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Abstract  The linear stability p roblem of steady-state plane-parallel shear flows of a continuously stratified in density 
inviscid incompressible fluid in the grav ity field between two  immovable impermeable solid parallel p lanes in the Boussinesq 
approximation is studied. With the use of the direct Lyapunov method, it is proved that from the theoretical consideration (on 
semi-infin ite temporal intervals) these flows are absolutely unstable with respect to small plane perturbations. Namely, a 
priory lower estimate is constructed; the estimate displays exponential in time growth of the considered perturbations. At that 
increment of containing in  this estimate exponent is any positive constant. Using the direct Lyapunov method, constructive 
sufficient conditions of practical instability (on finite temporal intervals) are also found for these flows with respect to small 
plane perturbations 
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1. Introduction 
The stability problem of steady - state plane-parallel shear 

flows of a continuously stratified in density inviscid incomp
ressible flu id in the gravity field in the Boussinesq approxi
mat ion with respect to small p lane perturbations is one of 
fundamental problems in hydrodynamics, meteorology, ocea
nography and other related fields of science[1], has not lost 
its urgency in our time too. The most important application 
of this mathematical model in practice is the description of 
processes of wave motions propagation on reservoirs surfac
es, when density distributions weakly differ from constant 
values, vertical scales of movements are small compared 
with characteristic depths, and Mach numbers are much 
smaller than unity. 

Basic results on stability studying of steady-state plane- 
parallel shear flows of a continuously stratified in density 
inviscid incompressible flu id in the grav ity field between  
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two immovable impermeable solid parallel planes in the 
Boussinesq approximat ion with respect to small p lane pertu
rbations are found by spectral method with use of integral 
relations[2–4]. Unfortunately, these results are correct just 
for perturbations as normal modes[1, 4]. Moreover, the cons
equence of integral ratios application is that all admissible 
perturbations as normal modes are not really taken into 
account, but only those that satisfy the additional requireme
nt to Taylor-Goldstein differential operator[2–4]. 

At last, as follows from energy reasoning given in work[5],  
in theoretical sense only states of rest with fluid density 
increasing towards the bottom plane are stable with respect 
to such subclass of small p lane perturbations that for it small 
perturbations of studied fluid density are equal to zero on 
boundary. However, imposing of arbitrarily weak shear of 
flu id velocity destabilizes these rest states. Moreover, except 
for states of rest considered in art icle[5], it isn't possible to 
find conditions of theoretical stability for any steady-state 
flows of studied fluid with respect to small plane perturbati
ons by means of energy reasons. 

All this pushes to make the assumption that there is an 
absolute theoretical instability of steady-state plane-parallel 
shear flows of a continuously stratified in density inviscid 



124 A. A. Gavrilieva et al.:  Rapid Approach to Resolving the Adequacy Problem of Mathematical Modeling of   
Physical Phenomena by the Example of Solving One Problem of Hydrodynamic Instability 

 

incompressible fluid in the gravity field in the Boussinesq 
approximation with respect to small plane perturbations. If 
this assumption is confirmed, it will mean that the mathema
tical model of a continuously stratified in density inviscid 
incompressible flu id in the Boussinesq approximat ion descr
ibes steady-state plane-parallel shear flows in the gravity 
field inadequately.  

Extended above assumption of absolute instability of the 
studied steady-state plane-parallel shear flows in theoretical 
sense can be verified by  the direct  Lyapunov method[6–8] ― 
the most powerful analytical method of the mathematical th
eory of hydrodynamic stability. However, the main  difficulty 
with using this method is that until now regular ways for 
construction of growing Lyapunov functionals have been 
unknown. 

