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1. Introduction 

It is well known from the papers by R. J. Glauber [1, 2] 

published in 1963, founding the modern quantum optics, that 

optical processes having completely quantum behaviour, i.e. 

having no classical analogue, are described by means of 

quasidistributions, e.g. using the weighting function in the 

diagonal Glauber-Sudarshan representation of the density 

matrix [3]. Such quasidistributions have some properties of 

classical distribution functions, e.g. they are normalised, 

some other properties are violated because they are in 

general generalised functions (linear functionals); they can 

be more singular than the Dirac function and they can take on 

negative values. Reviews of quasidistributions used in 

quantum optics can be found in books [4, 5]. This reflects the 

physical fact that the quantum dynamics are much more rich 

than the classical dynamics and hence for some quantum 

effects it may happen that there is a debt of probability 

expressed by negative values of the classical tool of 

probability function used for description of a quantum 

system. Such an approach represents important point of view 

based on wave properties of quantum systems. 

We start with the joint Gaussian generating function [6] to 

show how to derive one-dimensional and two-dimensional 

wave quasidistributions including nonclassical regimes, 

where quantum-noise components take on negative values 

and when standard Cauchy integrals may fail. The method is 

related to the so-called generalised superposition of coherent 

and quantum-noise fields [3]. The method can also be 

applied to treat a shifted Gaussian process with a stimulating 

coherent field [7]. In particular it is suitable for description of 

optical parametric processes [6, 7]. 
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2. Generating Function 

The s-ordered generating function is obtained for the 

Gaussian process in the form [6]  

   1 2 1 1 2 2 1 2, 1 ,
M

s s s sG B B K     


    (1) 

where  and  are parameters of the generating function 

and the s-ordered noise functions are defined as B1,2s = B1,2 + 

(1 – s)/2 in terms of noise functions B1,2; M is number of 

equally behaved modes (temporal, spatial and polarisation in 

the spirit of Mandel-Rice formula) [6]. The quality of the 

process is characterised by the determinant involved in a 

Fourier transform K = B1B2 – |D1,2|
2 < 0 or K = B1

2 – |C1|
2 < 0 

in quantum regimes related to quasidistributions, whereas in 

classical regimes K  0; here D1,2 and C1 are correlation 

coefficients of the quantum noise between modes and 

self-interacting noise coefficient in the mode, respectively. 

The quantum-classical border is given by K = 0. 

Determinants K are crucial for the judgement of 

classicality or nonclassicality of the field. Negative values of 

the determinant K mean that a given field cannot be 

described classically, which is, for instance, the case of the 

field composed of photon pairs. The quantities B1,2 + K can 

be considered as characteristics of fictitious quantum noise 

present in the fields, giving declination from the purity of the 

process, i.e. from the diagonal form of the joint 

photon-number distribution p(n1, n2) when photons are 

ideally paired and K = –B1 = –B2; in inpure cases physically 

they are positive. However, in some compound cases they 

can characterise partial virtual distributions taking on 

negative values giving finally the actual physical distribution 

after the convolution process of partial distributions [8, 9] 

leading to quantum oscillations of the physical distribution. 

Of course the sign of the determinant K is decisive for 

obtaining the wave joint distributions by means of Fourier 

transformation. 
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3. Joint Wave Quasidistributions 

The s-ordered joint wave quasidistribution Ps(W1, W2) is obtained by means of the double Fourier transformation as 
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under the assumption that the s-ordered determinant Ks = B1sB2s – |D12|
2 = K + (1 – s)(B1s + B2s)/2 + (1 – s)2/4 is positive [6]. 

If the s-ordered determinant Ks is negative, the joint signal-idler quasidistribution Ps of integrated intensities exists as a 

generalised function that can take on negative values or can even have singularities stronger than the Dirac function. It can be 

obtained in the following regularised form [6], as we will discuss in greater detail in the following: 
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here sinc(x) = sin(x)/x, A = (–KsB2s/B1s)
–1/2. Oscillating behaviour is typical for the quasidistribution Ps written in (3). 

Compared to our considerations in [6] the formula (3) is exact because we can show that the poles in the upper half complex 

plane give no contribution to the corresponding integral (see next section). 

If Ks = 0 we have the quantum-classical border with the diagonal quasidistribution  
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There exist threshold values sth of the ordering parameter s for given values of quantum noise parameters B1,2 and D12 

determined by Ks = 0 (the corresponding joint s-ordered wave distribution (4) is diagonal): 

2
th 1 2 1 21 ( ) 4 ,s B B B B K                                    (5) 

–1  sth  Quasidistributions Ps for s  sth are ordinary functions with non-negative values whereas those for s  sth are 

generalised functions with negative values and oscillations. Writing this expression in the form 1 + B1 + B2 – [(B1 – B2)
2 + 

4|D12|
2]1/2 we see that it is directly related to the principal squeeze parameter for equally behaved modes  = 1 + 2(B – |D12|). 

