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Abstract  This research aimed to present, with the aid of the three-points static bending, conducted nondestructively, 
analytical methodology to determine the longitudinal (E) and the shear modulus (G) of elasticity in round timber beams. The 
wood used was Eucalyptus clones. Were used three different values to the form factor coefficient of the circular cross section, 
allowing evaluating the differences between the shear stiffness values obtained. The results of the analysis of variance 
indicated no statistical equivalence between the shear modulus of elasticity, revealing be significant the influence of the form 
factors used to determine the shear modulus of elasticity. The coefficient (λ) of the relat ionship between the modulus of 
elasticity (E=λ·G) obtained from the least squares method were equal to 118, revealing 5.9 higher than the relationship 
(E=20·G) p resented in the Brazilian standard ABNT NBR 7190:1997. It is emphasized that these results may be different for 
the same or different wood species, justifying the use of this methodology in each research developed. 
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1. Introduction 
The shear modulus of elasticity of timber pieces, as well as 

other materials, presents as a fundamental structural variab le 
especially in designs involving short beams and parts subject 
to the action of the torsion[1-3]. 

For the design of various structures in wood, such as silos, 
roofs, buildings, bridges, among others, engineers, architects 
and designers make use of normative documents, such as the 
Brazilian standard ABNT NBR 7190:1997 (Design of 
Structures Wood), which does not address the anisotropy of 
wood, with an empirical relat ionship for obtaining the shear 
modulus of elasticity (G) known longitudinal modulus of 
elasticity (E) expressed as: G=E/20, which  motivates 
development of new research on this topic, and highlight the 
work done by Rocco  Lahr[4], Burdzik Nkwera[5], Zangiác
omo Rocco Lahr[6] and Christoforo et al.[7]. 

Rocco Lahr[4] study, among others, the influence of the 
dimensions of the test pieces of lumber for which the effect 
of shear fo rces become neg lig ib le in  the calcu lat ion  of 
displacements, reach ing the rat io L/h≥21, where L is the  
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useful length and h is the height of the cross section of the 
specimen. 

Burdzik and Nkwera[5] evaluated the shear and the 
longitudinal modulus of elasticity in Eucalyptus grandis 
wooden beams by the transverse vibration wave. The results 
demonstrate that the proposed method is employable for 
determining the modulus of elasticity, showing consistency 
in results when compared  with the properties of wood 
coming from normative document. 

Zangiácomo and Rocco Lahr[6] studied the relationship 
between the length and diameter (D) in round timber beams 
for which the effect of shear forces becomes negligible in the 
calculation of d isplacements, arriv ing at 24 and 15 relations 
for the Pinus elliottii and Pinus caribaea wood species, 
respectively. 

Christoforo et al.[7] presented an analytical methodology 
for the calculation of the shear and longitudinal modulus of 
elasticity in pieces of lumber, using the three-points static 
bending, adapted from the Brazilian standard ABNT NBR 
7190[8], based on the methodology presented by Rocco 
Lahr[4]. The wood used in the tests were Pinus elliottii and 
Corymbia citriodora. Equations for the calculation of the 
elastic moduli were developed according to the method of 
virtual forces, and the shape of the shear coefficient for 
rectangular cross section was adopted as 1.20. Results of the 
coefficients (α) between the modules of elasticity (E=α·G) 
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for the Pinus elliottii and Corymbia citriodora wood species 
were respectively equal to 18.70 and 21.20, and very close to 
the coefficient (20) established by the Brazilian standard 
ABNT NBR 7190[8]. 

In order to contribute to better understanding of the 
properties of shear stiffness, this research, based on work 
carried  out by Christoforo et al.[7], aimed to present, with the 
aid of the three-points static bending and the Timoshenko 
beams theory, an analytical methodology for obtaining the 
shear and longitudinal modulus of elasticity in p rofiled round 
timber beams with structural dimensions, investigating the 
influence of the form factor in the calculation o f the shear 
modulus of elasticity. 

2. Material and Methods 
The experimental methodology developed to calculate the 

modulus of elasticity E and G in structural round timber was 
based on research developed by Rocco Lahr[4], as also done 
in the work of Christoforo et al.[7]. The moduli of elasticity 
were obtained in the condition of geometric linearity, the 
largest displacements being limited to the experiments L/200 
reason, as defined by the small d isplacements of Brazilian 
standard ABNT NBR 7190[8]. 

