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Abstract  Th is study estimates and compares the asymmetry  and persistence of volatility of crude oil, natural gas and 
coal- three main sources of energy. This study also evaluates the effect of recent Global Financial Crisis (GFC) on the return 
and volatility of these energy prices. Threshold GARCH (TGARCH) and fract ionally  integrated GARCH (FIGARCH) model 
are employed to facilitate the study. The estimated results show that coal return volatility exhib its strong mean reversion 
whereas crude oil and natural gas return volatility endures shocks for relatively  higher period. The estimated results also 
confirm that volatility of crude oil and natural gas increases after positive shocks in prices. 
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1. Introduction 
Over the last couple of decades, volatility has become one 

of the significant issues in the energy market. It is apparent 
that energy  p rices are the most  vo lat ile  among  all the 
commodity prices i. Crude oil, coal, natural gas and other oil 
related products all observe significant price fluctuations. 
These fluctuations in prices create uncertainty in the minds 
of consumers and p roducers. Reference[2] and[15] assert 
that investors and market  part icipants delay investment 
because of this uncertainty. Again, this delay in investment 
results in inefficient  resource allocat ion in the long-run. 
Pers istence in  vo lat ility  and  the asymmetric effect  o f 
volatility are two  crucial aspects of the volatility modelling. 
Generally, volat ility increases in response to positive and 
negative shocks. However, this increase in volatility is not in 
equal magnitude to the same level of positive or negative 
shocks . Th is  characterist ic o f vo lat ility  is  cap tu red  by 
asymmetry . For energy  retu rn  vo lat ility , asymmetry  is 
observed in  opposite d irect ion. Energy retu rns volat ility 
reacts more to  posit ive shocks than  to negat ive shocks, 
suggesting volatility of energy return increases more when 
energy price increases than when energy price decreases. 
Like other financial and  economic series , energy p rice 
returns also exh ib it  pers istence in vo lat ility . Persistence 
implies that any shocks to conditional variance endure. The 
return series tend to follow a pattern, i.e . large changes are 
followed by large changes and small changes are followed 
by small changes ii. Vo lat ility  pers istence has sign ificant 
impact on derivatives in where underlying is energy prices. 
Reference[16] ment ions  the p rice o f opt ions and  other  
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derivative varies if the volatility of that underlying 
commodity is persistent. In the literature of energy price 
volatility, most of the studies aim to find out the best model 
for forecasting volatility accurately. Moreover, most of the 
studies deal with crude oil whereas natural gas and coal also 
play significant role in the energy market. To  the best of our 
knowledge, this paper is the first of its kind which considers 
both asymmetry and persistence of major three energy price 
volatilities after controlling Global Financial Crisis (GFC). 
Comprehensive understanding of asymmetry and persistence 
is imperative in  correctly  estimating volat ility of energy 
prices, forecasting future energy price volatility and 
understanding of the broader financial markets and the 
overall economy. 

The main  objective of this paper is to model the volatility 
of various energy returns and compare the asymmetry and 
persistence aspect of these energy returns volatility. In this 
case, we estimate the volatility of three main energy 
components of crude oil, natural gas, and coal. For volat ility 
modelling of energy returns, we use conditional volat ility 
measures. For conditional measure of volatility we apply 
various extensions of ARCH and GARCH models. We 
employ threshold GARCH (TGARCH) for evaluating 
volatility asymmetry and fractionally integrated GARCH 
(FIGARCH) for measuring persistence. We also aim to 
evaluate the effect of GFC on the return and volatility of 
energy prices. Th is GFC leads to sharp decline in  demand for 
output and therefore, the demand for commodity also 
declines. This results in p lummet ing commodity prices. It  is 
hypothesised that this current GFC brings structural shift in 
volatility of commodity prices. In this study, we use dummy 
variable for GFC and evaluate the effect of GFC on return 
and volatility of energy prices.  

The construction of the paper is as follows: Section 2 
discusses recent and related studies; Section 3 discusses 
about our models for this study; Section 4 deals with the data 
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and its descriptive statistics; Section 5 shows the estimated 
results, and finally, Section 6 concludes the study. 

