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Abstract  Quantum Mechanic axioms are the result of the microscopic cooperative equilibrium among symmetric p layers 
(quantum object and human subject). On the other hand, we introduce Nash’s equilibrium in Hilbert space, which has two 
characteristics: it  is a  fixed  point and it maximizes a utility function. Moreover, evolution and selfadjoint operators have 
interesting properties which  allow us to study steady state in Evolutionary Game Theory. Also, we present cooperative games 
in complex systems language.The concept of cooperation is important in game theory but is somewhat subtle. The term 
cooperate means "to act together, with a common purpose". Incentive compatibility is equivalent to synergy principle, which 
appears naturally (to add or to multiply utilit ies, ec[34]). Finally, wein the relevant results not only proved the main theorems 
of Quantum Mechanics, Quantum Chemistry and its applications to salt-water but also we resolved some main questions such 
us: Do hydrogen-bonded networks, in which  tunneling plays an important role, exist?, How cooperation and entropy affect 
water cluster equilibria?. Can salt (ClNa) p lay an Nobel role in photo-catalysis?. The answers are: tunnel effect it is possible 
in salt water but not in water, because ClNa, visib le light or electricity incentive to produce catalysis or photo-catalysis. Also, 
If hydrogen-bonded networks and water cluster size increases complexity of an global equilibrium, then tunnel effect appears 
as an local equilibrium. 
Keywords  Econophysics, Optimal Principle, Cooperation, Nash Equilibrium, Hilbertspace, Evolution Operator, Tunnel 
Effect  

 

1. Introduction 
We will use a systemic perspective which is authorized 

by research methodology of complex systems[2],[3], in 
order to present a vision that integrates quantum computing 
concepts[7] and game theory elements to study cooperative 
games. The angular stone that unifies these two approaches 
is classic informat ion theory. However, there is a  narrow 
and formal bridge to carry out these tasks denominated 
quantum probability. More easily, we can understand 
quantum probability as the Hilbert space of random 
variables with finite second moment, see[13],[16]. 

First, approaches related to cooperation appear. After that 
we carry out a rev ision o f existent literature, such us 
communicat ion, correlation, entanglement, dependence and 
common ob ject ives, see[12]. Cooperat ive game theory 
enriched by Nash´s product focus approaches common 
objective top ic (resolution  of common prob lems) using 
bargaining roads which allow us to d iscover and implement 
equilibria. Concepts such us correlation, entanglement and  
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dependence are complementary and they are strongly 
related intuitively. Consequently, we will establish its limits 
and functional dependences. Finally,[1] and[14] show that 
coordination and communication concepts can replace 
correlation (entanglement or dependence), see[5]. 

Second, this work is an example how the analyses of 
game theory can exp lain the paradox of Einstein-Podolski-
Rosen (hereafter: ERP) satisfactorily. Nevertheless, Anton 
Zeilinger, an outstanding researcher in quantum computing, 
has already expressed that interaction between two part icles 
inentanglement does not have theoretical repercussions in 
Einstein´s relativity theory, see[4],[6]. 

Third, the main theorems of this paper allow us to obtain 
Nash’s equilibrium in Hilbert space, which has two 
properties: it is a fixed point and maximizes a utility 
function 
< pmax |A|pmax > where |pmax � >= (|x1

max |2 … |xn
max |2)∗ . 

InHilbert  spaces, the norm of a selfad joint operator (utility 
matrix: A) permits us to obtain the fixed  pointsf(|x >) =
A

λ� |x >= |𝑥𝑥 > , where ‖A‖ = max ‖x‖=1 < x|A|x > =
λmax . A symmetrical matrix is a peculiar case of a 
selfadjoint operator, which has the advantage of being very 
usefull in bimatrix symmetrical games. A selfadjoint 
operator allows us to introduce utilities aij ϵℂ defined on 
complex numbers. 
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To sum up, Quantum Mechanic axioms are the result of 
the microscopic cooperative equilibrium among 
symmetrical players (quantum-object and human-subject). 
Also, properties of selfadjoint and evolution operators here 
proved, can be applied to two-player symmetric games. 
Moreover, this work is an  applicat ion of econophysics in 
Quantum Mechanics, see[8],[9]. 

This paper is organized as follows. The first section is a 
revision of the existent literature about cooperation, 
entanglement and the Hilbert space of random variab les. In 
the second section, we show the main theorems of complex 
games and its relat ionship with entanglement and ERP 
paradox. 

In the third section we can see Nash’s equilib rium in  
Hilbert spaces, evolution operator and steady state. The 
fourth section is the conclusion of this research. 

2. Cooperation in Economics and 
Quantum Mechanics 

We can denote any strategic-form game Гas Γ =
�N, �Sj �jϵN

, �uj �jϵN
�, where N is the set of players, Sj  is the 

set of strategies for player j; and uj : S → ℝ  is the utility 
payoff for player j. Here S = ∏ SjjϵN  denotes the set of all 
possible combinations or profiles of strategies that may be 
chosen by the various players. 

In general, a randomized strategy is any probability 
distribution over a set of strategies. We may denote such a 
randomized strategy in general by σ = (σ(s)sϵS ) , where 
σ(S)ϵΔ(S)  represents the probability of choosing s, 
uj = ∑ σ(s)u(s)sϵS , σ(s) = ∏ σj �sj �,Δ(S) = Δ(∏ SjjϵN )jϵN  
in correlated strategies and Δ(S) = Δ(∏ SjjϵN )  , in 
non-correlated strategies. Note that in general Δ(∏ SjjϵN ) ≠
∏ (ΔSj )jϵN . 

The concept of cooperation is important in game theory 
but is somewhat subtle. The term cooperate means "to act 
together, with a common purpose". 

The common purpose can be explicit, when players add or 
multip ly energy or utility (synergy principle). Complex 
game theorem shows us that if we cooperate (to add or to 
multip ly utility), then the results are correlated strategies and 
actions in order to maximize �∑ uj

n
j=1 �or (∏ uj )n

j=1 . 
Definition 1.Complex-Game. We may define a 

cooperative transformation to be any mapping Ψ, such that if 
Гis a simple-game in strategic-form, then Ψ(Г) is another 
complex-game in strategic-form. 

