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Abstract We consider two non interacting two-atoms Tavis-Cummings systems and examine the entanglement among

four two-state atoms. For our purpose, we assume that one atom from each system are entangled initially and we obtain
time-dependent concurrence among atoms. There are six pairwise concurrences among atoms and in this paper, we focus on

remote atoms. We show that initially non-entangled atoms 4,and B, becomes entangled by passing time, the process

which may be interpreted as entanglement transfer between the cavities.
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1. Introduction

Entanglement is one of the most fascinating aspect of
quantum mechanics and is a defining future that makes
fundamental distinctions between quantum and classical
Physics. Two quantumsystems A and B are entangled when
values of certain properties of system A are correlated with
the same properties of system B[1]. Quantum entanglement
has been viewed as an essential resources for quantum
information process, and a great deal of effort has been
devoted to study and characterize the entanglement. Cavity
quantum electrodynamics (QED) techniques has been
recognized as a promising candidate for the physical
realization of quantum information processing[2].

In this paper we consider two non interacting two-atoms
Tavis-Cummings systems and examine the entanglement
among four two-states atoms by obtaining the concurrences
between each two atoms. The method which we have used is
like the method that is used in ref[3]. For this purpose we
first introduce the Tavis-Cummings model and then obtain
the eigenvalues and eigenstates of the two-atoms
Tavis-Cummings system in section 2. These eigenstates and
eigenvalues are used for calculating the time evaluation of
entanglement. We introduce the concept of concurrence for
measuring the entanglement in section 3 and finally in
section 4, we analyze the entanglement among atoms in
detail by calculating the reduced density matrice of each two
two-levels atoms and give some concludes in section 5.
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2. The Tavis-Cummings Model

The Tavis-Cummings model (TCM) describes the
simp lest fundamental interaction between a single mode of
the quantized electromagnetic field and a collection of N
two-level atoms under the rotating wave approximation
approximation (RWA) condition[4] -[11]. The Hamiltonian
of'this model is written as

1. & N ,
H,.=hoa'a+ Eha)z o + h/lZ(O‘i’)a + o{”a*) (1
i=1 i=1
For the case of two-atom (N=2)

H:HO+Hint

= ha)(cfa + %O‘;l) + %O‘éz)j

+ hll(o*f” +oat + (o + ¥ )aJ (2)

Where a and g are the annihilation and creation field
operators.
Each initial state in this system is coupled to three states.

For examp le if the initial state is |l> = |e1 >| e, >| n> then this

state is coupled with the states

1) =le)lgz)n+1)
|£2)=|gi)lex)ln+1)
|50 =lg)lez)ln+2) 3

Writing the Hamiltonian in these states, we obtain



188 Seyed Arash Ghoreishi et al.:

ho(n+l) mAn+2 mn+2 0
Wln+2 hon+l) 0 hin+l
Tladnr2 0 homel) haeet|
0 Aln+l BWn+l ho(+l)

Then the eigenvalues are

E, =ho(n+l)
E, =ho(n+1)

5
E, —hom+)+hi2n+3) )
E, =ho(n+1)—hi2(2n+3)

and the correlated eigenstates are

[ n+1 /n+2
|W1n>: m|g1gz;n+2>_ m|elez;n>

1 1
|'//zn>=$|glez;n+l>—ﬁ|elg2;n+l>

2 1
|‘//3n>: ﬁ|g1g2;n+2>+5|glez;n+l>
1 1
+E|elg2;n+1>+ ;n—:6|e1e2;n>

2 1
Wan)= %|glgz;n+2>—5|glez;n+l>

1 / 1
—E|e1g2;n+l>+ fn—_:_6|elez;n>

3. Measure of Entanglement

H(”)

To measure the entanglement, we need to introduce a
convenient concept. We will adopt the Wooter's
concurrence[13] as our measure:

C(p)=max{. 2 —& —Z =2} 0

where the quantities /Ii are the eigenvalues in decreasing

order of the matrix
§=p(o,®0,)p (0,®0,) (8

where p* denotes the complex conjugation of p in the
standard basis and o, is the Pauli matrix.

We may pay attention to this point that although the matrix
f: is not Hermitian, the eigenvalues of this matrix are real
and nonnegative.

Note that 1>C >0, where

entanglement and C =1 means maximal pure state
entanglement.

