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Abstract  In this paper, in order to predict the crack growth trajectory and to evaluate the SIF under mixed modes (I & II), 
one proposes a new finite element program for crack growth using the source code written in FORTRAN. The fin ite element 
mesh is generated using an advancing front method, where the generation of the background mesh and the construction of 
singular elements are also added to this developed programme to facilitate the crack process and the fracture analysis. 
Displacement Extrapolation Technique (DET) was employed to evaluate the SIFs under mixed mode loading conditions. 
Therefore, the accuracy of both SIF`s values and the crack path predictions results are compared and validated with other 
relevant published research work. However, the assessment indicated that this developed fin ite element programme is reliable 
and robust to evaluate the SIFs and predicts the crack trajectories successfully based on the applied loading conditions. 
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1. Introduction 
Structural failu re can be generally associated with one or 

more fracture of the materials making that structure. In fact, 
fractu re mechanics deals with  the irrevers ible process of 
rupture due to nucleation or sudden crack and crack growth. 
The influence of cracking on the structural strength has been 
widely  appreciated s ince the end  o f the 19th  century. 
However, some aspects o f its natu re and  influence st ill 
remain unknown[1]. The use o f crack p ropagat ion laws 
based on stress intensity factor range is the most successful 
engineering applicat ion of fracture mechanics. In the elastic 
fracture analysis, the stress intensity  factors sufficient ly 
define the stress field  close to the crack tip  and prov ide 
fundamental in fo rmat ion o f how the crack is go ing  to 
p ropagate. Bas ically , the est imat ion  methods  can  be 
categorized  in to  two  groups , thos e bas ed  on  field 
extrapolation near the crack t ip and those which make use of 
the energy release when the crack propagates. The latter 
group includes the J-contour integration, the virtual crack 
extension and the strain energy release rate method. The 
main d isadvantage o f these methods is  that  the st ress 
intens ity factor components, KI  and  KII  in mixed  mode 
prob lems  are either imposs ib le o r very  d ifficu lt  to be  
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separated. Nevertheless, the first groups which are based on 
near-tip field fitting procedures require finer meshes to 
produce a good numerical representation of crack-tip fields 
generated to facilitate the calculat ion.  

2. Finite Element Model 
Most established research was on computer base by 

applying numerical methods which were mostly uses 
commercial software such as;[2] an enriched partit ion of 
unity finite element method (PUFEM), which is known as 
one of the meshless method to calculate the SIF in  LEFM 
under plane stress and plane strain condition. Another, 
numerical examples were performed to evaluate the 
generated stress intensity factors directly from the scaled 
boundary finite element solution for the singular stress 
field[3]. More recent work was developed variat ional 
mesh-free method, to evaluate the stress intensity factors of 
mixed mode crack problems, using the element free Galerkin 
method[4]. Accordingly, another new method was proposed 
to determine the SIFs for the indentation problem based on 
the conservation integral[5]. In contrast, Numerical 
experiments were conducted to evaluate the effectiveness of 
two proposed techniques on near crack tip  singularity[6]. In 
fact, an observation was stated that a general theoretical 
model for automatically evaluating the increments of crack 
growth during a loading process does not exist yet[7]. 
Experiments work on a central crack specimen with holes, to 
predict the crack path and to evaluate the mixed mode stress 
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intensity factors (KI & KII)[8].  
Somehow, this limit nowadays still characterizes the 

computer codes for crack growth simulat ion in elastic and 
elasto-plastic materials. Generally, the software should 
address three different aspects of the problem, specifically 
are; (i) SIFs evaluation, (ii) the crack propagation direction, 
and (iii) mesh modification to accommodate the crack 
advancement. The first and second aspects can be solved 
with no particular d ifficult ies and many commercial FE 
codes have built-in capabilit ies to evaluate the SIF. The last 
aspect is much more complex and is rarely solved by FE 
codes, e.g. FRANC2D, FRANC3D and ZENCRACK[9]. 
Eventually, the FE model is modified in order to 
accommodate the obtained evaluation on short and straight 
crack propagation directions. The whole process is repeated 
many times and both is time-consuming and a source of 
errors if it is performed manually. This is part icularly t rue for 
the mesh modification. However, software on the other hand, 
is capable in  handling the solution process in an automat ic 
way. 

