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Abstract  The subject of investigation is a SrBr2 laser generating at a wavelength λ = 6.45 µm. This type of laser gen-
eration is finding ever wider application in medicine when working with soft and bone tissue providing rapid subsequent 
recovery. Of all laser sources generating at this wavelength, the new SrBr2 laser is gaining ever more ground due to its ad-
vantages and is therefore of commercial interest. With the goal of developing new, higher-powered SrBr2 lasers, in this paper, 
the so-called phenomenological modeling has been used for the first time for this type of laser. An estimation of the degree of 
influence of 7 independent input laser quantities on laser output power has been performed using factor and regression 
analysis. A methodology has been developed with the help of which a series of new SrBr2 lasers with higher output power 
than existing ones has been predicted. Problems related to the planning of the experiment have been partially solved - car-
rying out of filtering and extremal experiment. 
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1. Introduction 
The development of free electron lasers allowed the 

achievement of laser generation with wavelengths between 
3 and 20 μm. Clinical tests showed that laser generation 
with a wavelength of 6.45 μm is the most applicable in the 
medical practice for the treatment of bone and soft tissue 
and provides the best subsequent recovery. This wavelength 
is widely applicable in biology. Free electron lasers, due to 
their price and design, cannot be mass produced and are not 
commercially attractive. This raises the question of the de-
velopment of other laser generation sources at this wave-
length, as alternatives to free electron lasers. One of the 
possible solutions is the development of strontium vapour 
lasers (atom and ion transfers) with generation at several 
wavelengths in the infrared spectrum - 2.06, 2.20, 2.69, 2.92, 
3.01, 3.07, and 6.45 μm. Due to its acceptable price, com-
pact size, and easy operation, the strontium laser success-
fully competes with free electron lasers, generating at the 
same wavelength. For this reason, the design and develop-
ment of the strontium laser continues to be of interest[1,8]. 
The strontium atom actively affects the laser tube -quartz or 
ceramic - causing its destruction. The typical service period 
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is several tens of hours. These difficulties posed by pure 
strontium limit the subsequent development of this type of 
laser. The laser based on strontium bromide (SrBr2), which 
replaces metal strontium, is an alternative to strontium atom 
and ion lasers. It solves the problem with the chemical de-
struction of the laser tube caused by metal strontium. In [4] 
for the first time a laser based on SrBr2 excited by a nano-
second pulsed longitudinal discharge was reported. In [5, 6] 
a significantly improved version of this device with laser 
output power of 2.4 W was presented, and in[7, 8] the laser 
output power reaches 4.27 W, with 90% of the generation at 
the 6.45 μm line. The obtained results are comparable with 
those of a metal strontium laser. Research in this field fo-
cuses on the development of SrBr2 based laser sources with 
higher output power. This would widen the range of their 
applications. When working towards extending the service 
life and improving the reliability of the devices, the analysis 
of the physical processes occurring in the active laser vol-
ume and determining the degree of influence of all inde-
pendent parameters on the output characteristics of the laser 
device (output laser power, laser efficiency, service life of 
the laser tube, laser generation deterioration within the 
course of service, etc.) are of crucial importance. 

The development of purely experimental research has 
long had limitations. These are related to the huge volume 
and the ever higher costs of experimental labour. The ad-
vances in modelling and automation of engineering research 
are ever more necessary in order to increase the efficiency 
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of the process of designing new laser sources. The so called 
structural or micro modelling is the most commonly used in 
the field of gas lasers and metal compound vapour lasers. 
The physical object is assigned some internal structure or 
pattern. The macro behaviour of the object is a consequence 
of the collective micro behaviour of all these particles. Dif-
ferential equations, systems of differential equations or 
other relationship formulas which reflect the physical laws 
and processes, occurring in the active laser volume, are 
used to describe the physical system mathematically. The 
so-called phenomenological or macro modelling is an al-
ternative to this type of research. In this case the composi-
tion and the processes within the actual physical system are 
not examined. Based only on experimental data and using 
statistical techniques, it is possible to analyse the condition 
and predict the behaviour of the object under investigation. 
Similar statistical techniques are widely used in economics, 
sociology, political science, marketing, management, etc. In 
the field of gas lasers and metal vapour laser they are still 
not widely utilized. For the first time, these techniques were 
used for a metal bromide vapour laser, generating in the 
visible and ultraviolet spectrum[9-14]. For strontium metal 
vapour lasers and the SrBr2 vapour laser such investigations 
have not been carried out. In this article, on the base of 
known experimental data some statistical parametric tech-
niques (factor and regression analysis) will be used for the 
first time for experiment laser design planning. Problems 
related to the performance of filtering and extremal experi-
ment will be solved.  