2. Literature Review 
Asymmetry aspect in volat ility is init ially observed in 

stock return volatility by reference[3] and[6]. In stock 
market, negative shocks lead to higher volatility than 
positive shocks. In case of commodity and energy returns, 
asymmetry is observed in opposite direction. Energy return 
volatility reacts more to positive shocks than to negative 
shocks. For studying asymmetry in crude o il volatility, 
Reference[14] uses exponential GARCH model to evaluate 
varying effects of positive and negative shocks on oil return 
volatility. Reference[5] also studies the asymmetry effect on 
two crude oil prices: WTI and Brent crude oil. He finds that 
volatility reacts more to negative shocks than to positive 
shocks. However, it is evident only for Brent crude not for 
WTI crude oil. The literature on asymmetry of energy prices 
is limited to crude oil p rices. 

Persistence or long memory p lays a crucial role in  
volatility forecasting and it has immense influence in risk 
management, derivative pricing and portfolio management. 
Persistence implies that any shocks to volatility do not d ie 
quickly  rather its effect endures. Among the studies, 
[12],[16],[20] and[21] examine persistence in  oil return 
volatility. Reference[16] estimates volatility persistence of 
crude oil and natural gas using GARCH and ‘half-life’ 
volatility measure and finds the evidence of persistence in 
the volatility of crude oil and natural gas. However, his 
measure of persistence suggests that the fluctuations are 
short-lived than previously assumed. If there is a shock to 
crude oil or natural gas prices, it lasts up to 5 to 10 weeks. 
Reference[20] estimates volatility persistence for larger 
number of energy commodit ies including crude oil, gasoline, 
heating, natural gas, and propane. In a recent study, 
Reference[19] estimate persistence in crude oil and find the 
evidence of long memory even with structural break. 

3. Methodology 
To facilitate our study, we use TGARCH and FIGARCH- 

two extensions of GARCH class model. Constant variance or 
homoskedasticity in the error term is common assumption; 
however,[10] and others identify that the assumption of 
constant variance in the error term is not valid and require a 
flexib le model to describe the volatility in the data. The 
researchers observe conditional variance or 
heteroskedasticity in the error term. GARCH model can 
capture this heteroskedasticity in the error term. Moreover, 
the GARCH model can accommodate persistence and 
asymmetry in volatility. The GARCH (p, q ) is modelled 
by[4], and this model allows current conditional variance to 
depend on p- past conditional variances and q- past squared 
error terms. GARCH models are well established in 
volatility modelling considering various attributes of 

volatility. Reference[1],[12],[13] and[16] use various 
GARCH models for their study of energy return volatility. 
Reference[18] uses various parametric and non-parametric 
volatility models for commodity prices and finds that 
GARCH and its variants fit better over other modeling 
techniques. Reference[22] contends that univariate models 
like TGARCH and FIGARCH perform better when 
asymmetry in volat ility is considered.  

For both TGARCH and FIGARCH, we consider the same 
mean equation; however, the specification of condit ional 
variance will be according to the structure of the model. Both 
mean  and variance equation of the models include dummy 
variable GFC. The mean equation is as follows: 

tttt billtGFCcr ελλ +−++= 10             (1) 

)1,0(, Nzhz tttt ≈=ε  
where, tr  is the energy price return at time t, GFC is the 
dummy variable for financial crisis in 2008, t-bill is the 3 
month US Treasury bill rate, and tε  is the error term in the 
mean equation at time t. Since carry ing cost is one of the 
important components of the return function of energy 
commodity p rices, we use carrying cost in the return function 
of energy price returns. In this case, we use T-bill to 
represent the carrying cost. Reference[16] states that the risk 
free rate is a significant component of this carrying cost and 
it can be used to represent the carrying cost. Reference[16] 
also uses 3 month U.S. Treasury bill rate in his study of crude 
oil and natural gas return volatility. The mean and variance 
equation are augmented by dummy variable GFC 1  to 
identify the shift  in volatility in energy prices due to the 
recent financial crisis. In the variance equation, the ARCH 
and GARCH parameters must be positive, α>0, and β>0, and 
the sum of ( )βα +  quantifies the persistence of shocks to 
volatility. As the return series is unexpectedly large in either 
the upward or downward direction, the GARCH 
specification captures the volatility clustering effect.  