Entanglement concept and dependence are related. 
Entanglement is a general physical concept; nevertheless, 
sometimes it is used in correspondence with mathematical 
correlation. On the other hand, dependence is a  mathematical 
concept which is more general than correlation because if 
two stochastic variables ξand ηare uncorrelated (ρ(ξ,η)=0), it 
does not follow that they are independent, see[16]. 

Definition 2.Dependent Strategy. A dependent (correlated) 
strategy for N players is any classic probability distribution 

in (S), where σ(s) ≠ ∏ σjjϵN (sj ), σ(s)ϵ Δ(S), and Δ(S) =
Δ(∏ SjjϵN ). Note Δ(∏ SjjϵN ) ≠ ∏ Δ(Sj )jϵN . 

Theorem 1. If a complex-game (cooperative game) is built  
such us (u) = ∑ uj

n
j=1  , or φ(u) = ∏ uj

n
j=1  , then density 

functions of  φ(u)  are respectively dFz (z) = ∫ dF(z −ℝn−1

∑ uj , u2, … , un
n
j=2 ) ordFz(z)= ∫

dF(z/ ∏ uj,u2,…,un
n
j=2 )

∏ |uj|n
j=2Rn-1 . 

Proof. Let UjϵN  be random variables with joint 
distribution function  FU 1…U n , and φ(u) = ∑ uj

N
j=1  be a 

Borel function. If we put Z = φ(u) we see at once that  
FZ(z) = ∫ dF(uj ){u j :∑ u j≤zn

j=1 }                (1) 

= � I�u j:∑ u j≤zn
j=1 ��uj �dF(uj )

ℝn

 

= � I�u j:∑ u j≤zn
j=1 � �(u) dF(u1 − � uj , u2, … , un

n

j=2

)
ℝℝn−1

 

Note that incentive constraint (synergy principle) is 
respected because in the integral z ≥ ∑ uj

n
j =1 . 

FZ(z) = ∫ ∫ dF
z

−∞ (u1 − ∑ uj , u2, … , un
n
j=2 )ℝn−1   (2) 

= ∫ ∫ dFℝn−1 (u1 − ∑ uj , u2, … , un
n
j =2 )

z
−∞   (3) 

using the last equations we can write the density function 
of Z. 

Fz (z) = ∫ dFℝn −1 (u1 − ∑ uj , u2, … , un
n
j=2     (4) 

Let UjϵN  be random variables with joint distribution 
functionsFU 1…U n , and φ(u) = ∏ uj

n
j=1  be a Borel function. 

The synergy principle is taken into account because in the 
integral ∏ uj

n
j=1 ≤ z. If we put = φ(u) ; we see at once 

that: 
FZ(z) = ∫ dF(uj ){u j :∏ u j

n
j=1 ≤z}             (5) 

= ∫ I�u j:∏ u j
n
j=1 ≤z�(u)dF(u)ℝn         (6) 

= ∫ ∫ I{u 1:u 1≤z}ℝ (u)
dF (u 1/ ∏ u j ,u 2,…,u n

n
j=2 )

∏ |u j|n
j =2

ℝn−1 (7) 

FZ(z) = ∫ ∫
dF (u 1/ ∏ u j ,u 2,…,u n

n
j=2 )

∏ |u j|n
j =2

z
−∞ℝn−1   (8) 

= ∫ ∫
dF (u 1/ ∏ u j ,u 2,…,u n

n
j=2 )

∏ |u j|n
j=2

ℝn−1
Z

−∞   (9) 
using the last equations we can write the density function 

of Z. 

Fz (z) =
dF (z/ ∏ u j ,u 2,…,u n

n
j =2 )

∏ |u j|n
j=2

         (10) 

2.1. The Hilbert Space of Random Variables with Fini te 
Second Moment 

1. An important role among Banachspaces Lp ,p ≥ 1, is 
played by the space L2 =  L2(Ω, ℱ , P) , the space of 
(equivalence classes of) random variables with finite second 
moments, see[16], pag 260-280. 

If ξ  and ηϵ L2 , we put the inner product as 
(ξ, η) =< 𝜉𝜉|𝜂𝜂 > = 𝐸𝐸𝜉𝜉𝜂𝜂         (11) 

Also, the space L2is complete with respect to the norm 
induced by the scalar product  

‖ξ‖ = (ξ, ξ)1/2                (12) 
2. Two random variab les ξ and η ϵ L2 are said to be 
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orthogonal (ξ ⊥ η)if (ξ, η) = Eξη = 0. In other words, they 
are uncorrelated cov(ξ, η) = 0, i.e . 

𝐸𝐸𝜉𝜉𝜂𝜂 = 𝐸𝐸𝜉𝜉𝐸𝐸𝜂𝜂                (13) 
It fo llows that the properties of being orthogonal and of 

being uncorrelated coincide for random variables with zero 
mean values. 

3. Let M = {η1, … , ηn }be an orthonormal system and 𝜉𝜉 
any random variab le in  L2 . Consequently the best (in the 
mean-square sense) estimator forξ in terms of η1, … , ηn  is  

ξ̂ = ∑ (ξ, ηj )ηj
n
j=i               (14) 

Hilbert  space methods are extensively used in  probability 
theory to study properties that depend only on the first two 
moments of random variables (“L2  -Theory”). 

4. Let Hm1 ,… , Hmn be Hilbert spaces with bases 
{𝕒𝕒1

j , … , 𝕒𝕒mj
j }  . The tensor product of spaces H =

Hm1 ,… , Hmn is denoted by H = Hm1 ⨂…⨂ Hmn . 
Using Dirac’s notation, space H has ordered elements 

�aj1
1 ,… , ajn

n �  =  |aj1
1 >. . . |ajn

1 > = |aj1
1 ,… , ajn

n >  (15) 
as a basis, thus H has dimensionm1m2 ∗ … ∗ mn . 
As in the case of classic and probabilistic systems, the 

basis states of the compound system H can be thought of  
�aj1

1 ,… , ajn
n �elements. It is natural to represent the general 

state of the compound system as 
∑ … ∑ αj1… jn (aj1

1 , … , ajm
j )mn

jn=1
m1
j1 =1          (16) 

where ∑ … ∑ |αj1…jn |2mn
jn =1 = 1m1

j1=1 . We say 
decomposable system if: 

∑ … ∑ αj1… jn (aj1
1 , … , ajn

n )mn
jn=1

m1
j1 =1          (17) 

= � αj1 αjn |𝕒𝕒j1
1 >

m1

j1=1

… � |𝕒𝕒jn
n >

mn

jn =1

 

= �� αj1 |𝕒𝕒j1
1 >

m1

j1 =1

� … � � αjn |𝕒𝕒jn
1 >

mn

jn =1

� 

Definition 3. We say that the compound system is 
entangled if it is not decomposable. 