Reduction to a two-qubit form, will yield to a two-qubit
mixed state always having the form:

C =0 indicates zero
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a 0 0 =z
1o b 0 0
=10 0 ¢ 0 ©

0 0 d

where a+b+c+d =1. The concurrence for this matrix

is easily found to be
C =2max{0, Z| —+/bc}

(10)

4. Entanglement Dynamics among
Atoms in Two Tavis-Cummings
Systems with N=2

Consider two two-atoms Tavis-Cummings systems A and

B where A consists of two atoms A4, , 4, and B consists of
two atoms B1 , B2. We assume that initially an atom of

systemA, A, ,is entangled with an atomofsystemB, B,

Now, we are going to investigate the entanglement among
atoms in this two Tavis-Cummings systems by calculating
the concurrence among atoms. The total initial state has three
parts:

i) The entangled atoms: This initial part can be written in
terms of Bell states. We denote this part as follows:

‘(I)AI,BI> = Cosa|elAelB>+Sina|g1Ang> (1

ii) The two atoms which are not entangled initially. We
can write this initial part as below:

‘CDAZ,BZ (0)> = al‘eZAeZB>+ 052‘32/1ng>

+a3‘g2A62B>+a4‘g2Ag2B>

To make sure that these atoms are not entangled initially,
we must have

o, =a,d, (13)
iii) The cavities Initial states:
| (0) =|m), ®|m), (14

where n (m) is the number of photons in cavities A (B) at
t=0.
Thus the total initial state is

|q)(0)> = (cos 0’| elAelB> +sin a| glAng>)
®(a, | ‘3er123> ta, | €483 >)
+a3|g2AeZB>+a4|g2Ag23>
which can be written as
|(I)(0)> =CoS a[a1|elez;n>A ®|ele2;m>3
€gy;m),

+a3|elg2;n>A ®|elez;m>3

(13)

+a2|ele2;n>A®

+a4|elgz;”>A ®|e1g2;m>3]
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+sin (Z[a1|glez;n>A ®|g1€2;m>3 + Can (t)‘ W4(n—l)>
ra|gesn) ®|ggim), ® (e, (W), + e W), + €0 Oy) ) @D
+ a3|g1g2;n>A ®|g1e2 ;m>3 In order to take traces over individual atoms or cavities,
. . e need to revert to the bare bases and this leads to
+a4|g1gzan>A®|g1gzvm>B] ae v 1
To simplify our calculations, we suppose that the non |q)(t)> =[(B,,a,, )+ Eﬂh (a,,(t)+a,, (1))
entangled atoms are initially in excited states (@, = 1,
o, =0y =a,=0) and the number of photons in two xcosa|g1g2;n+2>A
cavities are equal (n=m). By applying these conditions, the 1
initial state becomes +(=fy,a, () + Eﬂln (a3, (1) +ay, (1))

|CD(0)> = cosa|elez;n>A ®|ele2;n>3

xcosalee,;n
+sina|g1e2;n>A®|gleZ;n>B (17) | oY >

A

1
To prepare for the time evolution we express these states +—(a, (t)—a,, (t)cosalg.e,;n+1
3n 4n 816 A
in terms of the eigenstates given in (6), and obtain 2
o\ 1
|61629 l’l> - aln l//ln>+ a3n W3n> + a4n l//4n> + — (a3n ([’) — a4n (l‘)) CcOS a| gleZ N + 1>A
) 2
|g|g2 ) ”> =b, V/l(n—z)> +b,, V/z(n—z)>+ b,, V/4(n-2)> 1
L (18) Q(By,a1, () +—= Py, (a5, (1) + a,, (1))
|g162’ ”> =Gy, V/z(n—l)> +Cs, ‘//3(n—1)> ¢y, ‘//4(;1—1)> \/5
o\ X cosa n+2
|elg2>n> =d,, ‘//2(;171)>+ ds, ‘//3(”71)>+ d,, l//4(n—l)> |g1g2 " >B
where

+(—ﬂ2naln<r)+%ﬂl,,<a3n (6)+a,, (1)

n+2 0 —a n+l
a = — 3 = 4 = _—
. 2n+3 " " Vdn+6 xcosalee,;n)

_ n—1 n 1 .
n = 2n—1 ban =bay = 4n—2 +E(a3n (t)_a4n(t))0050!‘glez,n+1>B
1 1 1 1
Can :ﬁ 3, :5 Cyp =75 +§(a3n(t)—a4n(t))cosa|g1e2;n+l>3]
1 1 1 1 1 1 . .
d,, :_E d,, = d,, ==3 (19) +[($Czn(t)+Ec3n(t)—ac4n(t))sma‘ geyn)

