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Abstract  In the given article we consider a problem of a meeting of fuzzy linear objects and we receive a necessary 
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1. Introduction 
The first research of the differential equations with 

set-valued right-hand side has been fulfilled by A. 
Marchaud[1,2] and S.C. Zaremba[3]. In the early sixties, T. 
Wazewski[4,5], A.F. Filippov[6] had been obtained 
fundamental results about existence and properties of 
solutions of the differential equations with set-valued 
right-hand side (differential inclusions). Connection deriving 
between differential inclusions and optimum control 
problems was one of the most important outcomes of these 
papers. These outcomes became impulse for development of 
the theory of differential inclusions[7-9]. 

Considering of the differential inclusions required to study 
properties of set-valued maps, i.e. an elaboration the whole 
tool of mathematical analysis for set-valued maps[7,10,11]. 

In work[12] annotate of an R-solution for differential 
inclusion is introduced as an absolutely continuous 
set-valued maps. Various problems for the R-solution theory 
were considered in[8,13]. The basic idea for a development 
of an equation for R-solutions (integral funnels) is contained 
in[14]. 

In the eighties the last century the control theory in the 
conditions of uncertainty began to be formed. The control 
differential equations with set of initial conditions[15-17], 
control set differential equations[18-21] and the control 
differential inclusions[21-32] are used in the given theory for 
exposition of dynamic processes. 

In recent years, the fuzzy set theory introduced by 
Zadeh[33] has emerged as an interesting and fascinating 
branch of pure and applied sciences. The applications of 
fuzzy set theory can be found in many branches of regional, 
p h ys i ca l ,  ma t he ma t i ca l ,  d i f fe r e n t i a l  eq ua t io ns ,  
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andengineering sciences. Recently there have been new 
advancesin the theory of fuzzy differential equations[34-47] 
and inclusions[48-53] as well as in the theory of control 
fuzzy differential equations[54-57] and inclusions[57-59]. 

In this article we consider a problem of a meeting of fuzzy 
linear objects and we receive a necessary condition of an 
optimality. 

2. The Fundamental Definitions and 
Designations 

Let ( ) ( )( )n ncomp R conv R  be a set of all nonempty (convex) 
compact subsets from the space nR , 

( ) { }
0

, min ( ) , ( )r rr
h A B S A B S B A

≥
= ⊃ ⊃  

be Hausdorff distance between sets A  and B , ( )rS A  is r
-neighborhood of set A . 

Let nE  be the set of all : [0,1]nu R →  such that u satisfies 
the following conditions: 
• u  is normal, that is, there exists an 0

nx R∈  such that 
0( ) 1u x = ; 

• u  is fuzzy convex, that is,  

( ) { }(1 ) min ( ), ( )u x y u x u yλ λ+ − ≥  

for any , nx y R∈  and 0 1λ≤ ≤ ; 
• u  is upper semicontinuous, 

• [ ] { }0 : ( ) 0nu cl x R u x= ∈ >  is compact. 
If nEu∈ , then u  is called a fuzzy number, and nE  is 

said to be a fuzzy number space. For 10 ≤<α , denote  

[ ] { }: ( )nu x R u xα α= ∈ ≥ . 

Then from 1)-4), it follows that the α -level set 
[ ] ( )nu conv Rα ∈  for all 0 1α≤ ≤ . 

Let θ  be the fuzzy mapping defined by ( ) 0xθ =  if 
0x ≠  and ( )0 1θ = . 

Define : [0, )n nD E E× → ∞  by the relation  
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[ ] [ ]( )
0 1

( , ) sup ,D u v h u vα α

α≤ ≤
= , 

where h  is the Hausdorff metric defined in ( )ncomp R . 
Then D  is a metric in nE . Further we know that[60]: 

1. ( ),nE D  is a complete metric space, 
2. ( ) ( ), ,D u w v w D u v+ + =  for all , , nu v w E∈ , 
3. ( ) ( ), ,D u v D u vλ λ λ=  for all , nu v E∈  and Rλ ∈ . 
Definition 1.[36] A mapping :[0, ] nF T E→  is 

measurable if for all [0,1]α ∈  the set-valued map 
( ):[0, ] nF T conv Rα →  defined by [ ]( ) ( )F t F t α

α =  is 
Lebesgue measurable. 

Definition 2.[36] A mapping :[0, ] nF T E→  is said to be 
integrably bounded if there is an integrable function ( )h t  
such that ( ) ( )x t h t≤  for every 0( ) ( )x t F t∈ . 

Definition 3.[36] The integral of a fuzzy mapping 

[ ]: 0, nF T E→  is defined levelwise by 
0

( )
T

F t dt
α

 
= 

 
∫   

0

( )
T

F t dtα∫ . The set ( )
0

T

F t dtα∫  of all 
0

( )
T

f t dt∫  such that  

:[0, ] nf T R→  is a measurable selection for 
( ):[0, ] nF T conv Rα →  for all [ ]0,1α ∈ . 