2.2. Correlated Game and ERP Paradox 

In Quantum Information  Theory, the correlated equilib ria 
in two-player games mean that the associated probabilities of 
each-player strategies are dependent. Entanglement, 
according to the Austrian physicist Erwin Shrödinger, which 
is the essence of Quantum Mechanics, has been known for a 
long time now to be the source of a number of paradoxical 
and counterintuitive phenomena. Of those, the most 
remarkable one is the so-called non-locality, which is at the 
heart of the Einstein-Podolsky-Rosen paradox (ERP) 
see[12]pag 12. Einstein, Podolsky and Rosen consider a 
quantum system consisting of two particles separated by a 
great distance. 

“EPR suggests that measurement on particle 1 cannot have 
any actual influence on particle 2 (locality condition); thus 
the property of particle 2 must be independent of the 
measurement performed on particle 1”. 

Nevertheless, the experiments verified that two particles 

in the EPR case are always part of one quantum system and 
thus measurement on one particle changes the possible 
predictions that can be made for the whole system and 
therefore for the other particle[5]. 

Moreover, the essence of the EPR argument is as follows. 
EPR was interested in what termed  “elements of reality”. 
Their belief was that any such element of reality must be 
represented in any complete physical theory. The goal of the 
argument was to show that Quantum Mechanics is not a 
complete physical theory, by identifying elements of reality 
that were not included in Quantum Mechanics. The way they 
attempted to do this was by introducing what they claimed 
was a sufficient condition for a physical property to be an 
element of reality, namely, that it be possible to predict with 
certainty the value that property will have, immediately 
before measurement, see[15]. 

To illustrate, applying “revelation principle” for 
strategic-form games, the EPR paradox is solved 
automatically, because this principle demonstrates that all 
correlated game (entanglement) can be rep laced by a 
communicat ion game, see[14]. 

“...any equilibrium of any communication game can be 
generated from a strategic-form game Г  by adding a system 
for preplay communication mustbe equivalent to a correlated 
equilibrium...”  

Thus, according to[1], “a correlated equilibrium is any 
correlated strategy for the players in Г that could be 
self-enforcing ly implemented with the help  of a mediator 
who can make nonbinding confidential recommendations to 
each player.” 

Finally, nature is optimal and does not need to have 
replied or equivalent properties simultaneously such as 
(entanglement  /\ communicat ion).Therefore, we are in the 
presence of an exclusive-or (entanglement \/ communicat io
n). 

If in  a theoretical or experimental way we can demonstrate 
that a system (n  -player game) is entanglement, then ifis not 
necessary to speak of communicat ion. In short, game theory 
helps to resolve EPR paradox. 

3. Nash’s Equilibrium in Hilbert Space 
The modern description of Quantum Mechanics is 

profoundly based on linear mappings. Here, we represent the 
features of linear mappings which are most essential for 
Quantum Mechanics. Because we main ly concentrate on 
fin ite level quantum systems, the vector spaces that are 
treated hereafter will be assumed to have a fin ite dimension, 
unless exp licitly stated otherwise, see[7]. 

Let  us begin with some terminology: a linear mapping 
H→H is called an operator. The set of operators on H is 
denoted L(H): For an operator T;  we define the norm of the 
operator by  

‖T‖ = sup‖x‖=1‖Tx‖ = λmax        (18) 
A nonzero vector x∈ H is an eigenvector of T belonging to 

eigenvalue λ∈ℂ if T x = λ x. 
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Remark 1. With  a fixed  basis{e1, . . . , en }of H; any operator 
T can be represented as n × n  matrix over the field of 
complex numbers. It is not difficult to see that the matrix 
representing the adjoint operator T*  is the t ransposed 
complex conjugate of the matrix representing T. 

Definition 4. An operator T is selfadjo int if T = T*. An 
operator T is unitary if T = T-1. 

Lemma 1. A selfadjo int operator has real eigenvalues.  
Proof.IfAx = λ xthen using braked notation where x = | x > 

is a column vector and x’ = < x | is a row vector. 
λ∗ < 𝑥𝑥|𝑥𝑥 >=< 𝜆𝜆𝑥𝑥|𝑥𝑥 >=< 𝐴𝐴𝑥𝑥|𝑥𝑥 >= 𝜆𝜆 < 𝑥𝑥|𝑥𝑥 > 

since|x >≠ 0 as an eigenvector, it fo llows that λ* = λ. 
Lemma 2. The eigenvectors of selfadjoint operators 

belonging to distinct eigenvalues are orthogonal.  
Proof. Assume that λ ≠ λ′ , Ax = λx , and Ax′ = λ′x′ . 

Since λ, λ′ are real by the previous lemma, 
λ′ < 𝑥𝑥′|𝑥𝑥 >=< 𝐴𝐴𝑥𝑥′|𝑥𝑥 >=< 𝑥𝑥′|𝐴𝐴𝑥𝑥 >= 𝜆𝜆 < 𝑥𝑥′|𝑥𝑥 > and 

therefore < 𝑥𝑥′|𝑥𝑥 >= 0. 
Theorem 2. The matrix of eigenvectors X is unitary  X* = 

X-1which permits us to write the spectral theorem A =
XΛX−1 = ∑ λj |x(j) >< x(j) |. 

Proof.Assume that A�x(j) >= λj �x
(j) > where  

x(j) = |x(j) >= �x1
(j)

xn
(j) � represents a column vector and 

X = (x(1) … x(n) ) is a n × n - matrix. Also it  is easy to see 
that AX = ΛX where 

Λ = �

λ1 0 0 0
… … … …
0 0 λj 0
0 0 0 λn

�           (19) 

Using matrix properties and vector orthogonality <
x(i) |x(j) >= 0 when i ≠ j and < x(j) |x(j) >= 1 for all j. 