However, in the current study, we developed a new fin ite 
element programme for crack growth using the source code 
written in FORTRAN. In order to predict the crack growth 
trajectory and to evaluate the SIFs under mixed modes (I & II) 
loading in the frame of LEFM. The displacement 
extrapolation techniques with the adaptive refinement mesh 
method are used, to determine the stress intensity factors on 
two different geometries. Specifically are; four points 
bending plate and, centre double cracked plate with 
two-holes. Additionally, the obtained results of the current 
study are evaluated and validated with other relevant 
experimental and numerical results selected from the 
literature. 

2.1. Generation of Singular Element 

An unstructured triangular mesh is automatically  
generated by employing the advancing front method. The 
singular elements have to be constructed correctly to get a 
proper field of singularity around the crack tip as shown in 
Fig. 1.  

 
Figure 1.  The cut and patch procedure of generating singular elements 
around a crack tip 

The number o f elements depends on the distributed nodes 
around the crack tip, which can be set by the user as shown in 
Fig. 2.  

In fact, the natural triangular quarter point elements are 
used[10] instead of the collapsed quadrilateral element, 
which is proposed by Barsoum[11]. The success of the 
adaptivity in general depends to a large extent on the 
efficient coupling between  the error estimator, refinement 
scheme and automatic mesh generator. The importance of 

these adaptive techniques in practical applications has led to 
a considerable research on fully automatic mesh generators 
that require only the specificat ion of the boundary and mesh 
size d istribution over the domain. Moreover, several 
comprehensive numerical tools have been developed to 
enhance the accuracy at the crack tip. 

 
Figure 2.  A typical arrangement of the natural triangle quarter-point 
elements around a crack tip 

In this work, the unstructured triangle mesh is 
automatically generated by employing the advancing front 
method. Many researchers applied the FEM with remeshing 
to study the fracture propagation and its SIFs analysis ([12]; 
and[13]), though it is not an easy task. In  contrast, it is almost 
impossible to automatically remesh finite elements of an 
arbitrarily growing crack[14]. One of the advantages of the 
advancing front method is that the new triangle element 
formation is coinstantaneous with new node generation, and 
this advantage makes it possible to control the shape and size 
of the element through the adjustment of the location of the 
node[15]. However, a  lot o f intersection checking between 
the new generated triangular elements and the existing 
elements must be computed in order to ensure that the 
triangular elements are valid. Accordingly, an observation 
was stated that the algorithm for the advancing front method 
has been shown to be robust in two-dimensional mesh 
generation of triangles and could be extended easily to 
generate quadrilaterals[16].  

2.2. Mesh Generation and Adaptive Refinement Mesh 

In general, the s maller mesh size g ives more accurate 
fin ite element approximate solution. However, reduction in 
the mesh size leads to greater computational effort. The 
adaptive mesh refinement is employed as the optimization 
scheme. This scheme bases on a posteriori error estimator 
which is obtained from the solution from the previous mesh. 
Basically, the success of the adaptivity in  overall is depends 
to a large extent on the efficient coupling between the error 
estimator, refinement scheme and automatic mesh generator. 
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The importance of these adaptive techniques in practical 
applications has led to a considerable research on fully 
automatic mesh generators that require only the specification 
of the boundary and mesh size distribution over the domain. 
An example of geometry shows the whole process of 
generating the mesh is illustrated in Fig.3.  

 
Figure 3.  The mesh generation stages 

The geometry of a p late with six holes and two notches is 
illustrated Fig. 3a. Six connector lines as shown in Fig. 3b, 
are fo rcing the internal boundaries to be the continuous part 
of the external boundary. Fig. 3c shows the cutting out of the 
rosette templates around each crack tip. The background 
mesh for this domain is then set up automatically  using 
dichotomy technique as shown in Fig.3d and Fig. 3e shows 
the conventional mesh being generated by the advancing 
front method. The first generation produces mesh with initial 
size set by user. Later, during adaptive refinement, this first 
generated mesh will be taken as the background mesh. In Fig. 
3f, for each rosette template, quarter-point elements are then 
constructed. Fig.3g, shows the enlargement of the 
quarter-point element at each crack t ip. In general, the 
smaller mesh size gives more accurate fin ite element 
approximate solution. However, reduction in the mesh size 
leads to greater computational effort. 