Definition 4.[36] A measurable and integrably bounded 
mapping [ ]: 0, nF T E→  is said to be integrable over [ ]0,T  

if 
0

( )
T

nF t dt E∈∫ . 

Note that if [ ]: 0, nF T E→  is measurable and integrably 
bounded, then F  is integrable. Further if [ ]: 0, nF T E→  is 
continuous, then it is integrable. 

Now we consider following control differential equations 
with the fuzzy parameter  

( ) 0, , , , (0) ,x f t x w v x x= =            (1) 

where x  means dx
dt ; t R+∈  is the time; nx R∈  is the  

state; mw R∈  is the control; kv V E∈ ∈  is the fuzzy 
parameter; : n m k nf R R R R R+ × × × → .  

Let : ( )mW R conv R+ →  be the measurable set-valued map. 
Definition 5.The set LW  of all measurable single-valued 

branches of the set-valued map ( )W ⋅  is the set of the 
admissible controls. 

Further we consider following control fuzzy differential 
inclusions 

0( , , ), (0) ,x F t x w x x∈ =             (2) 
where : n m nF R R R E+ × × →  is the fuzzy map such that 
( ) ( ), , , , ,F t x w f t x w V≡ . 
Obviously, the control fuzzy differential inclusion (2) 

turns into the ordinary fuzzy differential inclusion 

( ) 0, , (0) ,x t x x x∈Φ =                (3) 

if the control ( )w LW⋅ ∈  is fixed and ( ) ( ), , , ( )t x F t x w tΦ ≡  . 
If right-hand side of the fuzzy differential inclusion (3) 

satisfies some conditions (for example look[12]) then the 

fuzzy differential inclusions (3) has the fuzzy R-solution. 
Let ( )X t  denotes the fuzzy R-solution of the differential 

inclusion (3), then ( , )X t w  denotes the fuzzy R-solution of 
the control differential inclusion (2) for the fixed ( )w LW⋅ ∈ . 

Definition 6.The set ( ) ( ){ }( ) , :Y T X T w w LW= ⋅ ∈  be 
called the attainable set of the fuzzy system (2). 

3. The Some Properties of the Fuzzy 
R-solution and Time-optimal Problem 

3.1. The Some Properties of the Fuzzy R-solution 

Further in the given paper, we consider following control 
linear fuzzy differential inclusions 

0( ) ( , ), (0) ,x A t x G t w x x∈ + =          (4) 

where ( )A t  is ( )n n× -dimensional matrix-valued 
function; : m nG R R E+ × →  is the fuzzy map. 

In this section, we consider the some properties of the 
fuzzy R-solution of the control fuzzy differential inclusion 
(4). 

Let the following condition is true. 
Condition A: 
1) ( )A ⋅  is measurable on [ ]0,T ; 
2) The norm ( )A t  of the matrix ( )A t  is integrable on 

[ ]0,T ; 

3) The set-valued map [ ] ( )0: , mW t T conv R→  is 

measurable on [ ]0,T ; 

4) The fuzzy map [ ]: 0, m nG T R E× →  satisfies the 
conditions  

a) measurable in t ; 
b) continuous in w ; 
1) There exist ( ) [ ]2 0,v L T⋅ ∈  and ( ) [ ]2 0,l L T⋅ ∈  such that 

( ) ( )( ( ),0) , ( ( , ), )h W t v t D G t w l tθ≤ ≤  

almost everywhere on [ ]0,T  and all ( )w W t∈ . 

2) The set ( ) ( ) ( ){ }, ( ) :Q t G t w t w LW= ⋅ ∈  is compact and 
convex for almost every [ ]0,t T∈ , i.e. ( ) ( )nQ t conv E∈ . 

Theorem 1[61]. Let the condition A is true. 
Then for every ( )w LW⋅ ∈  there exists the fuzzy 

R-solution ( ),X w⋅  such that  
1) the fuzzy map ( ),X w⋅  has form 

( ) ( ) ( ) 1
0

0

, ( ) ( , ( ))
t

X t w t x t s G s w s ds−= Φ + Φ Φ∫ , 

where [ ]0,t T∈ ; ( )tΦ  is Cauchy matrix of the differential 
equation ( )x A t x= ; 

2) ( , ) nX t w E∈  for every [ ]0,t T∈ ; 

3) the fuzzy map ( ),X w⋅  is the absolutely continuous 
fuzzy map on [ ]0,T . 

Theorem 2[61]. Let the condition A is true. 
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Then the attainable set ( )Y T  is compact and convex. 
Remark. Properties of space ( )ncomp E  have been 

considered in work[62]. 