X ∗ X =

⎝

⎜
⎛

�x(1) �x(1)� 0 0 0
… … … …
0 0 �x(j)�x(j)� 0
0 0 0 �x(n)�x(n)�⎠

⎟
⎞

 (20) 

Thus, we conclude that X∗ = X−1. Here the symbol (* ) 
means hermit ian transpose. Finally, using AX = ΛX , it is 
possible to write the spectral theorem. 

𝐀𝐀 = 𝐗𝐗𝐗𝐗𝐗𝐗−𝟏𝟏 = 𝐗𝐗𝐗𝐗𝐗𝐗−𝟏𝟏 = ∑ 𝛌𝛌𝐣𝐣|𝐱𝐱
(𝐣𝐣) >< 𝐱𝐱 (𝐣𝐣) |𝐧𝐧

𝐣𝐣=𝟏𝟏  (21) 
𝐗𝐗 = 𝐗𝐗−𝟏𝟏𝐀𝐀𝐗𝐗                 (22) 

We should revise the following postulates with the 
purpose of finding a relat ionship between Nash’s 
equilibrium and the eigenvalues of Quantum Mechanics 
operators. 

First Postulate:At a fixed point t0, the state of a physical 
system is defined by specifying a ket |𝐱𝐱(𝐭𝐭𝟎𝟎) > belonging to 
the Hilbert space (state space) H. 

Second Postulate:Every measurable physical quantity A is 
described by an operator A acting in the state space H. 

Third Postulate:The only possible result of the 
measurement of a physical quantity A is one of the 
eigenvalues of the corresponding observable A. A 
measurement of A always gives a real value, since A is by 
definit ion Hermit ian (selfad joint operator). 

A measurement process in Quantum Mechanics is the best 
example of strategic interaction between “human-subject 
and quantum-object”. Therefore, we have a min imum of two 
symmetric players when we carry out a measurement p rocess 
of a physical variab le. 

Theorem 3.The norm of a selfadjo int operator. The 
maximum eigenvalue λmax = max‖x‖=1 < 𝑥𝑥|𝐴𝐴|𝑥𝑥 > 
represents the maximum expected value of the selfad joint 
operator A and its eigenvector |xmax > is a fixed point  

A
λmax

|xmax >= |xmax >  

Proof.The problem to maximize has the next  Lagrangian: 
ℒ =< x|A|x > −𝜆𝜆(< 𝑥𝑥|𝑥𝑥 > −1)       (23) 

first order condition ∂ℒ
∂ < x|� = 0implies the equation 

of eigenvectors. 
A|X > −𝜆𝜆|X ≥ 0             (24) 

Let max < 𝐴𝐴 >H  be the maximum expected value in a 
Hilbert space, using equations (20), (21), (22). 

max < 𝐴𝐴 >H = max‖x‖=1 < 𝑥𝑥|𝐴𝐴|𝑥𝑥 > 
= max‖x‖=1 < 𝑥𝑥|XX −1AXX−1|x >(25) 

max‖y‖=1 < 𝑦𝑦|X−1AX|y >= max‖y‖=1 < 𝑦𝑦|𝛬𝛬|𝑦𝑦 > 
we can write < 𝑦𝑦| = 𝑋𝑋 < 𝑥𝑥| , |y >= X∗|x >  and <

𝑦𝑦|y >=< 𝑥𝑥|x >= 1. Using these last equations we have 
max < 𝐴𝐴 >H = max‖y‖ =1 ∑ λj �yj �

2
= λmax

n
j=1    (26) 

Another form in order to choose < 𝐴𝐴 >H  is using the 
orthogonal eigenvectorxmaxwhere 

A|xmax >= λmax |xmax >. 
max < 𝐴𝐴 >H =< xmax |A|xmax > 

= λmax < xmax |xmax >= λmax (27) 
Lemma 3.Nash’s equilibrium in Hilbert space. In  mixed  

strategy Nash’s equilibrium, the eigenvector which 
maximizes < 𝐴𝐴 >H =< 𝑥𝑥|𝐴𝐴|𝑥𝑥 >  also maximizes expected 
utility, 
where max‖x‖=1E(u) = max < 𝐴𝐴 >H =< pmax |A|pmax >  
and 

pmax = �
|x1

max |2

…
|xn

max |2
�              (28) 

Proof. Let A be the matrix of utilit ies in a bimatrix game 
where expected utility is given by  

E(u) =< 𝐴𝐴 >H =< 𝑝𝑝|A|p > (29) 
taking into account the properties of the eigenvector 

matrix X; and of the orthogonal eigenvector ‖x‖ = 1 and 
equations (20), (21), (22). 

max ‖x‖=1 < 𝐴𝐴 >H = max ‖x‖=1 < 𝑝𝑝|A|p > 
= max‖x‖=1 < 𝑝𝑝|XX−1AXX−1|p >(30) 

= max‖z‖<1 < 𝑧𝑧|X−1AX|z >= max‖z‖<1 < 𝑧𝑧|𝛬𝛬|𝑧𝑧 > 
we can write < 𝑧𝑧| =< 𝑝𝑝|𝑋𝑋 , |z >= X ∗|p > , where 

‖z‖ =< 𝑧𝑧|𝑧𝑧 >,‖p‖ =< 𝑝𝑝|𝑝𝑝 > and ‖z‖ = ‖p‖ < 1. Using 
these last equations, we have mixed strategy Nash’s 
equilibrium. 

max < 𝐴𝐴 >H = max ‖z‖ ∑ λj |zj |2n
j=1 = ∑ λj |zj

max |2n
j =1 (31) 

It is evident that there is a 
vector 𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥 = (𝑧𝑧1

𝑚𝑚𝑚𝑚𝑥𝑥 , … , 𝑧𝑧𝑛𝑛
𝑚𝑚𝑚𝑚𝑥𝑥 )∗ where A|xmax >=

λmaxxmax> and  
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∑ λj |zj
max |2 ≥n

j=1 ∑ |zj |2n
j=1 for all |z >≠ |zmax >  (32) 

This last result follows 

max < 𝐴𝐴 >N = � λj |zj
max |2 =< pmax |A|pmax >

n

j=1

 

Moreover, in the case of a min imum, the problem can be 
resolved in a similar way. Finally, obtaining Nash’s 
equilibrium not only requires fixed point theorem but also 
maximization of expected utility. 

