑗𝑗 > 0 is quite natural as we assume universities 
want to receive as much funding as possible. They will still 
try to get funds if the projects are "a little bit overflow''. The 
sacrifice will be lowering the success rate 𝑝𝑝𝑗𝑗0 to 𝑝𝑝𝑗𝑗  (The 
university will tries to avoid this situation as it will harm 
their research reputation). 𝑝𝑝𝑗𝑗  is the success rate when 
university j has funds 𝐹𝐹𝑗𝑗  and 0 < 𝑝𝑝𝑗𝑗 < 𝑝𝑝𝑗𝑗0. 

We assume the decrease of 𝑝𝑝𝑗𝑗  is proportional to the size 
of 𝑠𝑠𝑗𝑗 . Thus 

𝜕𝜕𝑝𝑝𝑗𝑗
𝜕𝜕𝑠𝑠𝑗𝑗

= −𝜏𝜏𝑗𝑗 𝑠𝑠𝑗𝑗                   (3) 

where 𝜏𝜏𝑗𝑗  is positive constant and is another indication of the 
research capacity of university j. A smaller 𝜏𝜏𝑗𝑗  indicates a 
better stability of university j when encountering 
overflowing research loads. Without loss of generality, we 
assume 

𝜏𝜏1 < 𝜏𝜏2 < ⋯ < 𝜏𝜏𝑛𝑛                  (4) 
From (3), we get the following representation for 𝑝𝑝𝑗𝑗 : 

𝑝𝑝𝑗𝑗 = 𝑝𝑝𝑗𝑗0 −
𝜏𝜏
2
𝑠𝑠𝑗𝑗2 = 𝑝𝑝𝑗𝑗0 −

𝜏𝜏
2
�𝐹𝐹𝑗𝑗 − 𝑅𝑅𝑗𝑗 �

2
       (5) 

4.2. Modified Company Utility Function 

The return of project 𝑐𝑐𝑖𝑖𝑖𝑖  is 𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖 𝑝𝑝𝑗𝑗 , thus the utility 
function for company i is the sum of returns of all projects 
with universities. 

𝑢𝑢𝑖𝑖 = ∑ �−𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖 [ 𝑝𝑝𝑗𝑗0 −
𝜏𝜏
2
𝑠𝑠𝑗𝑗2]�𝑛𝑛

𝑗𝑗=1        (6) 

The above utility function is subjected to the following 
constraints: 
• Budget constraint:  

� 𝑐𝑐𝑖𝑖𝑖𝑖
𝑛𝑛

𝑗𝑗=1
≤ 𝐶𝐶𝑖𝑖  

• Success rate: 0 < 𝑝𝑝𝑗𝑗 < 𝑝𝑝𝑗𝑗0  this means that the 
university will be rational enough that they will stop to 
accept any projects if 𝑠𝑠𝑗𝑗  is big enough. 

Assumption 4.4: 𝑟𝑟𝑝𝑝𝑗𝑗0 > 1 
Remark 2. This assumption is natural, since companies  

expect positive return, which means that their investment 
brings them profit, not deficit. 

Without loss of generality, we also assume that companies 
want to maximize their utilities by cooperating with 
universities that have better research reputations with better 
success rate. They will always consider providing funds to 
universities in the following priority order (1,2,⋯ , 𝑛𝑛). If a 
better university can not accept their projects (we simply 
assume that the only reason is that the university has enough 
projects for its research resource), they will consider the next 
until one university is available. 

4.3. Optimization of the Utility Function 
1. Case 1: 𝑠𝑠1 = 0 . This condition means that the top 

university still has enough research resource and is open to 
companies' project. This implies 

𝑠𝑠1 = 𝑠𝑠2 = ⋯ = 𝑠𝑠𝑛𝑛                   (7) 
by Remark 2. Then the representation for 𝑢𝑢𝑖𝑖  is simplified as 

𝑢𝑢𝑖𝑖 = ∑ �−𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖 𝑝𝑝𝑗𝑗0�𝑛𝑛
𝑗𝑗=1               (8) 

This is very close to the utility function provided in 
Section 2. And the analysis of the companies' incentive and 
behavior of distributing their budget strictly follows the 
version in Section 2 and Section 3. The game theory results 
apply to this case. That is companies will always consider 
cooperating with the best school in the network as it will give 
them maximum investment returns. 

2. Case 2: 𝑠𝑠1 > 0. This condition means that at least one 
of the university is "standardly full'', though it is possible that 
it still available and open to new projects. In this scenario, we 
are interested in the following optimization problem: How 
should companies distribute their budgets among 
universities in the network of the research center to get the 
maximum return. Converting this problem into mathematical 
language, it is to find the vector (𝑐𝑐𝑖𝑖1, 𝑐𝑐𝑖𝑖2,⋯ 𝑐𝑐𝑖𝑖𝑖𝑖 )  that 
maximizes the utility function 𝑢𝑢𝑖𝑖 . Our method for this 
problem is based on the maximum theorem of calculus, i.e. 
the derivatives of the utility function 𝑢𝑢𝑖𝑖  should be zero. 