The Virtual Force Method (VSM) was employed on the 
structural model of the three-point static bending (Figure 1) 
in order to obtain the expression for the calculation of the 
displacement (δ) at the midpoint of the element, considering 
the bending moment and shear efforts. 

 
Figure 1.  Three-point static bending model 

Generically, considering only bending and shearing 
efforts, displacement at one point of interest is obtained by 
Equation 1 (MFV), wherein : 
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δ  - linear displacement or rotation to be calculated by the 
use of force or virtual moment virtual with module 1;  

M(x) - variation of the bending moment for a section of the 
structure according to the actual load history; 

m(x) - variation of the bending moment for a section of the 
structure according to the employment of a unit force or 
moment applied at one point of interest; 

Q(x) - variat ion of shear for a slice of the structure 
according to the actual load history; 

q(x) - variation of shear for a slice of the structure 
according to the employment of a unit force or moment 

applied at one point of interest; 
fs - form factor of the cross section (depending on the 

geometry of the cross sections); 
Ω - integration domain;  
E - longitudinal modulus of elasticity or Young's modulus; 
I - moment of inertia o f the cross section; 
G - shear modulus of elasticity; 
A - cross-sectional area; 
L - length of the beam. 
Using Equation 1 adapted for the structural model of the 

three-point bending (Figure 1), the displacement at the 
midpoint is expressed by Equation 2. 
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According to the present methodology, for calculating the 
modulus of elasticity are necessary the execution of two 
successive experimental tests on the same piece, with 
diameter d. The first (Figure 2a), assuming the length of the 
part L1, with L1/d≥21[4], it is determined whether the value 
of the force F1 responsible for causing a displacement equal 
to δ1=L1/200. In the second bending test the supports are 
approximate (Figure 2b), g iving a new useful length (L2), 
and must respect the inequality  L2/d≥5/4[9], ensuring that the 
sections remain  plane after deformed, obtaining a value of 
force (F2) responsible for causing a displacement magnitude 
δ2=L2/200. 

 
(a) 

 
(b) 

Figure 2.  Bending test in the profile round timber parts: first (a) and the 
second test (b) 
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The use of the forces F1 and F2, L1 and L2 measures and 
displacement δ1 and δ2 obtained in the tests in Equation 2 
leads to a system with two equations in two variables, whose 
solution provides the shear and the longitudinal modulus of 
elasticity, respectively expressed by Equations 3 and 4. 
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Equations 3 and 4 used to obtain the elasticity modulus not 
take into consideration the own weight of the structural 
elements. However, Christoforo et al.[7] proved negligib le 
influence of self-weight in the calculat ion of displacements, 
validating the methodology presented here. 

The proposed methodology was used in wooden beams of 
Eucalyptus genus. Eighteen structural profiled pieces were 
used, with medium size 13cm in diameter and 234cm in 
length. 

The usable length used in bending tests were L1=234cm 
and L2=91cm, being obtained in each specimen the forces 
values responsible for causing the displacement of 1.17 cm 
(L1/200) and 0.46 cm (L2/200). 

The form factor (fs) present in the shear modulus of 
elasticity is a constant that depends on the geometry of the 
cross section of the piece. In the literature, for the circular 
cross-section, some authors have different values of form 
factors. In order to evaluate the influence of employment of 
form factor for circular sections in the shear modulus of 
elasticity, these were varied, assuming the values: 0.750, 
0.847 and 0.900, respectively obtained from the works of 
Timoshenko[10], Mindlin and Deresiewicz[11] and 
Roark[12]. 

To check the influence of the form factor for calculat ing 
the elastic modulus, analysis of variance (ANOVA) was 
used, evaluated at a significance level (α) of 5%, and the 
equivalence between averages for the shear modulus of 
elasticity as null hypothesis (H0) and the non-equivalence 
between means as alternative hypothesis (H1). P-value 
greater than the significance level of the test involves 
accepting H0, rejecting it otherwise. 

For validation of ANOVA were investigated normality in  
the distribution of the shear modulus of elasticity and 
homogeneity of variances, with the aid of the 
Anderson-Darling test and Bartlett and Levene tests, 
respectively, both at the 5% level of significance. 