Example 1. Let A be a matrix of utilit ies of a bimatrix 
symmetrical game.  

Λ =

⎝

⎜
⎛

1 4 + 2i −1 −i 1
4 − 2i −3 0 1 −2

−1 0 4 1 6
i 1 1 2 2
1 −2 6 2 5 ⎠

⎟
⎞

 (32.1) 

Eigenvalues 𝜆𝜆 𝑖𝑖  are every one of the diagonal matrix 
elements of Λ. 

Λ =

⎝

⎜
⎛

−6.8998 0 0 0 0
0 −0.95157 0 0 0
0 0 1.4939 0 0
0 0 0 4.1909 0
0 0 0 0 11.167⎠

⎟
⎞

 

(32.2) 
Eigenvectors |x(j) >  permit us to build the matrix 

X = (x(1) x(2) x(3) x(4) x(5) ), where AX = XΛ  and |p(j) >=

(�x1
(j) �

2
… �x5

(j) �
2

)∗ . 

��x(1) �〉 =

⎝

⎜
⎛

0.26427 + 0.4346i
−0.64996 − 0.41449i
0.13389 + 0.13615i

0.15748 + 4.2475 ∗ 10−2i
−0.22542 − 0.18198i ⎠

⎟
⎞

,  

��𝑥𝑥(2) �〉 =

⎝

⎜
⎛

−0.07805 − 0.12936𝑖𝑖
0.31519 − 5.8172 ∗ 10−2𝑖𝑖
0.70702 + 5.2601 ∗ 10−2𝑖𝑖
1.6195 ∗ 10−2 + 0.08144𝑖𝑖

−0.53318 − 7.8377 ∗ 10−2𝑖𝑖⎠

⎟
⎞

, 

��𝑥𝑥(3) �〉 =

⎝

⎜
⎛

−0.15051 − 0.24753𝑖𝑖
−0.20756 + 0.10282𝑖𝑖

−8.1646 ∗ 10−2 − 0.14713𝑖𝑖
0.13679 + 0.89366𝑖𝑖

−1.3781 ∗ 10−2 − 0.12875𝑖𝑖⎠

⎟
⎞

, 

��x(4) �〉 =

⎝

⎜
⎛

0.41293 + 0.67912i
0.39287 + 0.29085i

6.2676 ∗ 10−2 − 0.12865i
−3.2464 ∗ 10−2 + 0.31429i

7.6227 ∗ 10−2 + 5.6713 ∗ 10−2i⎠

⎟
⎞

,  

��x(5) �〉 =

⎝

⎜
⎛

−2.8648 ∗ 10−2 − 4.7116 ∗ 10−2i
−0.10129 − 1.2945 ∗ 10−2i
0.64119 + 3.1297 ∗ 10−2i
0.22202 + 5.1332 ∗ 10−2i
0.72408 + 2.8675 ∗ 10−2i ⎠

⎟
⎞

 

Using equations (25), (26), (27), (30), (31), and (32) by 
simple inspection, it is possible to verify that 
< xmax |A|xmax >= 11.167 = λmax > λ4 > λ3 > λ2 > λ1 . 

On the other hand, we can see that < pmax |A|pmax >=
4.7836 >< p2|A|p2 >= 3.7295 >< p3|A|p3 >=

1.5641 >< p4|A|p4 >=  1.4919 >< p1|A|p1 >=
 0.18383  in the same manner 

� λj �zj
max �

2
n

j =1

= 4.7838 > � λj �zj
(2) �

2
n

j=1

 

= 𝟑𝟑. 𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕 > � 𝛌𝛌𝐣𝐣�𝐳𝐳𝐣𝐣
(𝟑𝟑) �

𝟕𝟕
𝐧𝐧

𝐣𝐣=𝟏𝟏

 

= 𝟏𝟏. 𝟓𝟓𝟕𝟕𝟓𝟓𝟏𝟏 > � 𝛌𝛌𝐣𝐣�𝐳𝐳𝐣𝐣
(𝟓𝟓) �

𝟕𝟕
𝐧𝐧

𝐣𝐣=𝟏𝟏

 

= 𝟏𝟏. 𝟓𝟓𝟕𝟕𝟏𝟏𝟕𝟕 > � 𝛌𝛌𝐣𝐣�𝐳𝐳𝐣𝐣
(𝟏𝟏) �

𝟕𝟕
𝐧𝐧

𝐣𝐣=𝟏𝟏

 

= 𝟎𝟎. 𝟏𝟏𝟏𝟏𝟑𝟑𝟏𝟏 
where ��𝐳𝐳 (𝐣𝐣) 〉� = 𝐗𝐗∗��𝐩𝐩(𝐣𝐣) 〉�. 

3.1. Cooperative Games in a Complex System Language 

We present cooperative games in the language of 
Complex Systems. Incentive compatib ility is equivalent to 
synergy principle, which  appears naturally (to add or to 
multip ly utilities); on the other hand, coordination and 
communicat ion have the same implications of correlat ion, 
see[14] page 256. Moreover, correlated strategies have a 
similar concept in Quantum Computing named  entanglement. 
Correlation doesn’t guarantee cooperation although this is 
equivalent to communication. 