Now we suppose that university 1 to l (1 ≤ 𝑙𝑙 ≤ 𝑛𝑛) is 
standardly full in its research capacity but still open to new 
projects. The excess of research capacity is 
(𝑠𝑠1,⋯ 𝑠𝑠𝑙𝑙 , 0,0,⋯0). When company i make a cooperation 
with universities in the network by allocation its resource 
(𝑐𝑐𝑖𝑖1, 𝑐𝑐𝑖𝑖2,⋯ 𝑐𝑐𝑖𝑖𝑖𝑖 ), the utility function becomes 

𝑢𝑢𝑖𝑖 = � �−𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖 [𝑝𝑝𝑗𝑗0 −
𝜏𝜏
2

(𝑠𝑠𝑗𝑗 + 𝑐𝑐𝑖𝑖𝑖𝑖 )2]�
𝑙𝑙

𝑗𝑗=1
 

+∑ �−𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖 𝑝𝑝𝑗𝑗0�𝑛𝑛
𝑗𝑗=𝑙𝑙+1         (9) 

First derivative: If 1 ≤ 𝑘𝑘 ≤ 𝑙𝑙, 

   𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

= 𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

+ ∑ 𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗≠𝑘𝑘  

 = −1 + 𝑟𝑟 �𝑝𝑝𝑘𝑘0 −
𝜏𝜏𝑘𝑘
2

(𝑠𝑠𝑘𝑘 + 𝑐𝑐𝑖𝑖𝑖𝑖 )2� − 𝜏𝜏𝑘𝑘𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖 (𝑠𝑠𝑘𝑘 + 𝑐𝑐𝑖𝑖𝑖𝑖 ) 

= −1 − 𝜏𝜏𝑘𝑘𝑟𝑟
2

(𝑠𝑠𝑘𝑘 + 𝑐𝑐𝑖𝑖𝑖𝑖 )2 + 𝑟𝑟[𝑝𝑝𝑘𝑘0 − 𝜏𝜏𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖 (𝑠𝑠𝑘𝑘 + 𝑐𝑐𝑖𝑖𝑖𝑖 )](10) 

If 𝑙𝑙 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛, 
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

= 𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

= −1 + 𝑟𝑟𝑝𝑝0           (11) 

Second derivative: If 1 ≤ 𝑘𝑘 ≤ 𝑙𝑙, 
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕2𝑐𝑐𝑖𝑖𝑖𝑖

= −𝑟𝑟𝜏𝜏𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖 − 2𝑟𝑟𝜏𝜏𝑘𝑘(𝑠𝑠𝑘𝑘 + 𝑐𝑐𝑖𝑖𝑖𝑖 ) < 0    (12) 

The above inequality is because we assume r, 𝜏𝜏𝑘𝑘 , 𝑐𝑐𝑖𝑖𝑖𝑖  
positive and 𝑠𝑠𝑘𝑘  nonnegative for all 𝑘𝑘. 

If 𝑙𝑙 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛, 
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕2𝑐𝑐𝑖𝑖𝑖𝑖

= 0                   (13) 
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The second derivative of 𝑢𝑢𝑖𝑖  shows that 𝑢𝑢𝑖𝑖  is concave 
down. Thus, a maximum can be obtained and the solution of 
this optimization problem is the solution of the following 
system of equations: 

⎩
⎪
⎨

⎪
⎧
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖1

= 0
⋯
⋯

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

= 0

�                    (14) 

which is equivalent to the system of equations:  

�
−1 − 𝜏𝜏1𝑟𝑟

2
(𝑠𝑠1 + 𝑐𝑐𝑖𝑖1)2 + 𝑟𝑟[𝑝𝑝10 − 𝜏𝜏1𝑐𝑐𝑖𝑖1(𝑠𝑠1 + 𝑐𝑐𝑖𝑖1)] = 0

… … …
−1 − 𝜏𝜏𝑙𝑙𝑟𝑟

2
(𝑠𝑠𝑙𝑙 + 𝑐𝑐𝑖𝑖𝑖𝑖 )2 + 𝑟𝑟[𝑝𝑝𝑙𝑙0 − 𝜏𝜏𝑙𝑙𝑐𝑐𝑖𝑖𝑖𝑖 (𝑠𝑠𝑙𝑙 + 𝑐𝑐𝑖𝑖𝑖𝑖 )] = 0

� (15) 

In the above equation system, we ignore the part 

(
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖,𝑙𝑙+1

,⋯
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖,𝑛𝑛

) 

This is because for 𝑙𝑙 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛, equation (11) together 
with Assumption 4.4 indicate that 