The objectives of this paper are: (i) to estimate the degree 
of influence of each input independent parameter on laser 
output power; (ii) to establish a parametric regression de-
pendence between the output power and the input data; (iii) 
to estimate and predict the behaviour of the laser system by 
using the obtained models for existing and future experi-
ments. 

The statistical investigation has been conducted using the 
SPSS software package[15]. 

2. Problem Setup and Subject of Study 
The subject of investigation is a strontium dibromide va-

pour laser which is an original Bulgarian design and is being 
developed at the Laboratory of Metal Vapour Lasers at the 
Institute of Solid State Physics of the Bulgarian Academy of 
Sciences, Sofia[5-8]. 

A conceptual schematic of the laser is given in Figure 1. 
The laser tube is made out entirely of quartz. A thermo- 
chemically resistant inner tube of Аl2О3 has been inserted 
into the active laser volume because of the high temperature 
(over 1000℃). Laser output power, denoted by Pout has 
been selected as a dependent output characteristic (response 
variable). We will investigate the relationship between laser 
output power Pout, W and 7 input independent variables: 1) 
Diameter D1, mm of the outer (quartz) tube (inner size); 2) 
Diameter D2, mm of the inner (ceramic) tube (inner size); 3) 

La, cm - distance between the two electrodes; 4) Cequi, pF - 
equivalent capacity of the condensation battery; 5) Pin2, KW 
- electric power supplied to the active volume taking into 
account 50% supply losses; 6) PRF, KHz - pulse repetition 
frequency of the electrical supply; 7) Pne, torr - pressure of 
the neon buffer gas.  

The study is carried out for n=167 known experiment data 
for two type of SrBr2 lasers[5-8]. 

 
Figure 1.  Schematic diagram of the examined strontium bromide vapour 
laser 

3. Factor Analysis 
Factor analysis (FA) is a statistical technique intended for 

transforming sets of correlating variables into a new set of 
non-correlating artificial variables or factors, which describe 
as best as possible the general variation of the input data[16]. 
This technique also allows for a reduction in the number of 
initial variables by grouping those which correlate with each 
other into a common factor and the division of non- corre-
lating ones into different factors. Mathematically this is 
achieved by reducing the dimensionality of the initial space 
through the set up of a new basis of artificial grouping 
variables (factors). Factors can be orthogonal or oblique. 

The main goal of FA is to establish the number of factors k, 
which is significantly dependent on the strength of correla-
tion between the predictor variables. In order to further dif-
ferentiate the association of the predictors with one or an-
other factor, an additional transformation of the factors is 
carried out using the so called factor rotation. 

The first step in factor analysis is the calculation of the 
correlation matrix of the standardized input variables. For 
our data it is shown in Table 1. 

This matrix shows the degree of correlation of each of the 
7 variables with the response variable of the system Pout. In 
accordance with the factor analysis technique[16] when the 
absolute value of the correlation coefficient between two 
quantities is more than 0.5, it is considered that they are 
correlated. If this value is over 0.7 and more the correlation is 
strong, and between 0.3 and 0.5 the correlation is average. 
Under 0.3, the correlation is considered weak. 
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Table 1.  Correlation matrix of all initial variables and the output power Pout 

Correlation D1_mm D2_mm La_cm Cequi_pF Pin2_KW PRF_KHz Pne_torr Pout_W 
D1_mm 1.000 -1.000 -1.000 -0.370 -0.875 0.373 -0.647 -0.965 
D2_mm -1.000 1.000 1.000 0.370 0.875 -0.373 0.647 0.965 
La_cm -1.000 1.000 1.000 0.370 0.875 -0.373 0.647 0.965 