First, we need to replace the Nash Bargaining solution in 
two-person symmetric games. We define a bimatrix 
bargaining problem Г o consist of a pair (F; u) where F is a 
closed convex subset of ℝ2; u = (u; u) is a vector in ℝ2 and 
the set 

𝐅𝐅 ∩ ��𝐮𝐮�𝛔𝛔(𝐬𝐬) �,𝐮𝐮�𝛔𝛔(𝐬𝐬)�� �𝛔𝛔(𝐬𝐬)𝛜𝛜∆(𝐒𝐒)�     (33) 

is nonempty and bounded. Here F represents the set of 
feasible payoff allocations of the feasible set, and v 
represents the disagreement payoff allocation of the 
disagreement point. The utility is represented by 

〈𝐮𝐮〉 = � 𝛔𝛔(𝐬𝐬) 𝐮𝐮(𝐬𝐬)
𝐬𝐬𝛜𝛜𝐒𝐒

 

Second, there is a unique solution Φ(.,.) that satisfies the 
axioms of Nash´s bargaining solution. This solution function 
satisfies, for every two-person bargaining problem (𝐅𝐅, 𝐯𝐯); 

𝚽𝚽(𝐅𝐅, 𝐯𝐯)𝛜𝛜 𝐚𝐚𝐚𝐚𝐚𝐚 𝐦𝐦𝐚𝐚𝐱𝐱 𝐳𝐳𝛜𝛜𝐅𝐅 ,   𝐳𝐳≥𝐯𝐯(𝐳𝐳 − 𝐯𝐯)𝟕𝟕       (34) 
Quantum elements such us photons, electrons, 

subject-object have symmetrical physical propert ies and its 
two- player cooperative solution is the same for each one. 

Finally, the special case of cooperation between 
symmetric part icles or “human-subject andquantum-object” 
is when 

v = 0, u = ⟨p|A|p⟩, �|p� 〉 = �
|x1|2

…
|xn |2

� 

and the Hermitian operator A can have complex or real 
values aij. Consequently, we can write Φ(F; 0) in Hilbert 
space 

z = Φ(F. 0) = ⟨pmax |A|pmax ⟩        (35) 
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�𝐀𝐀|𝐱𝐱𝐦𝐦𝐚𝐚𝐱𝐱 �〉 = �𝛌𝛌𝐦𝐦𝐚𝐚𝐱𝐱 |𝐱𝐱𝐦𝐦𝐚𝐚𝐱𝐱 �〉 

3.1.1. Evo lution and Density Operators in Two-Player 
Symmetric Games 

Let us begin to write the expected utility E(u)  =  u of the 
operator (symmetric matrix) A that represents utilit ies. Here, 
we use Dirac´s notation (braket ), where | �. 〉� represents a 
column vector or ket  and 〈�. |� is a row vector or bra, and 
|�. 〉� = (〈�. |)�∗ . 

E(u) = u = 〈A〉N = ⟨p|A|p⟩        (36) 
the dynamic rep licator equation in matrix form 

d | �p 〉�

dt
= �

u − u1 0 0
⋯ ⋯ ⋯
0 0 u − u1

0
⋯
0

         0      0     0u − u1

� �|p� 〉    (37) 

d| �p〉�

dt
= U �|p� 〉 

let us write total derivative of expected value 〈A〉N 
d 〈A〉N

dt
= �d 〈�p | �

dt
� A�|p� 〉 + �p�(∂ A

∂t
)�p� + 〈�p| �A(d | �p 〉�

dt
)  (38) 

usinga explicit form of d | �p 〉�

dt
= U|�p〉�, d 〈 �p | �

dt
= 〈�p|�U∗ and 

given that U=U* we can write 
d 〈A〉N

dt
= 〈�p| �UA�|p� 〉 + �p� �∂A

∂ t
� �p� + 〈�p|�AU �|p� 〉    (39) 

𝑑𝑑〈𝐴𝐴〉𝑁𝑁
𝑑𝑑𝑑𝑑

= 〈�𝑝𝑝|�𝑈𝑈𝐴𝐴 + 𝐴𝐴𝑈𝑈�|𝑝𝑝�〉 + �𝑝𝑝� �𝜕𝜕𝐴𝐴
𝜕𝜕𝑑𝑑

� �𝑝𝑝�     (40) 

using the nomenclature of an anticonmutator {U, A} =
UA + AU 

d 〈A〉N
dt

= 〈{U, A}〉 + 〈∂A
∂ t

〉           (41) 
In a similar way, we can find evolution equation of density 

ρ = �|p� 〉〈�p|� 
d ρ
dt

= �d �|p �〉

dt
� 〈�p| � + �|p� 〉 �d 〈�p | �

dt
�         (42) 

d ρ
dt

= U�|p� 〉〈�p|� + �|p� 〉〈�p|�U          (43) 
d ρ
dt

= {U, ρ}                  (44) 
The evolution operator has integrated properties of 

symmetric games in strategic form and replicator dynamics 
in matrix form. 

Steady State. Remember equations (20), (21), (22), 
specially AX=XΛ  and if we suppose that〈∂A

∂ t
〉 = 0, then it 

follows that 
d 〈A〉N

dt
= 〈{U, A}〉               (45) 

By simple inspection, we can verify  that the variab le Uof 
the equation (37) can be written asU = 〈A〉N I − Λreplacing 
in equation (45) 

d 〈A〉N
dt

= 〈2A〈A〉N − {A,Λ}〉         (46) 
Simplifying equation (46) 

d 〈A〉N
dt

= 2〈A〉N
2 − 〈{A,Λ}〉         (47) 

Thus, if steady state is gotten when d 〈A〉N
dt

= 0, then 
2〈A〉N

2 − 〈�P|{A,Λ}|P� 〉 = 0         (48) 

3.2.Tunneling an Explicit Phenomenon of Optimal 
Cooperation 

From viewpoint of classical mechanics, an electron cannot 

overcome a potential barrier higher than its energy. However, 
according to quantum mechanics, electrons are not defined 
by a precise position, but by a cloud of probability. This 
means that in some systems this probability cloud extends to 
the other side of a potential barrier. Therefore, the electron 
can cross the barrier, and for example, to generate electric 
current. This current is called the tunnel current and it  is the 
control parameter that allows us to describe the topography 
of any surface.[5],[16]. 

A body with energy less than what is required to  overcome 
or pass through a potential barrier can do it. There is a 
probability greater than zero, that a body goes through a 
potential barrier even if less energy is needed. 

There is a probability g reater than zero, to find an  object or 
phenomena associated due to its presence outside the 
potential barrier of energy higher than the same. 