Fortunately, the analytical technique[6] which allows to 
receive results and about theoretical (on semi-infin ite 
intervals of time), and about practical (on finite temporary 
intervals) instability of those or other considered steady-state 
flows of fluids, gases or plasma with respect to small plane 
perturbations has been offered recently. The main point of 
the new technique consists in algorithmic constructing of 
Lyapunov functionals, being characterized, on the one hand, 
monotonous growth over time in chime with properties of 
solutions to the corresponding initial-boundary value proble
ms for small perturbations, and the other ― such dependence 
form on small perturbat ions that growth of smallperturbatio
ns over time accord ing to Lyapunov definit ion of instability
[7] follows from increase of these functionals in time. At that, 
arising conditions for Lyapunov functionals increase with 
time just will be desirab le sufficient condit ions for either 
theoretical or p ractical instability of studied flows with 
respect to small p lane perturbations. It is remarkable that for 
application of this technique it isn't necessary to know the 
specific type of solutions to the boundary and/or the mixed 
problems which describe the studied flows and perturbation
s[6]. 

Thus, in this work absolute instability in theoretical sense 
will be proved by the direct  Lyapunov method[6–8] for 
steady-state plane-parallel shear flows of a continuously 
stratified in density inviscid incompressible fluid in the 
gravity field  between two immovable impermeable solid 
parallel planes in the Boussinesq approximation with respect 
to small plane perturbations. Besides, a p riory  lower estimate 
which will show exponential growth over time of the 
considered small perturbations will be constructed. At last, 
constructive sufficient conditions of practical instability for 
the studied flows with respect to small p lane perturbations 
will be received. 

2. Formulation of the Exact and the 
Linearized Problems 

Unsteady-state plane flows of an ideal heterogeneous in 
density incompressible fluid in the gravity field between two 
immovable impermeable solid parallel planes in the 

Boussinesq approximat ion are considered. In a consent with 
this approximat ion, we neglect density changes when it 
concerns their in fluence on inert ia, but, by no means, not 
weight changes (or buoyancy) of fluid [9]. 

These flows are described by evolutionary solutions to the 
initial-boundary value problem[1–3, 9] 

0 0ˆˆ ,  ,  0 , 0  in  ;x y x yD u p D v p g D u vρ ρ ρ ρ τ= − = − − = + =     

0 on ;v τ= ∂                      (1) 

( ) ( ) ( ) ( ),y,xv,y,xv,y,xu,y,xu  0    0  00 ==  
where 0ρ̂  is a constant average density of fluid, 

( )t,y,x   ρ  ― its perturbations; ( ) ( )t,y,xv,t,y,xu       are 
components of the fluid velocity field; ( )t,y,xp    is the 
pressure field perturbations; ( ),g,0=Φ∇  const≡g  ― the 
potential field of gravity; y/vx/ut/D ∂∂+∂∂+∂∂≡  is a 
differential operator; y,x   are Cartesian coordinates; 

( )     ,x:y,x{ +∞<<∞−≡τ  }Hy <<0  is the domain of 
flu id flow; ( ) }H,y,x:y,x{   0    =+∞<<∞−≡∂τ  ― its 
boundary;  0 ,u  0v  are the initial components of the fluid 
velocity field; t  is the time; const≡H  ― the width of the 
gap between the walls. Independent variables as subindexes 
stand for partial derivatives of desired functions. As assumed, 
the init ial components 0u  and 0v  of the flu id velocity field 
turn the fourth relation of the mixed prob lem (1) into the 
identity. Moreover, 0v  is assumed to satisfy the fifth 
relation in the same problem. 

If solutions to the initial-boundary value problem (1) are 
periodic or located along x-axis, this problem possesses the 
energy integral in the fo rm 
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Moreover, the mixed problem (1) possesses one more 
integral of motion. Really, by means of introducing into 
consideration the function ( )t,y,x   λ , which retains its values 
in any flu id particle as it moves ( 0=λD ), the integral 

( ) const,
0

=≡ ∫ ∫
+∞

∞−

H

dxdyFI λ             (3) 

where ( )λF  is an arbitrary function of its argument, stays a 
constant one on evolutional solutions to the initial-boundary 
value problem (1).  

The mixed p roblem (1) has exact stationary solutions of 
the form 

( ) ( )0 ,  ,  0,  y u U y vρ ρ= = =         (4) 

( ) ( )0 0 1 1
10

y
dp P y p y d y

d y
ρ Φ

= ≡ − ∫      
  

 

(here 0,  Uρ  are an arbitrary functions in independent 
variable y , 0p  is an additive constant, 1y  is a integration 
variable). These solutions correspond to the steady-state 
plane-parallel shear flows of a continuously stratified in 
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density inviscid incompressible fluid  in  the gravity field 
between two immovable impermeable solid  parallel p lanes 
in the Boussinesq approximation. 