3.1. Threshold GARCH (TGARCH) 

The threshold GARCH (TGARCH) model by[11] and[23] 
is a simple extension of GARCH of with  an additional term 
added to account for possible asymmetries. The main 
objective of this model is to capture asymmetries in terms 
of negative and positive shocks. For evaluating asymmetries, 
the TGARCH adds one mult iplicative dummy variab le into 
variance equation. This dummy variable checks whether the 
negative shocks are statistically significant from positive 
shocks.  The conditional variance of the TGARCH model 
is given by  

tttttt GFCIhh φγεβαεω ++++= −−−− 1
2

1
2

1
2

1
2       (2) 

where It-1 =1 if 1tε − <0; =0 otherwise. 
For asymmetric effect, we would see 0>γ . The 

condition of non-negativity is 0>ϖ , α  0>α , 0>β , 
and 0>+ βα . In  equation (2), ω  measures constant 
                                                                 
1 GFC is dummy variable and it is constructed using Eviews add-in ‘Create US 
recession dummies’.  
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volatility, α  measures the effect of lagged return shocks of 
energy on its volatility and β  measures the effect of the 
previous period’s conditional volatility on the volatility of 
current period. The term γ  captures the asymmetry effect 
of energy return volatility. If there is a symmetric effect of 
lagged shocks on the volatility γ  is zero. In contrast, if 
lagged negative shocks augment the volatility by more than 
lagged positive shocks ( )0>γ , there is an asymmetric effect 
which is typically associated with a leverage effect or a 
volatility feedback effect. If lagged negative shocks decrease 
the volatility of energy returns ( )0<γ  the asymmetric 
effect typically found for equity is inverted, i.e. positive 
shocks of energy return increase its volatility by more than 
negative shocks. For energy returns, the expectation is that 
positive shocks have more effect on volatility than negative 
shocks. Therefore, we expect negative sign in γ .      

3.2. Fractionally Integrated GARCH (FIGARCH) 

In general GARCH class models, the stationary ARMA 
process is a short memory process and the autocorrelations 
are geometrically bounded. In this case, autocorrelation 
decreases rapidly. However, researchers observe that some 
time series exh ibit  large degree of persistence. To 
accommodate this persistence in autocorrelations, 

The FIGARCH (1, d, 1) model takes the following form: 
[ ] GFCLLLhh t

d
tt φεϕββω +−−−−++= −
−

212
1

2 )1)(1()1(1       (3) 
where, 10 ≤≤ d , 0>ω , ϕ , 1<β ; d is the fractional 
integration parameter and L is the lag operator. The 
parameter d  characterizes the persistence property of 
hyperbolic decay in volatility because it allows 
autocorrelations to decay at a slow hyperbolic rate. The 
advantage of the FIGARCH process is that for 10 ≤≤ d , it 
is sufficiently  flexible to allow for intermediate ranges of 
persistence. The FIGARCH model allows for long memory 
behaviour and a slow rate of decay after volatility shocks. 

4. Data 
This study includes daily closing prices of crude oil, coal, 

and natural gas. For crude oil, natural gas, and coal we use 
2-month future price2 of West Texas Intermediaries (WTI), 
Henry Hub and ICE Global Newcastle futures price 
respectively. All the data sets have 3912 daily observations 
covering the period of 1 January 1995 to 31 December 2012. 
All the data are collected from Datastream. We use 
continuously compounded energy price return- natural 
logarithm of the ending price less its natural logarithm of the 
beginning price.  

The descriptive statistics for the return series of energy 
prices of crude oil, natural gas, and coal are summarized in 
Table 1. The average returns of energy prices are positive. 
The annualized returns of energy prices vary from 2.5% for 
                                                                 
2 In Datastream, the longest available future price for crude oil is 2-month 
future price.   

natural gas to 10% for coal. For crude oil, average annualised 
return ranges from 5% to 7.5%. In case of standard deviation, 
all the variab les have less than 2% except natural gas with 
standard deviation of 4%. The energy price returns also 
exhibit  skewness and kurtosis. The crude oil and natural gas 
price returns are skewed to left and coal price returns are 
skewed to right. In case of kurtosis, all the variables show the 
evidence of leptokurtosis, as the values of kurtosis are 
greater than three. Considering skewness and kurtosis, none 
of the variables of this study is normally distributed. The 
thick tails of excess skewness can be modeled by assuming a 
conditional normal d istribution for returns. Again, this 
normality is tested using Jarque-Bera (J-B) test. The 
probability values of J-B test indicate that the null hypothesis 
is rejected which implies the variables are not normally 
distributed. For modelling purpose, we also check the 
presence of unit-root and ARCH effect in the data 3. The 
ADF and PP test of unit root results show that the first 
difference of prices series is free from the presence of unit 
root as we reject the null hypothesis of the presence of unit 
root. LM test confirms that the return series exhibits the 
presence of ARCH effect. 