3.2. Time-optimal Problem 

Consider the following time-optimal problem: it is 
necessary to find the minimal time T  and the control 

( )*w LW⋅ ∈  such that the fuzzy R-solution of system (4) 
satisfy of the condition: 

( )*, kX T w S ≠ ∅ ,                (5) 

where n
k ES ∈  is the fuzzy terminal set.  

Theorem 3[61]. (necessary optimal condition for the 
time-optimal problem (4),(5)). Let the condition A is true 
and the pair ( )( )⋅*, wT  is optimality of the control problem 
(4),(5). 

Then there exists the vector-function ( )⋅ψ , which is the 
solution of the system 

( ) 1( ) , (0)TA t T Sψ ψ ψ= − ∈  

such that  

1) [ ]1* 1

( )
([ ( , )] , ( )) max ( ( , ) , ( ))

w W t
C G t w t C G t w tψ ψ

∈
=  

almost everywhere on [ ]0,T ; 

2) ( ) [ ]( )1 1*( , ) , ( ) , ( )kC X T w T C S Tψ ψ  = − −  , 

where ( ) ( )1 1, max , ,n
n np P

C P p p Rψ ψ ψ ψ
∈

= + + ∈  ( )nRconvP∈ . 

4. The Problem of Meeting of N of Fuzzy 
Objects 

Further, we consider N linear control differential 
inclusions with fuzzy parameters 

( ) ( ) ( ) 0, , 0i i i i i i ix A t x G t w x x∈ + = , 1,i N= ,    (6) 

where i nx R∈ ; t R+∈ ; ( ) :i n nA t R R ×
+ →  is a matrix nn× ; 

( ), : iki i nG t w R R E+ × →  is a fuzzy map; iki iw W R∈ ⊂  is a 
control parameter; 0

i nx R∈ . 
Consider the following optimal control problem (problem 

A): it is necessary to find the minimal time *T  and controls 
( )*

i iw LW⋅ ∈ , 1,i N=  such that the fuzzy R-solutions of  
system (6) satisfy of the condition: 

( )*
*

1

,
N

i i

i

X T w
=

≠ ∅


.              (7) 

Definition 6. The collection ( ) ( )( )* 1
* *, ,..., NT w w⋅ ⋅  is said to 

be optimality if 

( )*
*

1

,
N

i i

i

X T w
=

≠ ∅


 and ( )
1

,
N

i i

i

X wτ
=

= ∅


 

for every *0 Tτ≤ <  and all ( )i iw LW⋅ ∈ , 1,i N= . 
Further we will reduce necessary conditions of an 

optimality of collection ( ) ( )( )* 1
* *, ,..., NT w w⋅ ⋅  for meeting 

problem. 
Theorem 4. Let the following conditions hold for every 
{ }1,...,i N∈ : 

1) ( )iA ⋅  is measurable on *0,T   ; 
2) The norm ( )iA t  of the matrix ( )iA t  is integrable on 

*0,T   ; 
3) The set-valued map [ ] ( )0: , ikiW t T conv R→  is 

measurable on *0,T   ; 

4) The fuzzy map *: 0, iki nG T R E  × →   satisfies the 
conditions  

a) measurable in t ; 
b) continuous in iw ; 
5) There exist ( ) *

2 0,iv L T ⋅ ∈    and ( ) [ ]*
2 ,0 TLli ∈⋅  such 

that 

( ) ( )( ( ),0) , ( ( , ), )i i i i ih W t v t D G t w l tθ≤ ≤  

almost everywhere on *0,T    and all ( )i iw W t∈ . 

6) The set ( ) ( ) ( ){ }, ( ) :i i i i iQ t G t w t w LW= ⋅ ∈  is compact 

and convex for almost every *0,t T ∈   , i.e. ( ) ( )i nQ t conv E∈   

and the pair ( ) ( )( )* 1
* *, ,..., NT w w⋅ ⋅  is optimality for the 

problem (6),(7). 
Then there exist { }1,...,j N∈  and solution ( )jψ ⋅  of the 

differential equation ( )( )Tj j jA tψ ψ= − , ( )* 1j Tψ =  such 
that 

1) 
11

*
( )

([ ( , )] , ( )) max ( ( , ) , ( ))
j j

j j j j j j

w W t
C G t w t C G t w tψ ψ

∈
 =    

almost everywhere on *0,T   ; 

2) ( ) ( )
1

1* * * *
* *

1

( , ) , ( ) , , ( ) .
N

j j j i i j

i

C X T w T C X T w Tψ ψ
=

     = − −      


 

Proof. We associate with the control fuzzy system (6) the 
following control fuzzy system 