Further consideration is aimed to answer the question if 
the stationary solutions (4) can be stable ones with respect to 
small p lane perturbations. 

With this aim in  mind, we linearize the init ial-boundary 
value problem (1) in the vicinity of the exact stationary 
solutions (4) and finally arrive at the mixed problem: 

0ˆ ' ' ' 't x x
dUu U u v p
dy

ρ
 

+ + = − 
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   ,        (5) 

0' ' ' 0x
dU v

t dy
ρρ ρ∂

+ + =
∂

 
 

, g''p
x
'vU

t
'vˆ y ρρ −−=





∂
∂

+
∂
∂

0 , 

0=+ yx 'v'u  in τ ; 

0='v  on τ∂ ; 
( ) ( ),y,x'u,y,x'u  0  0=  ( ) ( ),y,x'v,y,x'v  0  0=  

where ( ) ( ) ( ) ( )t,y,x'p,t,y,x',t,y,x'v,t,y,x'u           ρ  are small 
plane perturbations of velocity ,, vu  density ,ρ  and 
pressure p  fields, 00  'v,'u  are the in itial components of 
the perturbed field of fluid velocity. As assumed, the 
function 0 'v , firstly, turns the fifth relation of the 
initial-boundary value problem (5) into the identity and, 
secondly, satisfies the fourth relation of the same problem 
together with the function 0'u . 

Unfortunately (at least, as of today), the linear analogue of 
the energy integral for the mixed problem (5) has not yet 
been detected by means of the energy considerations. 

3. A Priori Exponential Lower Estimate 
for Growth of Small Plane 
Perturbations 

Next, by the d irect Lyapunov method it will be proved that 
steady-state flows (4) are absolutely unstable in theoretical 
consideration with respect to small p lane perturbations (5). 

In order to demonstrate theoretical instability of a stationa
ry solution (4) of the initial-boundary value problem (1) with 
respect to small plane perturbations (5) we need at least one 
of these perturbations, but with the exponential t ime growth. 

From the above reasoning, the desired perturbation is 
sought in such subclass of plane flows that its s mall plane 
perturbations (5) are deviations of flu id particles motion 
paths from the corresponding stream lines of steady-state 
flows (4). The easiest description for these perturbations can 
be obtained with the use of the Lagrangian displacements 
field ( ) ( )21  ξξ ,t,y,x =ξ [10] which is given by the equations  

,
dy
dUU'u xt 211 ξξξ +−= xt U'v 22 ξξ −= .       (6) 

In view of the relations (6), the mixed prob lem (5) can  be 
rewritten in the form: 

( )2
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(here 2010  ξξ ,  are the init ial components of the 
Lagrangian displacements field ξ ; ( )1 0tξ   and ( )2 0tξ   

are the initial components of its first order time part ial 
derivative). As assumed, the functions 2010  ξξ ,  turn the 
second equation of the system (7) into the identity. Moreover, 
the function 20ξ  is assumed to satisfy the fourth equality in 
the same system. 

In the subclass (6) linear analogue of energy integral for 
the init ial-boundary value problem (7) are represented by 
next form 
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(8) 

Indeed, by direct  calculat ions it isn’t hard to obtain that the 
first variation Jδ  of integral IEJ +≡ 1  (2), (3) is equal to 
zero on stationary solutions (4) if and only if by choosing of 
function ( )ρλλ =  form the first variation of density 

perturbations on boundary τδρ ∂  becomes equal to zero. 

At the same time, the second variation J2δ  of integral J  
is coincident in the form with functional E  (8)[5]. 