Table 1.  Descriptive statistics for daily energy price return 

 Crude Oil Coal Natural Gas 
Mean 0.0003 0.0004 0.0001 

Median 0.0004 -0.0003 -0.0000 
Maximum 0.1056 0.3570 0.8741 
Minimum -0.1416 -0.3266 -0.5730 
Std. Dev. 0.0203 0.0220 0.0562 
Skewness -0.1999 1.6379 -1.3027 
Kurtosis 4.5014 95.215 29.09 

Jarque-Bera 197.91 119352 95864 
Probability 0.000000 0.0000 0.0000 

This table reports the summary statistics of crude oil, coal and natural gas 
(gas).The Jarque-Bera (JB test) tests the normality in the sample return 
distribution 

5. Results and Discussion 
The estimation results of TGARCH and FIGARCH are 

presented in Table 2 and 3. The mean equation is same for 
both models and they take a constant term, T-bill rate and 
dummy variab le for GFC. For crude oil forward p rice, the 
results of the mean equation show that the coefficient of 
constant, C , is statistically significant. However, it is not 
statistically significant for coal and natural gas. The 
coefficient of the constant is negligible. The coefficient of 
T-bill, 1λ , is statistically significant for all energy price 
returns except in  TGARCH model for natural gas. This result 
is consistent with theory, as the return of energy prices is a 
function of carrying cost. In our model, T-bill rate is a proxy 
measure of carrying cost of energy prices. The coefficient of 
t-bill rate has positive coefficient suggesting when t-bill rate 
goes up, the returns energy returns also go up. Reference[16] 
also has the same results for T-bill rate in the mean equation. 
                                                                 
3 The results of unit root test and ARCH effect are not shown due to space 
constraint. The results can be available upon request.  
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We have important findings for the effect of recent global 
financial crisis. Although the coefficients of dummy variab le 
GFC is not statistically significant in the return function of 
the energy prices, GFC has effect on the volatility of energy 
price returns suggesting GFC contributes to the energy return 
volatility. The results of the variance equation show that the 
coefficients of the dummy variab le GFC, φ , are significant 
for all energy prices and for all GARCH class of models. In 
most of the cases, the coefficients of GFC are significant at  
1% and at 5% level. 

Table 2.  FIGARCH estimation results for crude oil, gas and coal 

 Crude Oil Natural Gas Coal 
Mean equation 

C 0.0007* 
(0.0004) 

-0.0002 
(0.0004) 

0.0005** 
(0.0002) 

λ0 
-0.0006 
(0.0008) 

-0.0030** 
(0.0012) 

-0.0013 
(0.0013) 

λ1 
0.0755*** 
(0.0223) 

-0.0554** 
(0.0233) 

-0.0353*** 
(0.0110) 

Variance equation 

ω 0.1824* 
(0.1015) 

0.0025** 
(0.0009) 

0.1411** 
(0.0696) 

α 0.3330*** 
(0.0840) 

0.1955*** 
(0.0235) 

0.3182*** 
(0.0713) 

β 0.6170*** 
(0.1003) 

0.7799*** 
(0.0772) 

0.6861*** 
(0.0798) 

d  
0.3462*** 
(0.0705) 

0.2954*** 
(0.1212) 

0.4607*** 
(0.1039) 

φ  0.0241 
(0.0925) 

0.0120 
(0.2520) 

0.0041 
(0.1025) 

Diagnostic 

Q(20) 30.42 
(0.06) 

20.80 
(0.41) 

20.80 
(0.41) 

Qs(20) 7.93 
(0.99) 

7.93 
(0.99) 

8.38 
(0.99) 