Thus, the initial state is

1 1 1 .
+ (_ﬁcz” (1) +Ec3"(t) —504,7 (#))sin a| glezgn>A

|(D(0)> = Cosa(aln|l//1n>/4 + a3n l//3n>,4 + a4n V/4n>A)
® (ay,|W1,) 5+ @3 |W30)  + W) ) + f/% (€3 (1) + ¢y (D) sin @ g, 255 +1) |
+sina(c,, V/Z(n—l)>A +¢, ‘//3(n71)>A +¢4, l//4(n—l)>A) y
+% (e, () +c, (t)sin alee,;n—1
®(c,, V/z(n—l)>B +¢, ‘//3(;1—1)>B +¢y, l//4(n—1)>B) (20) \/E( ()% €4, (D) | ik >A]
Since the time evolution of these eigenstates is specified L - _l : .
we can transfer these time evolutions to the coefficients. ®[(\/5 Can (1) + b Ci () 2 Can (1))sin a|glezsn>3
Therefore 1 1 1 .
|@(1)) = cosa(a,,()|y,,) , +as,(O|vs,), + (—fczn(f) +Ec3n(t) =5 Can ()sina|ge,;n),
+a4n (t)|l)”4n>/4) }/2 1
+ = (c3n(t)+c4n(t))s1na|g1g2;n+l>
®(aln(t)|l//ln>3 +a3n(t)|l//3n>3 +a4n(t)|l//4n>3) \/5 ?
sina (s, OWag )+, O, + 2 ey (O + ey, (O)sing |eein—1)] @)

V2
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where We see that the 4, B, mixed state has the form
_ [ n+l a 0 0 z
P 2n+3
pA131 _ O »» 0 O 26
_ [ n+2 0 0 ¢ O
ﬁZn
2n+3 Z* 0O 0 d

¥, = n for which the concurrence has the stated form
In
V2n+1 418
z|=~be} @

}/ 21’1 1 !

For simplicity, we define p“”™ by trace out from

* * * .
z = (2x4%; + X,X; + X, X5 )Sin o cos

Xs = %22(03(t) + C4(t))2

density operator on the photonic states b=c= (|xz|2 + |xs|2 + |x4|2 + |xé|2)cos2 a
P = (n+2;n+2| D)D) n+2;n+2) o (ol +f +ral +)sin’a @9
+ <n +2;n+ 1|CD(Z‘)><CD(I) | n+2;n+ l> The time dependent coefficients are
e 2n|QONSO]n 2 i~ paws f Aewram)
+(n+2;n—1|0O) D) |n+2;n—1) 2
HmtLn+ 2| @ONC)|n+1n+2) X, =1[ﬂla1 () Blas0)+ a4(t))j(a3(t) ~a,(0)
+(n+Ln+1| 0@ ()| n+1;n+1) ’ V2
+ <”l +Ln (D(t)><(1)(t)|n + 1;n> X3 = %(ﬂ]al )+ %ﬂz (as() +a, (t))j
+{n+1n=1| @)Y @) |n+1;n-1) .
+<n;n + 2|q)(t)><q)(t) nyn+ 2> x (_ Bra (1) + ﬁﬁ1 (a;() +a, (t))j
+<n;n+1|<b(t)><q)(t) n;n+l> 1 )
+ <n;n CD(t)><d>(t) n;n> Xy = Z(as (1)—a,(1))
+{n;n—=1| @) O()|n;n 1)
X
X

+{n=Ln+1| DO )| n—-1;n+1) xézé(a3(t)—a4(t))

+{n—1L;n|@@))}D()|n—1;n) {
+<n—l;n—1|CD(I)><CD(t)|n—1;n—1> (24) X(_ﬂzal(t)+ﬁﬂ1(a3(t)+a4(t))j
. atoms . .
i bemmeen ssch . S (t))%cz (t>+%c3(t>—%c4<t))
We first focus on C . . This requires that we trace out
A, and B, atom states, in order to get the two-qubit X = ﬁ(% (H)+ ¢, (z){_ch (1) -I-lC} (l‘) _104 (l)]
mixed state needed for calculation at 4 B, concurrence. \/E \/E 2 2
The 'OAIBI becomes Xy = l7/17/2 (C3 () +c, (t))z
IOAIBI = <62A:ezB pamms €4 7e2B> 2 )
+ <ezA 825 1P " €y g23> X0 = (_ Bra,(t) + %@ (a;(t) +a, (t)))
+<g2A’e2B P g2A>923> 1 1 | 2
+<g2A,g23 pr g2A>g23> (25) X =(ﬁcz(t)+503(t)_504(t)j
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X, = [%Cz(t) + %cg () - %q (t)j X = % —%cz(tﬂéq(t)—%q(t) (e,(0)+¢, (1)
1 1 1 2
X[—ﬁcz 3] +EC3(t) —504(l)j X, = %(c3(t)+c4(t)) (29)

Xy = (—%czm a0 —%cmj

Figures 1-3 shows the concurrence for 4, B, mixed state.

In these graphs @ =0.5,4~0.27 andn=2.

