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Abstract  We consider two non interacting two-atoms Tavis-Cummings systems and examine the entanglement among 
four two-state atoms. For our purpose, we assume that one atom from each system are entangled init ially and we obtain 
time-dependent concurrence among atoms. There are six pairwise concurrences among atoms and in this paper, we focus on 
remote atoms. We show that initially non-entangled atoms 2A and 2B  becomes entangled by passing time, the process 
which may be interpreted as entanglement transfer between the cavities. 
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1. Introduction 
Entanglement is one of the most fascinating aspect of 

quantum mechanics and is a defining future that makes 
fundamental d istinctions between quantum and classical 
Physics. Two quantum systems A and B are entangled when 
values of certain properties of system A are correlated with 
the same properties of system B[1]. Quantum entanglement 
has been viewed as an essential resources for quantum 
informat ion process, and a great deal of effort has been 
devoted to study and characterize the entanglement. Cavity 
quantum electrodynamics (QED) techniques has been 
recognized as a promising candidate for the physical 
realization of quantum informat ion processing[2].  

In this paper we consider two non interacting two-atoms 
Tavis-Cummings systems and examine the entanglement 
among four two-states atoms by obtaining the concurrences 
between each two atoms. The method which we have used is 
like the method that is used in  ref[3]. For this purpose we 
first introduce the Tavis-Cummings model and then obtain 
the eigenvalues and eigenstates of the two-atoms 
Tavis-Cummings system in section 2. These eigenstates and 
eigenvalues are used for calculating  the time evaluation of 
entanglement. We introduce the concept of concurrence for 
measuring the entanglement in section 3 and finally in 
section 4, we analyze the entanglement among atoms in 
detail by calculating the reduced density matrice of each two 
two-levels atoms and give some concludes in section 5. 
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2. The Tavis-Cummings Model 

The Tavis-Cummings model (TCM) describes the 
simplest fundamental interaction between a single mode of 
the quantized electromagnetic field  and a collection of N 
two-level atoms under the rotating wave approximation 
approximation (RWA) condition[4] -[11]. The Hamiltonian 
of this model is written as  

 (1) 

For the case of two-atom (N=2) 

 

 

    (2) 

Where a  and +a are the annihilat ion and creation field 
operators. 

Each in itial state in this system is coupled to three states. 
For example if the initial state is neei 21=  then this 
state is coupled with the states 
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 (4) 

Then the eigenvalues are  

     (5) 

and the correlated eigenstates are  

 

 

 

 

3. Measure of Entanglement 
To measure the entanglement, we need to introduce a 

convenient concept. We will adopt the Wooter's 
concurrence[13] as our measure: 

 (7) 

where the quantities iλ  are the eigenvalues in decreasing 
order of the matrix  

    (8) 

where *ρ denotes the complex conjugation of ρ in the 

standard basis and yσ  is the Pauli matrix. 
We may pay attention to this point that although the matrix 

ξ  is not Hermit ian, the eigenvalues of this matrix are real 
and nonnegative. 

Note that 01 ≥≥ C , where 0=C indicates zero 
entanglement and 1=C  means maximal pure state 
entanglement. 

Reduction to a two-qubit form, will yield to a two-qubit 
mixed state always having the form: 

          (9) 

where 1=+++ dcba . The concurrence for this matrix 
is easily found to be  

       (10) 

4. Entanglement Dynamics among 
Atoms in Two Tavis-Cummings 
Systems with N=2 

Consider two two-atoms Tavis-Cummings systems A and 
B where A consists of two atoms 1A , 2A and B consists of 

two atoms 1B , 2B . We assume that initially an atom of 

system A, 1A ,is entangled with an atom of system B, 1B  
Now, we are go ing to investigate the entanglement among 

atoms in this two Tavis-Cummings systems by calculating 
the concurrence among atoms. The total init ial state has three 
parts: 

i) The entangled atoms: Th is in itial part can be written in  
terms of Bell states. We denote this part as follows: 

   (11) 

ii) The two atoms which are not entangled initially. We 
can write this init ial part as below: 

 (12) 