The integrand expression (8) has the constant-sign 
property only on states of rest and only when the following 
condition on density distribution of considered flu id 

00 ≤dy/dρ  is satisfied. Superimposing arbitrarily weak 
speed shift destabilizes rest states in the sense that the 
constant-sign of integrand expression (8) is broken. As a 
result, the stability condition for steady-state flows (4) with 
respect to small p la- ne perturbations (6), (7) doesn’t exist. It 
is significant that lo- cal Richardson number 

( )( )( ) 2
0 0ˆ/ / /R i g d dy dU dyρ ρ −≡ −     doesn't appear in 

coefficients of integrand expression (8). Th is fact maintains 
that local Richardson number doesn't arise as the stability 
condition from energetic reasoning[5]. 

To further study, it is convenient to use the linear analogue 
of energy integral (8) in the form 

const,1 =++≡ ПTTE                (9) 
where  
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and also to introduce into the presentation an auxiliary  
functional in form[6] 
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Actually, if we d ifferentiate the integral M (10) by its 
argument t  twice, transform the result with the use of 
relations (6), (7), and (9), it is not hard to arrive at the 
so-called virial equality[10] 

( ).ПT
dt
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−= 42

2
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It should be noted that by arbitrary constant value λ  the 
non-negative functional can be constructed of integrals 

M,T , and dtdM  in the fo rm 
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Excepting integral T  from expression (12) by relation 
(11) and using notation dy/dmaxg
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to construct the differential inequality in form 
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are added to the equation (13) that from it, under these 
conditions, the desired a priori exponential on the time lower 
estimate 

( ) ( )texpCtM λ≥                (15) 
will arise with the need (here C  is the known positive 

constant). 
It is worth noting that the class of the mixed problem (6), 

(7) solutions, which grow with time in accordance with the 
constructed estimate (15), with an additional conditions  

( ) ,M 00 >  ( ) ( ) ( )020 M/
dt

dM λαλ +≥       (16) 

on the initial data )y,x(0ξ  and 0( ) ( , )t x yξ   is not 
empty: 1) since the init ial-boundary value problem (6), (7) is 

linear, then it is solvable with respect to small plane 
perturbations in the form of normal waves[4, 11]; 2) as the 
functional E  (8) has not the constant-sign property, the 
mixed problem (6), (7) is also solvable with  respect to the 
rising over time small p lane perturbations in the form of 
normal waves[6, 11]; 3) every growing with time solution of 
the initial-boundary value problem (6), (7), corresponding to 
the small plane disturbance in the form of normal wave, will 
be, due to arbitrariness of positive constant ,λ  satisfy the 
differential inequality (13), the countable set of conditions 
(14) and the lower estimate (15) identically and 
automatically[6, 11]. 

Consequently, there are increasing in time solutions to the 
mixed problem (6), (7), (16), which meet the small plane 
perturbations in the form of normal waves, in fact. 

In turn, the relation (15) demonstrates graphically  that, 
according to the Lyapunov definition of instability[7], as 
minimum, one s mall plane perturbation (6), (7), (16) of 
steady-state plane-parallel shear flows (4) of an ideal 
stratified flu id grows over t ime, at that not slower than 
exponentially. Since this relation is obtained without 
involvement of any requirements of a restrictive nature to 
steady-state flows (4), it is precisely this fact  that testifies to 
the absolute theoretical instability  of the latter with  respect to 
small p lane perturbations (6), (7), (16). 

It is also worth noticing that in the given paper the integral 
M  (10) exact ly serves as the Lyapunov functional which 
grows in time in accordance with the motion equations of the 
initial-boundary value problem (6), (7), (16). The distinctive 
feature of this growth represents a lot of freedom, which is 
preserved for the positive constant λ  in the exponent from 
the right part  of the lower estimate (15). Th is freedom, 
among other things, allows us to interpret every solution of 
the mixed problem (6), (7), (16), which increases with time 
according to the found priori exponential lower estimate (15), 
as an analogue of Hadamard example for incorrectness[12].  

Finally, for s mall plane perturbations (6), (7), (16) inequa
lit ies of relations system (14) are sufficient conditions for 
practical linear instability[13, 14] of steady-state plane- 
parallel shear flows (4) of inviscid stratified fluid, but for 
small p lane perturbations (6), (7), (16) in the form of normal 
waves ― necessary and sufficient (thanks to the fact that the 
positive constant λ  is arb itrary one as for the rest). 