Cequi_pF -0.370 0.370 0.370 1.000 0.285 -0.282 0.381 0.243 
Pin2_KW -0.875 0.875 0.875 0.285 1.000 -0.263 0.566 0.918 
PRF_KHz 0.373 -0.373 -0.373 -0.282 -0.263 1.000 -0.074 -0.320 
Pne_torr -0.647 0.647 0.647 0.381 0.566 -0.074 1.000 0.566 
Pout_W -0.965 0.965 0.965 0.243 0.918 -0.320 0.566 1.000 

 

The results shown in Table 1 lead to the conclusion that 
the quantities D1, D2, La, Pin2 and Pne correlate strong with 
the output power Pout. Two independent variables are 
weakly correlated with Pout. These are PRF and Cequi. 
Certain optimum value intervals have been determined for 
these based on the accumulated experiment experience. In 
future experiments it is sufficient to have the values of these 
two quantities within the established intervals as this would 
not influence significantly laser output power Pout. 

In Table 1 it is also observed the availability of a mutual 
correlation between many of the input variables. Moreover, 
D1, D2 and La are collinear. To this reason a direct applica-
tion of multivariate regression is not acceptable. To over-
come the problem with multicollinearity, we carry out a 
factor analysis. 

The second step is the grouping of the 7 physical variables 
into groups (factors). The variables in each group (factor) 
must be strongly correlated and between the quantities in 
different factors there must be a weak correlation (or lack 
thereof), i.e. factors need to be linearly independent from one 
another. In this study we used the method of principal 
component analysis (PCA) for obtaining 7 possible or-
thogonal factors (components), by determining its relative 
percentage in total variance of data. The values of its corre-
sponding eigenvalues of the correlation matrix are given in 
Table 2, column Total. 

Table 2.  Total Variance Explained in Factor Analysis with All Predictors 
and Four Factors. Extraction Method: Principal Component Analysis 

Com-
ponent 

Initial Eigenvalues 

Extraction 
Sums of 
Squared 
Loadings 

Extraction Sums of 
Squared Loadings 

Total % of 
Variance 

Cumula-
tive % Total % of 

Variance 
Cumula-
tive % 

1 4.617 65.955 65.955 4.617 65.955 65.955 
2 0.985 14.069 80.024 0.985 14.069 80.024 
3 0.829 11.837 91.861 0.829 11.837 91.861 
4 0.400 5.716 97.577 0.400 5.716 97.577 
5 0.170 2.423 100.000    
6 5E-15 7E-15 100.000    
7 2E-15 3E-15 100.000    

The third step in factor analysis is to choose a subset of 
factors from the extracted components that accounts rela-
tively high in the total variance of data. The components with 
lower influence can be ignored. This way the dimensionality 
of the initial space of the input variables will be reduced. 

Factor analysis does not provide a formal technique which 
determines the number of factors explicitly. Usually, for 
technical data the number of factors must account for the 
predominant part of the experiment sample, say over 90-95%. 
The results in Table 2 show that three factors cumilate 91.86% 
of data and four factors cumulate 97.58% of the total sample. 
We take 4 factors for our analysis. 

It must be noted, that the use of components with corre-
sponding eigenvalues less than 1 is a well known statistical 
fact[17].  

At the next step of factor analysis we carried out the rota-
tion of factors by the varimax method. The loadings of input 
variables in the rotated matrix are shown in Table 3 (the 
loadings in varimax can be between -1 and 1). The loadings 
less than 0.5 are omitted as statistically unsignificant[14,18]. 
We obtain the following four factors: 

1 { 1, 2, , 2}
2 { }
3 { }
4 { }

F D D La Pin
F PRF
F Cequi
F Pne

=
=
=
=

          (1) 

From Table 3 it is seen that the four factors (1) are well 
separated. As they are generated by the method of Principal 
Component Analysis, they are also orthogonal each to other. 
The first 4 variables are grouped together and load very high 
on the first factor F1. This is explained by the physical 
processes occurring in the laser source. The loading of D1 is 
negative, so its reduction will result in an increase of Pout, 
while the increase of D1, La and Pin2 will increase Pout. In 
future experiments the quantities from the first factor need to 
be changed together (D1 in the opposite direction) since this 
way they can be treated as a single variable. The other factors 
F2, F3, and F4 contain single variables. 