Y= ﬁ(icm%cs <r>—§c4<r>]<c3 (1) +,(0)

-
03 —-
0é —-
0.4—_
01 —_
0 T T \ '
4 fi 8

H

T
Figure 1. plot of AIB1 concurrence for & :Z

| I ]
4 ] H
t

V4
Figure 2. plot of AlBl concurrence for o :E
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Eoom
Figure 3. Surface plot of the concurrence

For concurrence calculation between A2 and Bz:

PAZBZ = <e1A»elB |pamms elA’elB>
+(€1: 815 [P | €14 815)
+(g1-e5 0" | &145€18)
+(204- &5 [P | 14> &15) 30)

and we find
* * * .
Z = (X, X5 + X,0X;5 + 2X,Xg ) SIn & cOs

b= (|x2|2 +|x3|2 +|x4|2 +|x8|2)c0s2 a
+(|X8|2 +|)c9|2 +|X12|2 +|X14|2)Sin2 a
c= (|x2|2 +|x3|2 +|x4|2 +|x(,|2)cos2 a
+(|x7|2 +|x9|2 +|x14|2 +|x15|2)sin2 a (31)
Figures 4 and 5 show the plots for this concurrence fora =7 ande =17 at the first 100 seconds.
0.9—- H “
1 N
]
" q
3]
n
03 4
02+

01+

0 0 4 il 80 100

Figure 4. plot of A232 concurrence for & :%
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044

034

024

T
Figure 5. plot of Asz concurrence for & = —

12

Now we move to concurrence calculation CAIBZ and CA2Bl . We start with CAlBZ .For this, we traceout A4, and

B, .

AB, _ atoms

P = <e2A »€1p |P
+ <g2A’613 |,0

atoms

|62Ase13> +<e2Avg13 |,0 92A>g13>

atoms

atoms

ngaem> +<

g2A=g13|p ngag119> (32)

And we find
* * * * .
Z = (X, X5 + XX, + XXg + X0 X, ) SIN X COS X

b= (|x2|2 + |x3|2 +|x4|2 + |x6|2)cos2 a +(|x7|2 +|x14|2)sin2 a
2 2 2 2 2 2 2 2 2, . 2
c= (|x2| +|x3| +|x4| +|x6| )cos” +(|x8| +|x9| +|x13| +|x15| )sin“a  (33)
T T
Figures 6 and 7 show the plots for this concurrence for @ = Z and ¢ = — at the first 100 seconds.
If we look at the initial state in equation (19) we see that under the transformation A4 <> B the state remain unchanged.
A,B, __ A B, .
That means C =C at all times.

. .. . A1A2 CBle .. .. .
Similarly, we can find the explicit expressions for C and . The two cavities are not distinguishable, so we

A A
expect these C's to be the same and they are. The O 2 has the form

v 0 0 O
0O w z O
44
= . 34
» 0 z x O G4
0 0 0 y
The concurrence for this density matrix is[12]
C = 2max{0,|z|—Juy} (35)
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Where
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_ 2+2 2+ 2 2 * * * * )
z= (x| + 2, +|x| ) c0s® @ + (a5, + xT1ix,, + XX + X1 x, 5 ) sin’ @

L= (2|x6|2 +|x10|2)cos2 a + (|x3|2 +|x]4|2 +|x15|2 +|xm|2)sin2 a

y= (|x1|2 + 2|x2|2 +|x3|2)cos2 a +(|x5|2 +|x7|2 +|x8|2 +|x9|2)sin2 a

007 4

006 +

003 4

0.04 4

003 4

00z 4

001~

(36)

a0 i 100

T
Figure 6. plot of A132 concurence for & :Z

nna —
003 —
ihig —
.06 —
003 —
004 —
003 —
00z —

001 H

VA
Figure 7. plot of A132 concurence for & = —

5. Conclusions

In this paper we considered two two-atoms
Tavis-Cummings systems. These two systems have no
interaction together, but one atom from each system are

entangled initially ( 4, , B,).

The entanglement between A4, and B, for times t>0 falls

to zero and remains non-entangled for a period of time till
becomes entangled again. We also see that the entangled
intervals are smaller than non-entangled intervals. For

initially non-entangled atoms, A, and B, , the
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But the
entanglement between A4, and B, or 4, and B, is very

entanglement appears in short intervals.

negligible in very short intervals; therefore, we can claim
that these atoms will not be entangled afterwards.

We can test other initial states in our problem. For
example for two initially entangled atoms, we can use
another initially state

‘P4&>=comﬂemgw>+shﬂgmew> (37)

and solve the problem again. Or for the non-entangled atoms,
which we assumed that were in their excited states initially,
we can change this prescription and solve the problemagain,
but the methods for this new situation are similar with the
method which we used before.
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