0( ) ( , ), (0) ,x A t x G t w x x∈ + =            (8) 
where ( )1,..., Nx x x= , i nx R∈ , 1,i N= , ( )1,..., Nw w w= , 

ikiw R∈ , 1,i N= ,  

( )

( )
( )

( )

1

2

0 ... 0
0 ... 0

0 0 ... N

A t
A t

A t

A t

 
 
 =  
  
 

   

, 

( )

( )
( )

( )

1 1

2 2

,

,
,

,N N

G t C w

G t C w
G t w

G t C w

 
 
 
 =
 
 
 
 



, 

1

1

0 ... 0
0 0 ... 0

0 0 ... 0

I

C

 
 
 =  
  
 

   

, …, 

0 0 0
0 0

0 0 0
0 0

N

N

C

I

 
 
 =
 
 
 



 





, 

iI  is a unit matix ( )i ik k× , 
1

N
i

i

W W
=

=∏ , ( )1
0 0 0,...,

TNx x x= . 
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Under the conditions of theorem, we have conditions 

1) ( )A ⋅  is measurable on *0,T   ; 

2) The norm ( )A t  of the matrix ( )A t  is integrable on 
*0,T   ; 

3) The set-valued map ( )1 ...*
0: , Nk kW t T conv R × ×  →   is 

measurable on *0,T   ; 

4) The fuzzy map [ ] 1 ...: 0, Nk k NnG T R E× ×× →  satisfies the 
conditions  

a) measurable in t ; 
b) continuous in w ; 

5) There exist ( ) ( )
1,

sup i

i N
v t v t

=
=  and ( ) ( )

1,
sup i

i N
l t l t

=
=  such 

that 

( ) ( )( ( ),0) , ( ( , ), )h W t v t D G t w l tθ≤ ≤  

almost everywhere on *0,T    and all ( )w W t∈ . 

The set ( ) ( ) ( ){ }, ( ) :Q t G t w t w LW= ⋅ ∈  is compact and 

convex for almost every *0,t T ∈   , i.e. ( ) ( )NnQ t conv E∈ . 

Let fuzzy set Nn
KS E∈  such that 

[ ] { }1| ... , , 1,Nn N i n
KS x R x x x R i Nα = ∈ = = ∈ =  for all 

[ ]0,1α ∈ . 
Now we consider the following optimal control problem 

(problem B): it is necessary to find the minimal time *T  
and the control *w LW∈  such that the fuzzy R-solution of 
system (8) satisfies of the condition ( )* *, KX T w S∩ ≠ ∅ . 

Using the results of[32], we know that the problem A and 
the problem B is the equivalent, i.e. the collection 

( ) ( )( )* 1
* *, ,..., NT w w⋅ ⋅  is optimality for problem A if and only if 

the pair ( )( )* *,T w ⋅  is optimality for problem B, where 
( ) ( ) ( )( )* 1

* *,..., Nw w w⋅ = ⋅ ⋅ . 
Hence and by the theorem 3, it follows that there exists 

solution ( )ψ ⋅  of the differential equation 
( )*

1( ) , (0)TA t T Sψ ψ ψ= − ∈  such that 

1) [ ]1* 1

( )
([ ( , )] , ( )) max ( ( , ) , ( ))

w W t
C G t w t C G t w tψ ψ

∈
=  

almost everywhere on [ ]T,0 ; 

2) ( ) [ ]( )1 1*( , ) , ( ) , ( )kC X T w T C S Tψ ψ  = − −  . 

From here theorem statements follow. The theorem is 
proved. 

5. Conclusions 
It is obviously possible to consider other problem of a 
−α meeting: it is necessary to find the minimal time *Tα  

and the controls ( )i iw LWα ⋅ ∈ , 1,i N=  such that the fuzzy 
R-solutions of  system (6) satisfy of the condition: 

( )
1

,
N

i i

i

X T w
α

α α
=

  ≠ ∅ 

. 

In this case, necessary conditions will look like: there exist 
{ }1,...,j N∈  and solution ( )jψ ⋅  of the differential equation 

( )( )Tj j jA tψ ψ= − , ( )* 1j Tαψ =  such that 

1) 
( )

([ ( , )] , ( )) max ( ( , ) , ( ))
j j

j j j j j j

w W t
C G t w t C G t w t

αα
α ψ ψ

∈
 =    

almost everywhere on *0,Tα   ; 

2) ( ) ( )* * * *

1

( , ) , ( ) , , ( ) .
N

j j j i i j

i

C X T w T C X T w T
α

α

α α α α α αψ ψ
=

     = − −      


 

Finally, we note that * * * *
0 1T T T Tα≤ ≤ =  as  

( ) ( ) ( )0 1
, , ,i i i i i iX t w X t w X t w

α
     ⊂ ⊂       

for every 0t ≥  and ( )i iw LW⋅ ∈ , 1,i N= . 
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