It is also important that these conditions for practical line
ar instability are characterized by constructiveness, allowing 
their use for the purposes of testing and control during physi
cal experiments and numerical calcu lations. 

Indeed, let, fo r example, we need to develop a technologi
cal process, which is based on the use of steady-state flows 
(4). 

In order for this process to be reliable in  operation, it is 
necessary to ensure its practical stability with respect to all 
possible disturbances. In particular, this process must be 
stable in a p ractical sense with respect to small plane pertur
bations (6), (7), (16) in the form of normal waves. 

This result can be achieved by construction the numerical 
model, which corresponds to the linearized in itial-boundary 
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value problem (6), (7), (16), with the control in reference 

temporal points 22 2nt nπ λ α≡ +  ...),,,n( 321=  for the 
truth of the inequalities from the relations system (14). In the 
course of this model construction, it requires main  efforts to 
focus on the fact that the inequalities of the relations system 
(14) were not valid because of those or other artificially 
induced external influences on the unsteady-state flows (6), 
(7) (for example, due to the initial conditions (16) v iolation). 

In the end, the practical stability of the developed 
technological process will be guaranteed, at the least, with 
respect to small plane perturbations (6), (7), (16) in the form 
of normal waves. 

Unfortunately, to date, the problem of constructing the 
numerical model described above has not been solved yet 
and so far only waits for the moment when specialists will 
turn their attention on it. 

Finally, it will be realized the comparison of this art icle 
results with the well-known result of the stability spectral 
theory for steady-state plane-parallel shear flows of a 
continuously stratified in density inviscid incompressible 
flu id in the gravity field between two immovable 
impermeable solid parallel p lanes in the Boussinesq 
approximation, which was obtained earlier by the integral 
relations method for the small plane perturbations in the 
form of normal waves ― the Miles theorem[2–4]. 

4. The Miles Theorem 
Evolutionary solutions to the mixed  problem (6), (7) of the 

form  
( ) ( ) ( )( ),ctxikexpyft,y,x −≡ 11   ξ         (17)  

( ) ( )( ),ctxikexpft,y,x −≡ 22   ξ

( ) ( ) ( )( )ctxikyftyxp −≡ exp,,' 3  

(here 321  and , , fff  are arbitrary functions of its 
argument; i  is the imaginary unit; ir iccc +≡ , an arbitrary 
complex constant; ir c,c,k    are arbitrary real constants) are 
considered. 

Substituting the relations (17) into the motion equations 
and the boundary condition of system (7), we conclude that 
the functions ' and , , 21 pξξ  of the form (17) indeed 
satisfy the initial-boundary problem (6), (7) if the functions 

321  and , , fff  are solutions to the system of ord inary 
differential equations 
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supplemented by the boundary conditions 
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Excluding the functions 31  and ff  from the system (18), 
we can obtain the so-called Taylor-Goldstein equation[2, 4] 
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Including the new dependent variable  
( ) ( ) 2fUcyf −≡ , 

we obtain the final version of the boundary value problem 
(19), (20): 
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Following Miles, we need to make yet another substitution 

of the sought function ( ) ( )( ) ( )yhcyUyf / 21−≡ , and the 
received after this substitution relation to multip ly by the 
complex-conjugate function *h  and to separate its 
imaginary part : 
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Approved by[2-4] that the equality (22) integration over 
the layer cross-section between two immovable 
impermeable solid parallel p lanes with the use of boundary 
conditions (21) g ives the relation in the fo rm 
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From this relation it fo llows that the exponentially  
growing ( 0>ic ) s mall plane perturbations (6), (7) in the 
form of normal waves (17) are able to convert it into an 

identity if and only if 
4
1

<Ri  at least at one point within the 

domain of the fluid flow. 
In the end, it is established the sufficient condition 

1
4

R i ≥                      (24) 

for the theoretical stability of the exact  stationary solutions 
(4) to the mixed p roblem (1) with respect to small plane 
perturbations (6), (7) in the form of normal waves (17) (the 
Miles theorem[2-4]). 

However, as it is demonstrated below, the ratio (23) 
follows from equation (22) not for all functions h  . 