The strategy used to refine the mesh during analysis 
process as follows[17]: 

(i) Determine the error norm for each element  

( ) ( )T* *e
e

e dσ σ σ σ
Ω

= − − Ω∫            (1) 

Where σ is the stress field  obtained from the fin ite element 
calculation and σ* is the smoothed stress field inclusion of 
quarter point elements.  

(ii) Determine the average error norm over the whole 
domain  
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Where m is the total number of elements in the whole do 
ain. (iii)Determine a variable, eε  for each element as 
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ê
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Where η is a percentage that measures the permissible 
error for each element.  If 1eε > the size of the element is 
reduced and vice versa. (iv) The new element size is 
determined as 

( )1/
ˆ e
e p

e

h
h

ε
=              (4) 

Where he is the old element size and p is the order of the 
interpolation shape function. 

2.3. The Dis placement Extrapolation Technique 

One of the simplest and most frequently used methods is 
displacement ext rapolation technique[18]. It consists 
typically in the effective SIF concept by which, the fracture 
evaluation can be easily carried out[19]. The crack length 
was evaluated by linear-elastic analysis from the compliance 
of single-edge-notched specimen in three-points bending 
test[20]. A new finite element of quasi-static brittle fracture 
was developed, based on computational framework for 
three-dimensional cracks propagation bodies. They uses 
consistent thermodynamical framework for crack 
propagation in elastic solids[3]. 

The asymptotic expression for the displacement normal to 
crack p lane, v under mode I loading[21]: 
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Where KI is the stress intensity factor for mode I, E is the 
modulus of elasticity, v  is the Poisson’s ratio, K an elastic 
parameter defined in equation (6), Ai are parameters 
depending on the geometry and load on the specimen, and 

and r θ  are the polar coordinates defined at the crack t ip. 
( )
( ) ( )
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       (6) 

The near tip nodal displacements at nodes b, c, d and e 
shown below in Fig. 3, are of interest. The displacements are 
extrapolated by evaluating Equation (5) along the crack faces 
𝜃𝜃 = ± 𝜋𝜋. Particu larizing for nodes b and c on the singular 
element at the upper face of the crack yields: 

3 2 5 22 (1 )( 1)2 (1 )( 1) O( )
4 12b I

Av K L L L
E E

ν κν κ
π

+ ++ +
= − +    (7) 

 

(a) (b) (c) (d) 

(e) (f) 
(g) 



70  Souiyah Miloud et al.:  Finite Element Model of Crack Growth under Mixed Mode Loading  
 

 

3 2 5 222 (1 )( 1)2 (1 )( 1) O( )
2 3c I

Av K L L L
E E

ν κν κ
π

+ ++ +
= − +  (8) 

Where L, is the length of the element side which is 
connected to the crack tip. Equations (7) and (8) can be 
solved to obtain the value of K I as: 

2 (8 )
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EK v v
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+ +
      (9) 

The nodal displacements at the other two nodes can be 
evaluated by the similar way. If one considers the all four 
nodal displacements, the stress intensity factor expression 
becomes: 
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Under pure mode II loading, the displacement tangential 
to the crack plane, u is given by: 
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Similarly, the stress intensity factor for mode II, using the 
nodal displacements of the four nodes can be estimated by: 
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In order to simulate crack propagation under linear elastic 
condition, the crack path direction must be determined. 
There are several methods use to predict the d irection of 
crack trajectory such as the maximum circumferential stress 
theory,  the maximum energy release rate theory and the 
minimum strain energy density theory. The maximum 
circumferential stress theory asserts that, for isotropic 
materials under mixed-mode loading, the crack will 
propagate in a direction normal to maximum tangential 
tensile stress. In polar coordinates, the tangential stress is 
given by 
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The direct ion normal to the maximum tangential stress can 
be obtained by solving 0/d dθσ θ =  for θ . The nontrivial 
solution is given by 

( )sin 3cos 1 0I IIK Kθ θ+ − =           (14) 
Which can be solved as: 
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IIK  Positive            IIK  Negative 
Figure 4.  Sign of the propagation angle 

In order to ensure that the opening stress associated with 
the crack direction of the crack extension is maximum, the 
sign of  should be opposite to the sign of [19]. The 
two possibilities are illustrated in Fig. 4. 