Table 3.  Rotated Component Matrix with Four Factors. Extraction Method: 
Principal Component Analysis. Rotation Method: Varimax 

 
Variables 

Factors 
F1 F2 F3 F4 

D1 -0.926    
D2 0.926    
La 0.926    

Pin2 0.921    
Pne    0.882 

Cequi   0.965  
PRF  0.970   

The rotated factors (1) account for 52.5%, 15.2%, 15.1%, 
and 14.8% of total variance of data, respectively.  
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In this manner, from a total of 7 independent input vari-
ables we obtain 4 independent factor variables, which ex-
plain over 97.6% of data and undoubtedly allow the reduc-
tion of the amount of experiment planning for this type of 
lasers. 

4. Principal Component Regression 
Usually, multivariate regression analysis is used to con-

struct models which give explicit relationship between sev-
eral independent variables (predictors or regressors) 

1 2, ,..., px x x  and one (or more) dependent on these variables 
(response) y . In this case, we are looking for a functional 
relationship 1 2 1 2ˆ ( , ,..., ; , ,..., )p my f x x x a a a= which ex-
presses the influence of individual independent variables on 
the dependent one. The latter is called a regression model or 
a regression equation of y  relative to 1 2, ,..., px x x , and 

1 2, ,..., ma a a  are the regression coefficients (parameters). 
When the mutual multivariate distribution of all variables 

is normal, the regression equation can be linear relative to the 
regression coefficients and has the following form: 

0 1 1 2 2ˆ ... , 1, 2,...,i i i p ip iy b b x b x b x i n= + + + + + ε =   (2) 

with coefficients 0 1( , ,..., )= T
pB b b b  and regression er-

rors 1 2( , ,..., )T
nε = ε ε ε . It is assumed that the errors ε  are 

normally distributed and are not dependent on the regression 
coefficients. 

Regression equation (2) for our data cannot directly in-
clude the seven initial variables D1, D2, La, Pin2, PFR, 
Cequi and Pne as predictors, because they are multicollinear 
(see Table 1). To overcome this problem we apply a par-
ticular type of multivariate regression called principal 
component regression (PCR)[14,17-18]. This method con-
structs empirical models using factor variables as predictors. 
In our case, the obtained four factor variables (1) can be used, 
since these are orthogonal and form four main basis vectors 
representing 97.6% of all data. The linear model will take the 
form 



0 1 1 2 2 3 3 4 4 ,i i i i i iPout b b F b F b F b F= + + + + + ε    (3) 
1, 2,..., , 167.i n n= =  

Three different methods for determining the regression 
coefficients in (3) were applied, namely: linear, stepwise, 
and backward linear regression. The models obtained 
through the three methods are identical. 

Table 4.  Coefficients of the Principal Component Regression Model with 
Using Factor Variables (1) 

Model Unstandardized Coefficients t Sig. 
B Std. Error Beta 

(Constant) 3.068 0.014  219.284 0.000 
F1 0.991 0.014 0.961 70.640 0.000 
F2 -0.133 0.014 -0.129 -9.498 0.000 
F3 0.035 0.014 0.034 2.519 0.013 
F4 0.177 0.014 0.172 12.633 0.000 

The resulting model coefficients of PCR are given in Ta-
ble 4. The first column is the list of the constant and the four 
variables participating in the analysis. Column B contains 
the calculated non-standardized coefficients 0 1, ,...b b  Column 
Beta shows the standardized coefficients. The coefficients 
have been obtained with a very good standard error of 0.014. 
The t- statistics of the coefficients and their statistical sig-
nificance are also given. In this case, the coefficients are 
statistically significant at usual level 0.05 (Sig. <0.05). 