In this sense the quasidistribution behaves in a quantum way for s between the threshold value sth and 1 (Glauber-Sudarshan 

quasidistribution), for s equal or less than the threshold value, the vacuum fluctuations related to the s-ordered 

quasidistribution compensate nonclassicality in the field (expressed e.g. by the squeezing of vacuum fluctuations in the field) 

and the quasidistribution behaves classically. 

Even if negative probabilities, which can be reconstructed from experimental data ([10] and references therein), represent 

only qualitative phenomenon reflecting debt of probabilities in richer quantum dynamics compared to classical dynamics and 

we cannot interpret them directly, they have direct consequences in the discrete region, i.e. in p(n1, n2): In the quantum region 

K < 0 and K + B ≥ 0, i.e. K + B < B; in the pure case we have K = −B and K + B=0, which leads to the diagonal Mandel-Rice 

formula for p(n1, n2) giving the oscillating sum-number distribution with zero odd values [6]; in general we have quantum 

oscillations and squeezed-form distribution up to the border between quantum and classical regions for K = 0 (K + B = B) 

which reflect negative probabilities. Then in the classical region K ≥ 0, i.e. K + B ≥ B, quasidistributions behave classically 

and forms of p(n1, n2) change among that for K = 0 and the isotropic case p(n1, n2) = p(n1) p(n2). 

We can mention that quantum entanglement equivalent to the above quantum phenomena is obtained if KK < 0, i.e. K < 0 

because always K > 0, where K is the corresponding determinant for antinormal operator ordering, i.e. B is substituted by 

(B + 1) [8]. A number of other quantities can be derived from the basic joint distributions [8], such as conditional number 

distributions pc,2(n2; n1) which are sub-Poissonian in quantum regimes giving the corresponding Fano factor Fc,2 < 1, 

sub-Poissonian difference-number distribution p–(n), sum- and difference-wave quasidistributions Ps±(W) exhibiting classical 

and quantum behaviour, respectively; the principal squeezing  = 1 + B1 + B2 – 2Re( 12D ) – |C1 + C2 + D12| (it holds that   

sth– ) and sub-shot-noise behaviour R = 1 + K/B < 1 (the same modes) can also be obtained for a more general compound 

parametric process [8]. 
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4. Forms of Quasidistributions 

Now we can follow the way how to derive quasidistributions (2) and (3) in classical and quantum regions in greater detail 

explaining the mathematical basis. This is based on paper [11] involving some corrections. We can mention that in general 

parametric processes the noise quantities B1,2 can also be negative as describing the difference between phase independent 

noise and phase dependent noise arising as a result of self-interaction in a mode [8]. So we distinguish this in our discussion. 

In this sense we have eight possibilities with respect to signs of B1,2s and Ks. 

The wave quasidistribution is determined by the Fourier transform of the generating function, 
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Writing the polynomial in the denominator in the form 
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we see that when 

1. B1,2s > 0, Ks > 0, then the poles lie in the lower complex half-plane 
)(Π 
 and both the integrals with respect to variables 

s1 and s2 are performed as two Cauchy integrals, arriving to the IM-distribution (2) which is regular and non-negative. Under 

these conditions the system behaves classically. 

2. B1,2s > 0, Ks < 0 

This is the standard quantum case. To have the pole in 
)(Π 
 when integrating along s1 to be able to use the Cauchy 

integral, it must be 

2
1 2 2 ( ) 0,s s sB s B K                                      (8) 

i.e. s2 is filtered out the interval (−A,+A), A = (B1s/B2s(–Ks))
1/2 and we arrive at the integral  
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Now we can show that the pole s2 = –iB1s/Ks lying in the upper half-plane 
( )Π 

 in this case gives no contribution to the 

integral (9) which is analytic in the lower half-plane 
)(Π 
. If we integrate the integral (9) with respect to W2 (it generally 

represents a generalised function) and use one factor from the denominator, we have 
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The integral involving the second term is zero because taking it from −∞ to +∞ (the integral for the filtered values of s2 is 

zero because this is related to the opposite inequality in (8) and the pole lies in the upper half-plane), the pole is at s2 = –iB1s/Ks 

in 
( )Π 

and performing the derivative with respect to W2 we have the same integral with the factor in the denominator 

decreased by one; hence one factor –is 2Ks + B1s in the denominator is replaced by B1s. Successively we replace all these 

factors by B1s including the corresponding terms in the exponential function decomposing it into the series. We finally obtain 

exactly the above sinc-quasidistribution (3) after explicit symmetrisation of the expression (we change the order of 

integrations along s1 and s2 obtaining the same result changing only indices 1 and 2, multiply the results and take the square 

root). 