The criterion for crack to  propagate from crack t ip is based 
on the material toughness, CK . If the calculated stress 
intensity factor, I CK K≥  then the crack will propagate to 
the direction 0θ  expressed by Equation (11). The crack 
increment length a∆  is taken  10%-20% of the initial crack 
length a , inversely proportional to the ratio of 

II IK K . The 
ratio represents the mixed mode p roportionality, therefore 
shorter increment length should be taken to carefully justify 
the crack path curvature when 𝐾𝐾𝐼𝐼𝐼𝐼  is relat ively large 
compare to 𝐾𝐾𝐼𝐼 [13]. Thus the crack length increment is 
approximated by the Lagrange interpolat ion as: 
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    (16) 

3. Numerical Analysis and Validation 
A developed finite element model of crack growth for 

brittle materials has been employed on four points bending 
geometry and, double centre cracked plate with two holes 
under mixed mode loading conditions.  

3.1. Four Points Bending Geometry 

having the dimensions of B = 2 mm, W = 5 mm and 
length > 43 mm, made of Al2O3-Ceramics. An enlargement 
of mesh around crack t ip represented the elements around the 
crack tip is illustrated in Fig.3. Four points bending geometry 
with final adaptive mesh are shown in Fig. 5. 

The stresses in this loading case were also computed. The 
geometric functions of FI and FII as follows[22]: 
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Figure 5.  (a) Four-point bending geometry and (b) the final adaptive mesh 

In this study, a comparison and analysis were applied 
between the present results with those empirical results 
selected from the literature ([3] and[22]). The stress intensity 
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factors evaluation (
III KK & ), are tabulated in Table 1 and 

Table 2 with d/W = 0.5. The dimensionless form of the 
estimated stress intensity factor was obtained by using Eq. 
(17), presented for the range of 0.1 < a/W < 0.4. 

Table 1.  Dimensionless stress intensity factor for the central cracked plate 
for Mode I 

 II aF
L
d

WB
PK π






 −= 1  

(a/W) Fett, et al.(1995) present study 
0.1 0.3450 0.3461 
0.2 0.6633 0.6660 
0.3 0.9399 0.9354 
0.4 1.1702 1.1721 
0.6 1.5507 1.5512 
0.8 2.0684 2.0697 

In order to show the trends of the dimensionless SIFs with 
the ratio value of initial crack per width under Mode I 
conditions. Fig. 6 shows, the comparison between the current 
study results of the dimensionless SIFs and the empirical 
results[22].  

Table 2.  Dimensionless stress intensity factor for the central cracked plate 
for Mode II 

 IIII aF
L
d

WB
PK π






 −= 1

 

(a/W) Fett et  al. (1995) present study 
0.1 0.3841 0.386 
0.2 0.2448 0.248 
0.3 0.1580 0.1583 
0.4 0.1098 0.1079 
0.6 0.0566 0.0570 
0.8 0.0106 0.013 

The relat ion showed that the values of SIFs and a/W 
increased from 0.31 with a/W = 0.1 to the maximum 
dimensionless SIF value of 2.1 accordingly with a/W = 0.8, 
as shown in Fig. 6.   

 

Figure 6.  Dimensionless SIF vs. (a/W) for mode I 

Therefore, under Mode II a condition, the values of the 
dimensionless SIFs was decreased gradually, where a/W was 
increased respectively the maximum value of 0.8 as shown in 

Fig. 7. From these results, it indicated that under Mode I 
loading condition, high stresses were generated when a/W = 
0.8, which increased the dimensionless SIFs and also 
exceeded the maximum stiffness of this material. Whereas, 
under Mode II loading condition shows a low effect which 
influenced the values of the dimensionless SIFs. In fact, this 
was due to the brittleness of this material.  

 
Figure 7.  Dimensionless SIF vs. (a/W) for mode II 

At the beginning, the stress was higher under Mode I and 
after that, a stress exceeded the criterion value it’s decreased 
gradually where produced a low effect under Mode II. 

This section presents comparison of the current results 
with these results of Gürse and Miehe[3] in terms of crack 
propagation trajectories. Fig. 8 shows, the comparison 
results of predicted crack growth of the current study with 
those results of[3]. In  this case, the crack direction was 
dominated by Mode I stress intensity factor, which became 
larger by the crack growth non-linear to the top right of the 
geometry. Due the shear stress which is generated by of 
Mode II loading condition. 