With the help of the calculated coefficients from Table 4, 
the linear regression models for laser efficiency Pout can be 
written down in the following form: 


1 2 3 43.068 0.991 0.133 0.035 0.177Pout F F F F= + − + +  (4) 
For the standardized values, the model is:  



1 2 3 40.961 0.129 0.034 0.172Std Pout F F F F= − + +   (5) 
The obtained regression coefficients in (4) indicate the 

degree of influence of the four factors (respectively of the 
grouped variables) on laser generation (output laser power). 
Equation (5) shows the relative degree of influence of the 
factors on Pout. It can be concluded that the first factor F1, 
grouping D1, D2, La, and Pin2, has more influence than the 
other factors. The overall statistical significance of the model 
at 0.05 level is Sig.= 0.000. 

Therefore, the model (4)-(5) can be used for an approxi-
mate representation of laser output power Pout.  

The basic parameters of the quality of the model fit are as 
follows: the coefficient of multiple regression is R=0.985 
and the coefficient of determination is R2=0.970. The latter 
signifies that the model accounts for 97% of the total vari-
ance of the sample. This value is high, for this reason, it can 
be concluded that the model fits the data well. The other 
important parameter is the standard error of estimate, which 
is 0.18078 and is acceptable. Figure 2 shows the experiment 
values of the output laser power Pout versus the predicted 
values, calculated by the model (4).  

 
Figure 2.  Comparison of the experimental values of the output laser 
power Pout and predicted values, obtained by regression model (4) with a 
5% two sided error interval 
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5. Physical Interpretation of the    
Obtained Results 

The results from the factor and regression analysis indi-
cate that the physical quantities, included in the first factor 
F1 are significant for the behaviour of the laser source. The 
geometric parameters and the supplied electric power are 
significant in determining laser output power. These have a 
high degree of influence on the distribution of the intensity of 
the electric field, the energy of the electrons, and the tem-
perature profile of the neutral gas. All of this is decisive for 
the processes of populating the upper laser levels and laser 
generation. The quantity D1 is entered with a negative sign, 
which means that during the development of new laser 
sources with new geometric design, the outer diameter of the 
tube must be reduced. This is a crucial result which can be 
obtained only using the tools of statistical analysis of the real 
experimental data. In our opinion, the reason for this de-
pendence is the ineffective temperature profile in the active 
volume of existing laser sources. An increase of the inner 
diameter and a reduction of the outer one would allow for 
changes in the process of cooling of the active laser volume. 
In this way, the achieved temperature field would provide 
more favourable conditions for the population of upper laser 
levels and would improve laser output power. 

6. Predicting Laser Output Power 
In this paragraph, we will predict the behaviour of a new 

laser source with new parameters of the 7 input laser vari-
ables.  

The prediction will be carried out using the following 
procedure: 

1. We enlarge the initial sample by appending a new case 
with 7 supposed values for the seven basic variables. The 
value for Pout in this last case is left empty. 

2. The factor analysis procedure is performed once again 

with this enlarged data sample. The goal is to determine the 
new factors, which include the factor values for the last case. 

3. We repeat the procedure of principal component re-
gression. The new coefficients of equations (4) and (5) are 
determined. 

4. The new predicted value of Pout is determined with the 
help of equation similar to (4) and the obtained factor vari-
ables. 

Some of the results of the upper procedure are given in 
Table 5. 

Columns 2-8 contain data of selected cases for input laser 
variables. Column 9 shows three actual measured power 
outputs. Column 10 presents the calculated values for given 
cases obtained using modelling equations of type (2). Col-
umn 11 presents the relative error for the predicted laser 
output power with respect to the experiment. It is limited not 
more of 7-8% (see also Figure 2.). Column 12 shows the 
increase of laser output power compared to the maximum 
measured Pout = 4.27 W, row V3, column 9. 

The first 3 rows, numbered V1, V2, and V3 show the 
examples of real experiment data and the corresponding 
predictions with the help of equation (2). The following 7 
rows numbered 1-7 present predictions for new variants of 
cases of laser sources, obtained by the procedure, described 
in the beginning of this section. The predictions adhere to the 
requirement that the values of variables D1 and PRF is to be 
reduced and not increased. 