3. B1s < 0, B2s > 0, Ks > 0 

To have the pole in s1 in 
)(Π 
 we must have similarly to (8) 

  2
1 2 2 0,s s sB s B K                                       (11) 
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which means that |s2| > –A1, A1 = (–B1s/B2sKs)
1/2, s2 is not restricted and takes on all values on the real axis (−∞,+∞). The 

integral in (6) with respect to s1 is the Cauchy integral, however the pole in s2 lies in 
( )Π 

 and the integral in s2 is zero. The 

quasidistribution Ps(W1,W2) has a point support and cannot directly be determined by the Cauchy theorem. However, when 

changing the order of integrations integrating first along s2 and then along s1, cases 3 and 4 are interchanged and both the 

quasidistributions are determined as in the following case 4. 

4. B1s > 0, B2s < 0, Ks > 0 

In this case we have  

 2
1 2 2 0,s s sB s B K                                     (12) 

|s2| < A2, A2 = (B1s/(–B2s)Ks)
1/2, the pole in s2 is in 

)(Π 
, and consequently Ps(W1,W2) is expressed as the above finite 

integral (9) in s2, however the pole in s2 cannot be neglected as in case 2. 

5. B1s < 0, B2s < 0, Ks > 0 

In this case  
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1 2 2 0,s s sB s B K                                  (13) 

which means that s2
2 < –A3

2, A3 = (–B1s/(–B2s)Ks)
1/2, which cannot be fulfilled on the real axis s2; the quasidistribution could be 

found in the general complex plane s2' = –is2. The pole in s2 lies in 
( )Π 

. 

6. B1s < 0, B2s > 0, Ks < 0 

We have  

    2
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giving s2
2 < –A4

2, A4 = (–B1s/B2s(–Ks))
1/2, and the condition cannot again be fulfilled on the real axis s2 as in case 5; the pole in 

s2 is in 
( )Π 

. 

7. B1s > 0, B2s < 0, Ks < 0 

We have  

  2
1 2 2 0,s s sB s B K                                    (15) 

and s2
2 > –A5

2, A5 = (B1s/(–B2s)(–Ks))
1/2 is fulfilled for all real s2; the pole in s2 lies in 

( )Π 
. Thus s2 is not filtered and the 

Cauchy integral is zero as in case 3. However, from the symmetry, changing the order of integrations, we have case 6. 

8. B1s < 0, B2s < 0, Ks < 0 

This is physically more interesting case compared to cases 5–7 above. In this case the necessary condition is 

    2
1 2 2 0,s s sB s B K                                 (16) 

with the pole in s2 in 
)(Π 
. Thus |s2| > –A6, A6 = (–B1s/(–B2s)(–Ks))

1/2. The integration in s2 is not restricted as in case 3 and 

Ps(W1,W2) is of the form of IM–1-distribution (2), however with respect to Ks < 0, it can change the sign in dependence on the 

number of modes M, thus being the quasidistribution taking on negative values in these cases. 

The above arguments are also correct for the corresponding generating function (4) in [7] and the joint distribution (13) in 

[7] appropriate for the optical parametric process stimulated by a coherent light. The most general description can combine 

the results from [7] and [8] giving wave quasidistributions for a general optical parametric process stimulated by chaotic and 

squeezed light with initial coherent stimulating components. Roughly speaking, all these properties of the spontaneous 

process are only shifted along coherent components [12] as result of the fact that all these quantities are determined by normal 

moments obtained by means of derivatives at zeros of parameters of the generating function. 

All the distributions discussed above were extensively illustrated in papers [6–9] (and references therein), therefore we 

prefer to illustrate here one-dimensional distributions discussed in the following which can be obtained as a special case of 

the two-dimensional problem only. 

5. One-dimensional Process 
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As the illustration we can now give the simplest case of the single mode second subharmonic generation (which means that 

 =  = 0, B1 = B, C1 = C, B2 = C2 = D12 = 12D = 0 in general parametric process [8]). 

i) Spontaneous process 

In this case the normal generating function (s = 1) has the form [3] 
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for the degenerate case (for M even when the cross-correlation coefficient D12 stands instead of self-correlation coefficient C 

we have the same generating function for the compound mode of the non-degenerate process, B1 = B2 = B). Clearly the 

second-order polynomial in the denominator of (1) can be written as 1 – 2iBs – Ks2 (s is now a Fourier variable, λ = −is; 

generalisation to the s-ordering is straightforward writing Bs = B + (1 – s)/2 instead of B), where the determinant K = B2 – |C|2 