 
Figure 8.  Comparison results of the crack trajectory; (a) current study (b) 
Gürse & Miehe[3] 

 
Figure 9.  Three steps of crack propagation direction of four-point bending 
geometry 
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Further, the effectiveness of the shear stress was 
significant on crack trajectory with different direct ions, 
which is mostly reflected on the material properties as shown 
in Fig. 9. However, the representation of the deformation 
was controlled by the user, to show the deformat ion step by 
step with direct ions through the initial crack propagation 
until the final crack as illustrated in fig. 9. Obviously, the 
current results of this developed fin ite element programme 
has good agreement as shown in fig. 8b. 

3.2. Center Double cracked Plate with Two-Holes under 
Mixed Mode Loading  

A complicated mixed mode fracture problem was studied 
to demonstrate the performance o f the developed programme 
on double centre cracked plate with two holes. The geometry 
and its final adaptive mesh are shown in Fig. 10. Meanwhile, 
the enlargement of the rosette around both crack tips is 
shown in Fig. 11.  

 
Figure 10.  The geometry and its final adaptive mesh 

 
Figure 11.  The enlargement of the rosette around both crack tips 

The geometry  was made of high carbon steel and had the 
following parameters: Young’s modulus E = 2.1 ×105 MPa 
and Poisson’s ratio ν = 0.3. The trend showed the 
relationship between the stress intensity factors of 

IK  and 

IIK  as illustrated in Fig. 12. 
In the beginning, the crack exh ibited a pure Mode I state, 

which increased the KI  values, whereas in Mode II state, 
 values became lower so that the crack curved closely to 

the left side of the hole and then curved downwards where 

 and  tended to decrease. Therefore, when the crack 
direction declined from both holes with the curvature, both 

 and  decreased. However, when the crack growth 
linearly  tended to increased again whereas, 
decreased. Furthermore, based on this phenomenon, it could 
be understood that Mode I significant effect than Mode II, 
and this was due to the brittleness of this material.  

 
Figure 12.  The relationship of KI & KII with crack extension 

A comparison study between the current study and the 
experimental results[8] was performed, to validate the 
accuracy and reliability of this developed FE model. Notably, 
all the crack lengths were measured along the cracked path. 
The crack trajectory of the numerical results for this study is 
shown in Fig. 13. It appeared that, in the v icin ity of the holes, 
the crack direct ion was curved as a consequence of the mixed 
mode (I and II) loading. The crack was propagated 
non-linearly towards the hole by the attraction of the holes, 
which are generated high stresses from both sides of the 
crack t ip. 

 
Figure 13.  Numerical result of the crack path for the CCT specimen with 
two holes 

These generated stresses obviously influenced the crack 
propagation direction as well as the values of SIFs. The 

 

 

IIK
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experiment results[8] revealed the same behaviour of the 
crack growth trajectory as illustrated in Fig. 14. Furthermore, 
Fig. 15 shows the symmetric results of the maximum 
principal stress with the crack propagation trajectory.  

 

Figure 14.  Current work results of an enlargement of a crack trajectory 
for the CCT specimen with two holes 

 
Figure 15.  The triangle points correspond to experimentally obtained 
crack path, where the full line holds for one parameter and the dash line for 
two parameter fracture mechanics[8] 

The predicted crack trajectory from the numerical results 
of the current results was obviously shows, a similarity and a 
good agreement to the experimental results[8]. In fact, the 
crack direction is influenced whenever there is hole in the 
geometry and this is due to the huge of stresses were 
generated around the holes. 

4. Conclusions 
In this paper, a  comprehensive Finite Element model was 

developed using the source code written in FORTRAN© 
with an  advancing front method for crack growth analysis. 
Displacement Extrapolat ion Technique (DET) was 
employed to evaluate the SIFs under mixed mode loading 
conditions. The automatic crack propagation was 
characterised by the successive propagation steps performed 
without user interaction. The developed FE programme 
allowed the user to control the process by changing the size 
of the crack growth increment, maximum and minimum 
element size in the mesh and init ial mesh size for the 

background mesh. Overall, all these advantages were 
successfully revealed the reliability and the capability of this 
new developed FE model in dealing with plane crack 
behaviours.  In fact, in term of flexib ility the user could also 
control the problem type, which is either a plane strain or a 
plane stress to clarify the deformation. The comparisons and 
analysis shown that, this developed program was truly 
evaluated and validated with relevant research works under 
different methods selected from the literature. 
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