Tunnel Effect in Hydrogen Bonds  
Consider us the interaction of two water molecules, which 

form part of a larger complex, such as salt water clusters, 
where the NaCl is completely dissociated. If two water 
molecules form a hydrogen bond, then the hydrogen atom 
may or may not link to one of the oxygen atoms.[17],[18]. 

In our study we have families of clusters formed as 
follows: n-Na, n-Cl, n-Na-Cl, n-Cl-Na, n-H2O, with n, m, s 
element of the natural numbers. 

n(water molecules)-m(sodium atoms)-s(chlorine atoms).  
Hydrogen and oxygen atoms of two water molecu les are a 

distance below the threshold. On the other hand, a hydrogen 
appears uncoupled between two oxygen atoms, that is not 
linked specifically to any of the two oxygens and your 
extreme oscillatory  motion penetrates the molecular o rbitals 
of the two oxygen atoms, then we have a potential or feasible 
tunnel effect. 

When hydrogen atom penetrates the orbital of one of the 
oxygen atoms, evidently out of the potential barrier of the 
other oxygen atom and vice versa. This implies that is 
constantly out of one of the potential barriers or put in 
another way: there is a probability  greater than zero, that an 
atom leaves a potential barrier having a kinetic energy less 
than the height of the potential barrier. 

Theorem.Tunnel effect is a phenomenon that emerges 
from external incitement such us catalysts presence and 
when the interior cooperation is maximum. 

Proof.- Let it be a complex system of n players (quantum 
objects) i = 1, ..., n, with a total energy E, which is the sum of 
each of energies Ei. Given a set of thresholds ui, which 
correspond one to one to each player i, where Ei<ui. An 
infinitesimal change in the total system energy dE / dt, can 
cause a considerable variation in a specific energy of one 
players i, ((ΔEi)/(Δt)), which exceeds the respective 
threshold that player ui/Δt. 

((dE)/(dt))=((ΔEi)/(Δt))>((ui)/ (Δt)). 

3.2.2. Results 

First, according to our interpretation, the second law of 
thermodynamics is fulfilled, as it exp licit ly states that "given 
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entropy, system energy is minimal since given energy, 
system entropy is maximum." We also know that in a state of 
equilibrium, the values taken by the characteristic 
parameters of a closed thermodynamic system are such that 
maximize the value of a certain magnitude called entropy. In 
this case, we are analyzing two related systems, which 
change entropy and energy value, this evolution  cannot be 
explained by the second law of thermodynamics but can be 
explained by Theory of Quantum Games. 

Second, following Game Theory and the Theory of 
Quantum Games, we say the optimal evolution of a complex 
system min imizes the entropy. Figure 1, Figure 2 and Figure 
3. 

 
Figure 1.  Cooperation and Minimum Entropy. We can observe, the left 
side cluster, where there are one sodium atom, one Chloride atom, and 
twelve water molecules, which are in equilibrium. That is, the balance of 
forces is zero and the energy of the system is minimal. The intermediate 
cluster consists of a sodium atom, a Chlorine atom and ten water molecules, 
also it is in equilibrium. The cluster on the right is the union of the previous 
clusters. Meanwhile also the right cluster is in equilibrium. The question is 
what happens to the value of entropy and energy when you bind left  cluster 
on intermediate cluster. Just note that the resulting entropy of joining two 
clusters is less than the sum of individual entropies. We can verify that 
303,718 Cal / Mol-Kelvin < 369.267 Cal / Mol-Kelvin. On the side of the 
energy we observe to increases: 457.768 Kcal > 451.420 Kcal. Entropy 
system is decreasing and energy is increasing. What Happens with second 
law of Thermodynamics with 

Third, on the other hand, the cooperative equilibrium, 
maximize an objective function called utility, which is 
exactly equivalent to the energy of a thermodynamic system. 
In this particular example, we see that in both cases, entropy 
is minimized but not maximized energy, there is cooperation 
in the oxygen atoms that are the same type, whereas when 
there are atoms of different  type converge to an equilibrium 
but not necessarily in a cooperative manner. Figure 2, Figure 
3. 

Fourth, using the analogy in question, we demonstrate 
experimentally and with the help of Quantum Chemistry that 
clusters of molecules that interact cooperatively, min imize 
entropy and maximize energy, which  is the fundamental 
assumption of the Quantum Theory of Cooperative Games, 

which is the cornerstone of our d iscussion of tunneling in salt 
water and its future use. Figure 4. 

 
Figure 2.  Left side cluster has 5 H2O molecules and it  is in equilibrium. 
That is, the balance of forces is zero and the energy of the system is minimal. 
Right side cluster is composed by ten water molecules. Meanwhile also the 
right cluster is in equilibrium. It  is easy to see that entropy resulting from 
joining two identical clusters is less than the sum of individual entropies. We 
can verify that 136,836 Cal / Mol-Kelvin < (90.329 + 90.329) Cal / 
Mol-Kelvin. On the side of energy, we could verify that energy increases: 
205.723 Kcal > (101.355 +101,355) kcal. Again, entropy decreases and 
energy increases, what happens with the second law of thermodynamics 

 
Figure 3.  In left side cluster where there are two water  molecules, it  is in 
equilibrium. The intermediate cluster has a sodium atom and two water 
molecules, also it is optimized. Right side cluster is formed by union of left 
cluster and intermediate cluster. Meanwhile also right cluster is in 
equilibrium, according to four Gaussian criteria: Maximum Force, RMS 
Force, Displacement and RMS Maximum Displacement. It  is easy to see 
that the resulting entropy of merging two clusters, left  and middle is less 
than the sum of individual entropies. We can verify that 115.391 Cal / 
Mol-Kelvin < (66.585 +76,585) Cal / Mol-Kelvin. On the side of energy, we 
could verify that energy decreases: 71.361  Kcal< 72.505 Kcal. The 
entropy and energy decrease. What happens to the second law of 
thermodynamics 

Fifth, it is evident that pure water clustering tunnel effects 
not occur due to the non-presence of a NaCl-type catalyst. 
Figure 2. 

Finally, theory of cooperative games makes clear that 
despite obtaining an invariant represented by entropy 
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minimizat ion, it is required  energy maximization. Figure 
4and Figure 8. 