ARCH-LM 0.46 
(0.98) 

0.28 
(0.99) 

0.42 
(0.99) 

Notes: Q (20) and Qs(20) are Ljung-Box Q-statistics with lag of 20. They 
are calculated on the standardized residuals and squared standardized 
residuals. ARCH-LM is the non heteroskedasticity statistics. Standard 
errors are given in square brackets. ***, **, and * denote the significance 
of the coeffici ents at 1%, 5%, and 10% level 

5.1. Persistence in Volatility 
One of the main object ives of this paper is to measure and 

compare the persistence of volatility of different energy 
returns. In the variance equation of (3), the GARCH term, 
β , captures persistence of shocks. When the coefficient, β , 

is close to 1, the shocks to volatility do not die out quickly. 
To measure the persistence of shocks, we estimate FIGACH 
(1, d, 1) model using equation (3). In the model, when 
fraction term is 5.00 << d , the volatility has long memory 
and underlying series is stationary and when 05.0 <<− d , 
the volatility does not have long memory. Our estimated 
results from Table 2 show that the coefficients of d  are 
statistically significant and its value ranges from 0.2954 (gas) 
to 0.4607 (coal). The results imply that the volatility of 
energy returns exh ibit  long memory and any shocks to the 
volatility do not die out quickly. The results are confirmed by 
the coefficient value o f β . The value of β  is less than 
unity. Wei et al. (2010) also find the evidence of long 

memory in two types of oil returns. Using FIGACRH model, 
they estimate persistence of Brent and WTI oil return 
volatility and their coefficients value d  range from 0.310 to 
0.443. For measuring volatility persistence in energy return 
volatility, we also discuss about half-life, another measure 
persistence of volatility.  

The ‘half-life’ is another measure of volatility persistence. 
Reference[8] defines half-life as the time required for the 
volatility to move half way back towards its unconditional 
mean. The unconditional mean of the FIGARCH (1, 1) 
model is estimated as the rat io of the constant term (ω) in 
variance equation to the difference between 1 and the sum of 
ARCH and GARCH terms. Reference[16] measures half-life 
using the following equation:  

)log(
)2/)log((

βα
βατ
+

+
=               (4) 

Table 3 shows the estimates of persistence of energy 
returns using ( )βα +  and half-life volatility measure. The 
second column of Table 3 contains the sum of α  and β
from the estimation results of equation (3) and the third 
column contains half-life measure of volatility. The 
estimation identifies that the returns volatility of energy 
returns exhibit long memory, since the sum of α  and β  
is always less than one4. Among the energy prices, coal has 
strong mean reversion. It means that the volatility of coal 
approaches their average o r long-run volat ility relat ively 
quickly. On the other hand, other energy prices volatility 
has also mean reversion; however, their volatility is 
relatively persistent, since the sum of α  and β  is close 
to one.  

Table 3.  Half-Life volatility measures of crude oil, gas, and coal 

 βα +  Half-life volatility (in 
days) 

Crude Oil 0.9895 67 
Natural Gas 0.9831 42 

Coal 0.8784 7 

The half-life measure of volatility of energy prices 
indicate the same phenomenon described using the sum of 
α  and β  and mean reversion. As coal is relatively less 
persistent and its volatility moves quickly to their long-run 
volatility level, the half-live for coal is also relat ively less. 
This result implies that shocks to the volatility are very 
transient. Crude oil return volatility exhib its the highest 
level of persistence. The half-life of crude oil is 67 days. It 
implies that any shocks to this volatility take 67 days to 
return half-way back without any further shocks to that 
volatility. On the other hand, the half life  volatility of 
natural gas is 42 days suggesting that any shock to natural 
gas takes 42 days to return half way back to its volatility.  

5.2. Asymmetric Effect of Volatility 

                                                                 
4 We check the significance of sum of α and β. In null hypothesis the sum of α 
and β is equal to one or greater than one. The hypothesis tests imply that for all 
energy prices we rej ect the null hypothesis. Therefore, the volatility measures 
are persistent in their nature. The hypothesis test results are not reported. 
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To examine the existence of asymmetry in the volatility of 
crude oil, natural gas, and coal, we estimate TGARCH (1, 1) 
model by using equation (2). The asymmetry is measured by 
the sign and the significance of the coefficient γ . Our 
estimated results show that asymmetry is evident in the 
volatility of crude oil and gas whereas the same is not evident 
in case of coal. 