(in the non-degenerate case K = B2 – |D12|
2). If the field behaves nonclassically (K < 0), the mean number of quantum-noise 

photons F = B + |C| is positive and the corresponding distribution is the Rayleigh gamma distribution [3], whereas E = B − |C| 

is negative, leading to sub-Poisson behaviour, squeezing of vacuum fluctuations, quantum oscillations in photon-number 

distribution and wave quasidistributions, quantum entanglement, etc. Attempt to solve the problem of determining the 

quasidistribution in nonclassical region in one dimension was not successful earlier [13, 14]. Generalising the polynomial to 

the two dimensional form as 1 – is1B– is2B – s1s2K and performing the inverse Fourier transforms after s1 and s2 determining 

the Glauber-Sudarshan wave distribution  1 2,NP W W  for s = 1 for simplicity, we obtain again filtering of values of s2 for 

K < 0 to have the Cauchy integral after s1 with the pole in 
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 as above, giving the frequency filtering 

|s2| (–K)
–1/2

. Thus we have the partial integral 

 
 

 
/2

exp i1
d .

2π 1 i
M

sW
P W s

sE











                              (18) 

Using the well-know identity    
0

1
exp i d i πsW W P s

s



     (

s
P

1

 

means the principal value of the integral), 
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   Integrating and deriving this integral with respect to W as above and using 

successively the decomposition  
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as above, we obtain successively after integration in 
( )Π 

 and taking only not filtered values of s: 

 
 

 
1/2sin

, .
π

AW
P W A K

W


                          (20) 

The resulting quasidistribution is the convolution of the Rayleigh gamma distribution related to F [3], 
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and of the sinc-quasidistribution (20) taking on negative values, 
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For the compound mode of the non-degenerate process E = B – |D12|, F = B + |D12|, A = (–K)1/2, B = B1 = B2, K = EF. 

ii) Stimulated process 

In this case [3] 
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where E is the above quantum noise component and  is a coherent component related to the initial field [3, 12]. 

Decomposing the exponential function and applying the above arguments, we arrive at the shifted sinc-quasidistribution 
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The resulting quasidistribution is again the convolution of the regular IM–1-distribution related to F [3], 
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and of this sinc-quasidistribution (24) taking on negative values; here  is another partial coherent component related to the 

initial field [3, 12]. For B = B1 = B2 we have 
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in the non-degenerate case and  
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in the degenerate case. 

6. Illustrations 

The above discussion is based on results of paper [11] where two-dimensional illustrations are available. We will complete 

this here by adding one-dimensional quasidistributions for single and compound modes as illustrations. 

We have chosen  and the phase relations arg(C) – 2arg() = arg(D12) – arg(1) – arg(2) = /2 for 

simplicity. In Figs. 1a, b we show the one-dimensional quasidistributions P±(W) and the resulting quasidistribution P(W) for 

the compound mode of nondegenerate parametric process and M = 2 (one mode of photon pairs). The same for M = 8 (four 

modes of photon pairs) is illustrated in Figs. 2a, b. Analogous results for degenerate parametric process are given in Figs. 3a, 

b and 4a, b for M = 1 and M = 4, respectively. Negative values of the quasidistributions exhibit nonclassical behaviour of the 

process and one can see that the increasing number of degrees of freedom M (and also of the coherent component ) leads to 

reducing quantum oscillations to negative values and nonclassical properties. 

 

Figure 1.  Partial one-dimensional wave quasidistributions P±(W) versus integrated intensity W (a) and the resulting quasidistribution P(W) (b) for 

non-degenerate parametric process and one compound mode 

2 2 2
1 2 1    
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Figure 2.  Partial one-dimensional wave quasidistributions P±(W) versus integrated intensity W (a) and the resulting quasidistribution P(W) (b) for 

non-degenerate parametric process and four compound modes 

 

Figure 3.  Partial one-dimensional wave quasidistributions P±(W) versus integrated intensity W (a) and the resulting quasidistribution P(W) (b) for 

degenerate parametric process and one mode 

 

Figure 4.  Partial one-dimensional wave quasidistributions P±(W) versus integrated intensities W (a) and the resulting quasidistribution P(W) for degenerate 

parametric process and four modes 

  



 International Journal of Theoretical and Mathematical Physics 2014, 4(3): 88-95 95 

 

 

7. Conclusions 

We have derived in greater detail and demonstrated 

classical and nonclassical behaviour of wave 

quasidistributions. We have demonstrated the important role 

of the sinc-quasidistributions in such a description of 

nonlinear optical processes in nonclassical regimes. The 

method described is directly suitable for quantum description 

of optical parametric processes, but it can also be used for 

more complex nonlinear optical processes, such as Raman 

scattering [15, 16]. 
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