In fact, if the integral of the right-hand part of the equality 
(22) is rewritten in the form 
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
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
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
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then the latter implies that the situation is possible that 
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y H
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−

−
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(26) 

for the reason that the function dy/dh consists of a  
countable set of branches. Examples of these functions 

dy/dh  represent logarithmic, inverse trigonometric and 
other functions. 

Specifically, as the function dy/df  is not contained in 
the formulation of the boundary value problem (21), then 
there is no way to select one or the other branch of functions 

dy/df  and dy/dh  uniquely. Therefore, all branches of 
the function dy/dh  are equitable, so that the integral (25) 
must vanish for all countable set of the function dy/dh  
branches as a whole, and this is an occasion for the 
emergence of the type ∞⋅0  (26) uncertainty. 

From the foregoing it fo llows that the functions h  with 
the first order derivatives dy/dh , containing a countable set 
of branches, are not covered by the Miles theorem (24). It  is 
these functions that will g ive the counter-examples to this 
theorem. 

As a result, the Miles theorem (24)[2-4] is right not for all 
functions h  (22), but only for their subclass with 
derivatives dy/dh , which consist of a finite number of 
branches. That’s what says for the fact that: 1) the condition 
(24) of theoretical linear stability  is not only sufficient but 
also necessary in nature, and besides with respect to the 
adjective partial class of small p lane perturbations (5) in the 
form of normal waves (6), (7), (17), (23); 2) no 
contradictions between the Miles theorem[2-4] and the 
absolute theoretical linear instability of the steady-state 
flows (4), obtained in the present work.  

By the way, if the investigated fluid is homogeneous in 
density (so that the Taylor-Goldstein equation becomes the 
Rayleigh equation, and the Miles theorem reduces to the 
Rayleigh theorem), then it is proved in the publications[11, 
15] that the subclass of functions, which correspond to 
functions h  (22) with the first order derivatives dy/dh  
(26), containing a countable set of branches, serves as a 
non-empty set. 

5. Conclusions 
In this art icle the problem on linear stability of steady-sta

te plane-parallel shear flows (4) in a continuously stratified 
in density inviscid incompressible flu id in the gravity field 
between two immovable impermeable solid  parallel p lanes 
in the Boussinesq approximation is considered.  

By the direct Lyapunov method, it is proved that these 
flows are absolutely unstable in the theoretical sense with 
respect to small p lane perturbations (6), (7), (16).Constructi
ve sufficient conditions (see on the inequalities of the relati
ons system (14)) for the pract ical linear instability are 
deduced. A priory lower estimate (15) is constructed, which 
displays exponential in  time growth of the considered small 
perturbations. The application field of the Miles theorem (24) 
is strictly described, and it is also found that, by its nature, 
this theorem is both sufficient and necessary statement.  

It should be stressed that from the mathemat ical point of 
view the results of this work are, in  the main, a  priori, 
because the existence theorems of solutions to the studied 
initial-boundary value problems for systems of differential 
equations with partial derivatives have not been proved. 

Finally, regarding the question of whether the mathemati
cal model (1) of an ideal continuously stratified fluid in the 
Boussinesq approximation describes the steady-state 
plane-parallel shear flows (4) in the gravity field adequately, 
it must be said that it is not adequate, since this model has no 
theoretically stable solutions (4), which would correspond to 
the steady-state plane-parallel shear flows, although this kind 
of flows is observed in nature and is realized in applicat ions. 

However, if conditions (refer to inequalities of the equatio
ns system (14)) of the practical linear instability are not met, 
the stationary solutions (4) to the mixed problem (1) will be 
stable with respect to small p lane perturbations (6), (7), (16) 
in the form of normal waves (17) on those or any other finite 
time intervals. 

It fo llows that the mathematical model (1) does notadequ
ately characterize the steady-state plane-parallel shear flows 
(4) in the theoretical sense (at the semi-infinite intervals of 
time), but adequately ― in the practical one (at the fin ite 
temporal intervals).  

In the end, constructive sufficient conditions (see on ineq
ualities of the equations system (14)) for the p ractical linear 
instability can provide with a foundation for the creation of 
effective method for managing of the steady-state flows (4) 
in the real-time mode[11, 16]. 
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