 
Figure 4.  Cluster three is the union of cluster number one and cluster 
number three, and each one is in equilibrium. Cluster four is in equilibrium 
and observing its vibration frequency spectrum, it is clear that they have a 
large scatter in data, that otherwise have high statistical entropy.  Physical 
entropy value of cluster three is minimal compared to cluster four value 
(198.42 Cal / Mol-Kelvin  < 250.623 Cal / Mol-Kelvin), while its energy is 
maximum, respectively (335.536 Kcal > 303.44 kcal) 

 
Figure 5.  The left  spectrum corresponds to  third cluster in Figure 4, 
while the second spectrum corresponds to cluster four. We note in the graph, 
the spectral line 2825.32 (1/cm) corresponding to a frequency of tunneling, 
which disappears in the cluster number four 

 
Figure 6.  Using a equipment to measure O2 concentration (AGS-688 y 
EGA-688 de BRAINBEE), we can verify presence of hydrogen because, 
when we do photo splitt ing salt  water, appears oxygen and hydrogen 
simultaneously. In this figure we can see that O2 concentration increase 
with time, in reference with O2 base concentration equal to 20,64 % and salt 
concentration 30% wt 

The presence of a positive catalyst lowers the energy of 
the system, allowing it to develop a reaction with less energy 
and faster. Increasing effectiveness and reaction output 
power. 

Theoretical  Results. 
One player (molecu le, quantum element, water) which 

verifies Nash´s equilibria is intelligent and optimize one 
utility function. That is the case of salt water. 

Each physical variable is represented by anHermit ian 

operator whose norm allows us to obtain mixed strategy 
Nash's equilibrium in Hilbert space. 

 
Figure 7.  Differences of energy and entropy in the presence of a catalyst, 
as the case of sodium. The inner energy of the system without catalyst is 
lower, while the entropy is higher, which is logical, since the mere presence 
of the catalyst increases entropy 

 
Figure 8.  Variation of internal energy by presence of catalyst. The graphs 
left , right and middle explain that the internal energy is less when there is no 
catalyst (left graph). In the case of entropy, we know that it is minimal when 
there is no catalyst. To sum up, in a system it  is verified that the entropy is 
minimal and the energy is maximum when there is no catalyst 

By virtue of the theorems demonstrated in this paper, 
properties of Hermitian operators can only be used in 
symmetric games, which can be represented by complex 
matrix. 

Mixed strategy Nash's equilibrium in a bimatrix 
symmetric game represents a cooperative solution when 
exist correlation exclusive-or communicat ion. 

The idea of isolated physical systems has its explanation, 
the simplificat ion of variab les and relat ionships among the 
parts. On the contrary, complex systems analyze entirety, 
synergy and interactions as the cause of a common objective 
denominated cooperation. 

The measurement process in Quantum Mechanics and 
Photocatalysis in Quantum Chemistry is the best example of 

N O2 in Air
Salt Water
Splitting

O2 H2

1 20,64 20,64           -             -   

2 20,64 20,65 0,01 0,02

3 20,64 20,66 0,02 0,04

4 20,64 20,67 0,03 0,06

5 20,64 20,7 0,06 0,12

6 20,64 20,69 0,05 0,1

7 20,64 20,68 0,04 0,08
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strategic interaction between "quantum-subject (catalysts) 
and quantum-object (water) ." Therefore, we have a 
minimum of two players when we carry out a measurement 
of a physical variable such us energy, frequency, symmetry, 
and so on. 

Lemma named  Nash's equilibrium in Hilbert  space 
explains that In mixed strategy Nash's equilibrium, the 
eigenvector which maximizes <A>H=<x|A|x> also 
maximizes expected utility, where: maxE(u) =max<A>N 
=< 𝐩𝐩𝐦𝐦𝐚𝐚𝐱𝐱 |A|𝐩𝐩𝐦𝐦𝐚𝐚𝐱𝐱 >.To  use an analogy between utility and  
energy is exp lained in Jiménez, E.H (2003a, 2003b). 

Experimental Results. 
The presence of a positive catalyst lowers the energy of 

the system, allowing it to develop a reaction with less energy 
and faster. Increasing effectiveness and reaction output 
power. Figure 8. 

In Figure 4, we can verify  that standard deviation of 
spectrum has a relationship with system entropy. 

Simple Quantum Catalysis does not verifies Nash´s 
equilibria (min imum entropy and maximum energy). Figure 
8,9.We can see cluster quantum cooperation in figures 1, 2, 
4. 

 
Figure 9.  Equilibria Type as a function of Cooperation 

4. Conclusions 
•  Each physical variab le is represented by anHermitian  

operator whose norm allows us to obtain mixed strategy 
Nash’s equilibrium in Hilbert space. 
•  By virtue of the theorems demonstrated in this paper, 

properties of Hermitian operators can only be used in 
symmetric games, which can be represented by complex 
matrix. 
•  Mixed strategy Nash’s equilib rium in a bimatrix 

symmetric game represents a cooperative solution. 
•  The idea of isolated physical systems has its explanation, 

the simplificat ion of variab les and relat ionships among the 
parts. On the contrary, complex systems analyze entirety, 
synergy and interactions as the cause of a common objective 
denominated cooperation. 
•  The measurement process in quantum mechanics is the 

best example of strategic interaction between “human-subje
ct and quantum-object.”  

Therefore, we have a minimum of two p layers when we 
carry out a measurement of a physical variable such us 
energy, speed, momentum. 
•  In physics, the existence of isolated systems with 

different unique objectives and disconnected to each other is 
untenable. This paper shows the necessity of introducing 
other elements like cooperation and optimality as 
foundations of the laws of quantum mechanics. We proved 
that Nash’s equilibrium is the hidden optimal principle of 
quantum mechanics. 
•  The apparent ERP paradox is completely resolved by 

using revelation principle for strategic-form games, because 
it demonstrates that a correlated game is completely 
equivalent to a communicat ion game. 

Consequently, it is not necessary to speak of 
communicat ion and worse even of information speed if a 
game is already correlated. 
•  Econophysics is both to use rational approaches of 

economics in the foundations of physics (in special, quantum 
mechanics) and to transpose physics formalism of quantum 
theory, statistical mechanics, electrodynamics and others in 
economics. 
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