To make sure that these atoms are not entangled init ially, 
we must have   

3241 αααα =                       (13) 
iii) The cavit ies Initial states: 

BAF mn ⊗=Φ )0(             (14) 
where n (m) is the number of photons in cavities A (B) at 

t=0. 
Thus the total initial state is 
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which can be written as 
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To simplify our calcu lations, we suppose that the non 
entangled atoms are in itially in excited states ( 11 =α ,

0432 === ααα ) and the number of photons in two  
cavities are equal (n=m). By applying these conditions, the 
initial state becomes 

 
    (17) 

To prepare for the time evolution we express these states 
in terms of the eigenstates given in (6), and obtain  

 (18) 

where 
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Thus, the initial state is  
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Since the time evolution of these eigenstates is specified 
we can transfer these time evolutions to the coefficients. 
Therefore 
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In order to take traces over individual atoms or cavit ies, 
we need to revert to the bare bases and this leads to  
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                (23) 

For simplicity, we define atomsρ  by trace out from 
density operator on the photonic states 
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Now, by using atomsρ  we can obtain the reduced density 

matrix between each two atoms. 

We first focus on 
11BA

C . This requires that we t race out 

2A  and 2B  atom states, in order to get the two-qubit 

mixed state needed for calculation at  11BA  concurrence. 

The 11BAρ  becomes 
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We see that the 11BA  mixed state has the form  
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for which the concurrence has the stated form 

},0max{211 bczC
BA

−=   (27) 

with  

 

 
+     (28) 

The time dependent coefficients are 
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Figures 1-3 shows the concurrence for 11BA  mixed state. 

In these graphs 5.0=ω , 27.0≈λ  and 2=n .  

 

Figure 1.  plot of  11BA  concurrence for 
4
πα =  

 

Figure 2.  plot of  11BA  concurrence for 
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πα =  
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Figure 3.  Surface plot of the concurrence 

For concurrence calculat ion between 2A  and 2B : 
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and we find 

 

 
 

 
                            (31) 

Figures 4 and 5 show the plots for this concurrence for
4
πα =  and 12

πα =  at the first 100 seconds. 

 

Figure 4.  plot of 22BA  concurrence for 
4
πα =  
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Figure 5.  plot of 22BA  concurrence for 
12
πα =  

Now we move to concurrence calculat ion 21BAC and 12BAC . We start with 21BAC . For this, we t race out 1A  and 

2B  . 

 

         (32) 

And we find  
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Figures 6 and 7 show the plots for this concurrence for
4
πα =   and 

12
πα =  at the first 100 seconds. 

If we look at the in itial state in equation (19) we see that under the transformat ion  the state remain unchanged. 

That means at all times. 

Similarly, we can find the exp licit expressions for  and . The two cavit ies are not distinguishable, so we 

expect these C's to be the same and they are. The has the form  
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The concurrence for this density matrix is[12] 
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Where 

 

 
             (36) 

 

Figure 6.  plot of  21BA  concurrence for 
4
πα =  

 

Figure 7.  plot of  21BA  concurrence for 
12
πα =

 

 
5. Conclusions 

In this paper we considered two two-atoms 
Tavis-Cummings systems. These two systems have no 
interaction together, but one atom from each system are 
entangled initially ( 1A , 1B ). 

The entanglement between 1A and 1B  for times t>0 falls 
to zero  and remains non-entangled for a period of t ime till 
becomes entangled again. We also see that the entangled 
intervals are smaller than non-entangled intervals. For 
initially non-entangled atoms, 2A  and 2B , the 
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entanglement appears in short intervals. But the 
entanglement between 1A  and 2B  or 2A  and 1B is very 
negligible in  very short intervals; therefore, we can claim 
that these atoms will not be entangled afterwards. 

We can test other initial states in our problem. For 
example for two  in itially entangled atoms, we can use 
another initially state 

BABABA egge 1111 sincos
11

+=Ψ α    (37) 

and solve the problem again. Or for the non-entangled atoms, 
which we assumed that were in their excited states initially, 
we can change this prescription and solve the problem again, 
but the methods for this new situation are similar with the 
method which we used before. 
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