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

= −1 + 𝑟𝑟𝑝𝑝0 > 0 for 𝑙𝑙 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛   (16) 

This implied the equation 
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

= 0 for 𝑙𝑙 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛        (17) 

will not have a solution. 
However, (16) shows that the return 𝑢𝑢𝑖𝑖  will increase as 

long as the funding for university k (𝑙𝑙 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛), 𝑐𝑐𝑖𝑖𝑖𝑖 , 
increases. Therefore, the company's strategy to receive the 
maximum return is to fund the first l universities according to 
the solution of equation system (15). If their budget is more 
than ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙

𝑘𝑘=1 , then the rest should all go to 𝑐𝑐𝑖𝑖,𝑙𝑙+1 , since 
university l+1 has the best success rate among the next n-l 
universities. 

Now we need to prove the existence of the solution of the 
system of equations (15). Therefore we can show that the 
maximum does exist and it can be obtained. Notice that each 
equation in (15) is a second order polynomial and the 
equations are independent to each other. So the existence is 
guaranteed by the quadratic formula. 

Simplifying k-th equation in (15), we get that 
3𝑟𝑟𝜏𝜏𝑘𝑘

2
𝑐𝑐𝑖𝑖𝑖𝑖2 + 2𝑟𝑟𝜏𝜏𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑝𝑝𝑘𝑘0 + 1 + 𝑟𝑟𝜏𝜏𝑘𝑘

𝑠𝑠𝑘𝑘
2 = 0    (18) 

The discriminant ∆= 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎  of the quadratic 
polynomial is 

∆= (2𝑟𝑟𝜏𝜏𝑘𝑘𝑠𝑠𝑘𝑘)2 − 4 ∙
3𝑟𝑟𝜏𝜏𝑘𝑘

2
(−𝑟𝑟𝑝𝑝𝑘𝑘0 + 1 +

𝑟𝑟𝜏𝜏𝑘𝑘
2
𝑠𝑠𝑘𝑘2) 

= 𝑟𝑟2𝜏𝜏𝑘𝑘2𝑠𝑠𝑘𝑘2 + 6𝑟𝑟𝜏𝜏𝑘𝑘(𝑟𝑟𝑝𝑝𝑘𝑘0 − 1) > 0               (19) 
and the axis of symmetry is 

− 𝑏𝑏
2𝑎𝑎

= − 2𝑟𝑟𝜏𝜏𝑘𝑘𝑠𝑠𝑘𝑘
3𝑟𝑟𝜏𝜏𝑘𝑘

= − 2𝑠𝑠𝑘𝑘
3

< 0            (20) 

(19) and (20) show that (18) has two roots and at least one 
root is negative. If the other root of equation (18) is positive, 
it guarantees the existence of solutions for the system of 
equations (15). This requires the following inequality. 

−𝑟𝑟𝑝𝑝𝑘𝑘0 + 1 + 𝑟𝑟𝜏𝜏𝑘𝑘
2
𝑠𝑠𝑘𝑘2 < 0             (21) 

Keeping in mind that 𝑠𝑠𝑘𝑘  is positive and solving the above 
inequality, we get that 

𝑠𝑠𝑘𝑘 < �2𝑟𝑟𝑝𝑝𝑘𝑘0−2
𝑟𝑟𝜏𝜏𝑘𝑘

                  (22) 

This is a sufficient condition to guarantee that (15) has a 
solution under Assumption 4.1-4.4 

(𝑐𝑐𝑖𝑖1,⋯ , 𝑐𝑐𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖,𝑙𝑙+1, 0⋯ ,0) 
which provides an optimum plan of resource allocation for 
company i to maximize its utility. 

Since equation (18) has only two roots and one of them is 
negative, the postive root 𝑐𝑐𝑖𝑖𝑖𝑖  is also the unique solution to 
equation (18). This implies (15) has a uique solution under 
the condition (22). 

So we have proved the following theorem: 
Theorem 4.1: Suppose 
1. Company i have some budgets to fund some projects 

with universities. 
2. University 1 to l have excessive research load while 

university l+1 to n have less research load than their standard 
research capacity. (1 ≤ 𝑙𝑙 ≤ 𝑛𝑛). 