7. Analysis of Predicted Results 
We will base our analysis on the Table 6. Experiment V3, 

where laser output power Pout = 4.27 W is the highest, is 
used for comparison. Column 1 represents the corresponding 
cases from Table 5. The active laser volume V, cm3 (for tube 
diameter D2 and length La) is calculated in column 3 (see 
also Table 5). Column 4 indicates the supplied power per 
unit length (PL=Pin2/La, W/cm) and column 5 - the supplied 
electric power per unit volume (Pv=Pin2/V, W/cm3. 

Table 5.  Evaluation and Prediction of Output Laser Power Pout 

Case D1_mm D2_mm La_cm Cequi_pF Pin2_KW PRF_KHz Pne_torr Pout_W Pout Predicted, W % % 

1 2 3 4 5 6 7 8 9 10 11 12 

V1 46.0 19.8 98 632.3 0.96 19 44.7 3.74 3.66 2.14 - 

V2 46.0 19.8 98 793.1 1.05 19 48.7 3.80 3.75 2.32 - 

V3 46.0 19.8 98 632.3 1.05 19 44.7 4.27 3.92 8.20 - 

1 45.5 20.1 98 632.3 1 19 45 - 4.06 - -4.92 

2 45.0 20.5 98 632.3 1.1 9 46 - 4.63 - 8.43 

3 44.5 21.0 100 632.3 1.1 19 46 - 5.02 - 17.56 

4 44.0 21.0 102 632.3 1.1 18 47 - 5.19 - 21.55 

5 43.5 22.0 102 632.3 1.11 18 48 - 5.67 - 32.79 

6 43.0 22.5 103 650.0 1.125 17 49 - 6.02 - 40.98 

7 42.5 22.5 104 650.0 1.15 17 50 - 6.26 - 46.60  
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The predicted results confirm the strong influence of the 
studied quantities from the first factor F1. Laser output 
power is heavily dependent on the geometric design of the 
laser tube. With the increase of the active volume (increment 
of D2 and La) and the increase of the supplied electric power, 
Pin2 laser generation also increases. Columns 4 and 5 are 
particularly interesting. These show that with respect to the 
quantity PL, its predicted variation fluctuates around the 
experimental value from V3 - 10.71 W/cm. Apparently, this 
quantity is close to the optimum. The results in column 5 lead 
to the conclusion that in planning future experiments the 
supplied electric power per unit volume must be lower than 
the quantity from V3, which is 3.48 W/cm3. It appears the 
actual laser tube is burdened by electric power, which is not 
optimal. 

Table 6.  Behavior of Some Important Indirect Variables, Characterized the 
Output Laser Power 

Case Pin2, W V, cm3 PL, W/cm Pv, V/cm3 
1 2 3 4 5 

V3 1050 301.8 10.71 3.48 
1 1000 311.0 10.20 3.22 
2 1100 323.5 11.22 3.40 
3 1100 346.4 11.00 3.18 
4 1100 353.3 10.78 3.11 
5 1100 387.7 10.88 2.86 
6 1125 409.5 10.92 2.75 
7 1150 413.5 11.06 2.78 

When developing new laser sources, it needs to be taken 
into account that the outer diameter D1 needs to be reduced. 
In our opinion, this would improve the thermal balance of the 
new laser device. It would reduce the thermo-chemical de-
terioration of the active substance, increase the physical 
service life of the laser tube, and improve the total efficiency 
of the laser source. 

8. Conclusions 
For the first time, statistical techniques allowing the solu-

tion of partial problems related to the planning of the ex-
periment have been applied for a SrBr2 laser. With the help 
of factor and principal component regression analysis, a 
filtering experiment has been carried out, which allowed for 
the reduction of the 7 input real independent quantities by 
grouping them in new 4 artificial variables (factors). This 
way the engineering work and the related costs connected 
with experimentation can be significantly reduced. A partial 
extremal future experiment has been carried out, allowing 
the prediction of the behaviour of the laser source and the 
establishment of optimum values for the independent vari-
ables relevant for the development of new devices. Further 
theoretical study is planned to improve the obtained results 
by using nonparametric statistical techniques for construct-
ing nonlinear and locally nonlinear models of the SrBr2 
lasers. 
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