For the Anderson Darling test, the null hypothesis was to 
assume normal distribution, and the non-normality as the 
alternative hypothesis. P-value greater than 5% implies 
accepting H0, rejecting it otherwise. The Bartlett and Levene 
tests were formulated considering the equivalence between 
the variances as null hypothesis and alternative hypothesis as 
non-equivalence. P-value greater than the significance level 
involves accepting H0, rejecting it otherwise. 

In order to relate the values of the modulus of elasticity E 

and G and compared with the relationship defined by the 
Brazilian standard ABNT NBR 7190:1997, was used the 
least squares method[7, 13], expressed by Equation 5, λ  is the 
coefficient to be adjusted at the discretion of the smaller 
residue (E=λ·G). 
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3. Results 
Table 1 shows the results of the two modulus of elasticity, 

x  is the sample mean and Cv the variation coefficient. 

Table 1.  Shear and longitudinal modulus of elasticity 

  G (MPa) 
 E (MPa) fs = 0,750 fs = 0,847 fs = 0,900 
 17139 77 97 125 
 17162 85 107 137 
 16224 99 126 161 
 15091 77 98 125 
 14525 109 139 178 
 16865 81 103 131 
 14328 81 104 132 
 12816 83 106 136 
 15637 105 134 170 
 12480 107 136 173 
 11739 137 175 222 
 17153 103 131 168 
 12384 96 122 156 
 15555 90 114 146 
 12888 71 90 115 
 12521 93 119 151 
 14740 133 168 215 
 16907 104 132 168 

x  14786 96 122 156 
Cv(%) 13 19 19 19 

Figure 3 illustrates the results of the normality test and 
homogeneity of variance between means for Eucalyptus 
wood, respectively. By P-values are both higher than the 
significance level (0.05), we see that the properties of 
stiffness shows normal distribution and that the variances for 
the shear modulus are equivalent, validating the ANOVA 
model. 
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Figure 3.  Results of normality test (a, b) and homogeneity of variances (c) 

Table 2 shows the ANOVA results. The P-value was equal 
to 0.000, proving to be a significant factor in  order to obtain 
the shear modulus of elasticity (P-value <0.05). 

Table 2.  ANOVA results for the shear modulus of elasticity 

Source DF SS MS F P-value 

Form Factor 2 32456 16228 2787 0,000 

Error 51 29697 582   

Total 53 62153    

Table 3 presents the results of the λ coefficients obtained 
by the least squares method of the relationship between the 
shear and longitudinal modulus of elasticity. 

Table 3.  λ coefficients between the longitudinal and shear modulus of 
elasticity 

 E=λ·G 
(fs = 0,750) 

E=λ·G 
(fs = 0,847) 

E=λ·G 
(fs = 0,900) 

λ 148 116 91 

The values of λ varied in the range 91-148, whose 
variation is explained by differences in the values adopted 
for the form coefficient of cross section (fs). 

The results of the average values of the coefficients (λ) 
between the elastic moduli was equal to 118, being 5.9 
higher than the stipulated ratio between the elastic moduli of 
the Brazilian standard ABNT NBR 7190[8] (G=E/20), 
imply ing in shear modulus of elasticity  significantly lower 

than that presented by this standard. 
The ratio between the elastic moduli obtained in this study 

were on average 6.3 higher than the correlat ion coefficient 
between the modules of Pinus elliottii timber (18.70) 
obtained from the research of Christoforo et al.[7], possibly 
justified by  the sensitivity of this method. For higher values 
of the shear modulus of elasticity it is necessary to carry out 
bending tests for ratios L/d lower than the lowest of the 
relationships here investigated. 

4. Conclusions 
The results of the shear modulus of elasticity for the wood 

investigated were found to be dependent on the choice of the 
form coefficients of circular cross-section, providing the 
shape coefficient of 0.90 the highest values. 

The average value of the coefficients of the relat ionship 
between the modulus of elasticity of the Eucalyptus wood 
was significantly h igher than the value set by the Brazilian 
standard, providing values of shear modules less when 
compared to the shear modulus of this standard. 

The sensitivity of the method, the results obtained here 
should not be extrapolated to woods with the same or 
different species, thereby justifying the use of this 
calculation method developed in each study and other 
relations between length and diameter of the elements 
different from those here evaluated. 
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