3. Companies allocate their funds among the universities 
in the network in order to maximize their utilities. 

Then company i will find a unique maximum return 𝑢𝑢𝑖𝑖  if 
the excessive research load 𝑠𝑠𝑘𝑘 , 1 ≤ 𝑘𝑘 ≤ 𝑙𝑙 satisfies 

𝑠𝑠𝑘𝑘2 < 2𝑟𝑟𝑝𝑝𝑘𝑘0−2
𝑟𝑟𝜏𝜏𝑘𝑘

,   1 ≤ 𝑘𝑘 ≤ 𝑙𝑙              (23) 

Remark 3: From (23), we can get the following inequality: 
1
2
𝜏𝜏𝑘𝑘𝑠𝑠𝑘𝑘2 < 𝑝𝑝𝑘𝑘0 −

1
𝑟𝑟
                 (24) 

Compare the left hand side of the above inequality and 
equation (5), we get 

𝑝𝑝𝑘𝑘0 − 𝑝𝑝𝑘𝑘 < 𝑝𝑝𝑘𝑘0 −
1
𝑟𝑟
               (25) 

which yields, 
𝑟𝑟𝑝𝑝𝑘𝑘 > 1                    (26) 

This result indicates a necessary and sufficient condition 
to guarantee that the utility function for company i will have 
a maximum solution when, taking the universities' research 
capacity into consideration, all university can still give a 
positive return if they are funded by company i for some 
project. 

Furthermore, we have the following theorem regarding 
companies' choosing the right project partner: 

Theorem 4.2: Under the same assumptions in Theorem 
4.1 and the following condition 

𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑘𝑘 ≥
𝑝𝑝𝑘𝑘0
𝜏𝜏𝑘𝑘

 for some k, 1 ≤ 𝑘𝑘 ≤ 𝑙𝑙       (27) 

companies should stop funding new projects with university 
k but consider the next university: university k+1. 

Remark 4: Theorem 4.2 gives a necessary condition of 
giving up cooperating with university k for projects. It shows 
that when companies consider cooperating with universities, 
they should not only consider the reputations, but also their 
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research capacity. Nevertheless, the research capacity of a 
university is closely related to its reputation. But once a 
university has enough projects, the company should take this 
into their considerations; qualitatively check whether their 
investment gives them positive revenue return. (27) can be 
converted to 

𝑐𝑐𝑖𝑖𝑖𝑖 ≥
𝑝𝑝𝑘𝑘0
𝜏𝜏𝑘𝑘𝑠𝑠𝑘𝑘

                    (28) 

For the right hand side of (28), the numerator can be 
interpreted as the maximum change in the sucess rate of 
university k, the denominator is the "changing rate'' of 
success rate of university k. Thus, (28) means company i can 
make a quick estimate of the ratio of maximum sucess rate 
change and change rate for university k, and if they make to 
have a profit, their project investment should not exceed the 
value of this ratio. 

Proof: From (10) we see that if 
𝑟𝑟(𝑝𝑝𝑘𝑘0 − 𝜏𝜏𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖 ) ≤ 0              (29) 

(10) will be negative permanently, which means 𝑢𝑢𝑖𝑖  will 
decrease as long as 𝑐𝑐𝑖𝑖𝑖𝑖  increases. Practically, the company's 
revenue will decrease if  they continue to give university k 
money, and they definitely want to avoid this situation.  

On the other hand, (29) is equivalent to 
𝑝𝑝𝑘𝑘0 ≤ 𝜏𝜏𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖 𝑠𝑠𝑘𝑘                   (30) 

From here we get the condition (27). 

5. Summary and Open Problems 
In this paper, we studied a cooperative model representing 

the relation network in a consortium among commercial 
companies, universities and local government. By game 
theoretical approach, we have shown that under the 
simplified assumptions that links could be formed only 
between a company and a university and that returns from a 
completed project to a member company and local 
government are depending on the university research 
strength, a pairwise stable network could be formed between 
the strongest universities (strongest in terms of the success 
rate of completing a project) and member companies. The 
higher the return to a company, the more complete the 
network is. Unfortunately, the total utility of the entire 
network might not be maximized over such pairwise stable 
network unless it is a complete one, which, in return, 
demands high return.  

A further investigation on the impact of an institution's 
capacity of research resources on the link formations 
between member companies and member universities is 
presented in Section 4. This supplements the results of game 
theoretical approach in Section 2 and 3 by showing that both 
research strength and research capacity are important factors 
for a university's performance on a project. Taking the 
university's research capacity into account, a network 
consisting only the links from member companies to the few 
top research universities on one hand could be pairwise 

stable, but on the other hand, might not be strategically wise 
in getting the overall optimal return among member 
companies. This result reinforces the aforementioned claim 
in Section 2 and Section 3 that a stable network composed of 
only the links from member companies to the strongest 
member universities could not yield the maximized overall 
utility of the network, or simply, there is tension between 
stability and efficiency in this CUG network. One solution to 
such an issue might be strengthening the role of government 
agency in coordinating the cooperation between member 
companies and member universities to achieve to better 
return yields for companies. Thus they have more incentives 
to form a complete network. 

Some open questions that are worth to be investigated 
include: can a complete pairwise stable network be obtained 
without high return if cooperation among universities is 
permitted in the network, or/and if the return to the company 
is a function of a university’s research capabilities? More 
advanced tools need to be employed if the assumptions are 
loosened.  
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