The results of the TGARCH model estimation confirm the 
existence of asymmetric effect on the volatility of energy 
returns of crude oil, natural gas. The coefficients of ARCH 
and GARCH terms, α , and β , are statistically significant. 
It ensures that the lagged residuals and lagged conditional 
variance are significant in describing the conditional 
volatility. The sign of γ  is negative TGARCH model 
suggesting the positive shocks have higher impact on next 
period conditional vo latility of energy return than negative 
shocks. This result is consistent with our expectation of 
positive energy price shocks have higher effect on volat ility 
than negative price shocks. The coefficient estimates vary 
from -0.0029 for coal to -0.0212 for crude oil. The 
coefficients of asymmetry are relatively higher in o il 
suggesting that when energy price increases, oil return 
volatility is affected relatively higher than other energy 
commodit ies. 

Table 4.  TGARCH estimation results for crude oil, gas and coal 

 Crude Oil Natural Gas Coal 
Mean equation 

C 0.0006 
(0.0004) 

0.00027 
(0.0006) 

-0.0002 
(0.0002) 

λ0 
-0.0006 
(0.0008) 

-0.0031** 
(0.0013) 

0.0014*** 
(0.0002) 

λ1 
0.0780*** 
(0.0230) 

-0.0537 
(0.0338) 

-0.0841*** 
(0.0038) 

Variance equation 

ω 0.0000*** 
(0.0000) 

0.0007*** 
(0.0000) 

0.0002*** 
(0.0000) 

α 0.0189** 
(0.0082) 

0.1789*** 
(0.0110) 

0.0516*** 
(0.0042) 

β 0.9593*** 
(0.0080) 

0.8302*** 
(0.0076) 

0.9058*** 
(0.0048) 

γ -0.0212** 
(0.0103) 

-0.0125*** 
(0.0029) 

-0.0029 
(0.0069) 

φ  -0.0001** 
(0.0000) 

-0.0001 
(0.0000) 

-0.0002** 
(0.0001) 

Diagnostic 

Q(20) 29.13 
(0.09) 

30.80 
(0.10) 

21.87 
(0.35) 

Qs(20) 9.16 
(0.98) 

9.16 
(0.98) 

6.94 
(0.99) 

ARCH-LM 0.49 
(0.97) 

0.81 
(0.71) 

0.34 
(0.99) 

Notes: Q (20) and Qs(20) are Ljung-Box Q-statistics with lag of 20. They 
are calculated on the standardized residuals and squared standardized 
residuals. ARCH-LM is the non heteroskedasticity statistics. Standard 
errors are given in square brackets. ***, **, and * denote the significance 
of the coeffici ents at 1%, 5%, and 10% level.   

For robustness check of our estimated models, we employ 
Ljung-Box Q-statistics for autocorrelation, and LM test for 
checking the presence of ARCH effect in the residuals. The 
Q statistics for residuals evaluates the misspecification of 
mean equation of the GARCH models and Q statistics for 

squared residuals evaluate the misspecification o f the 
variance equation of our models. We select 20 lags. Our 
result shows that both the mean and variance equations are 
correctly specified and no correlation  is evident in the 
residuals of our models. The calculated result of ARCH LM 
test in the residuals shows that ARCH effect is not present in 
the residuals, since the null hypothesis of the tests cannot be 
rejected Based on Q-statistics and ARCH LM, all our 
GARCH models estimated in this paper is adequately 
specified and well fit. 

6. Conclusions 
In this paper, we measure the volatility of crude oil, 

natural gas, and coal, and evaluate the persistence and 
asymmetric aspect of their volatility. We use TGARCH and 
FIGARCH modelling technique for capturing asymmetry 
and persistence respectively. We also employ half-life 
volatility measure. Our estimated results from half-life 
volatility measure state that coal exhib its strong mean 
reversion implying shocks are not persistent in their 
volatility. On the other hand, shocks in crude oil volat ility are 
very persistent. For future price of crude oil, shocks last for 
67 days and for spot price of crude oil, shocks last for 48 
days. Natural gas has also relatively higher level of volat ility 
persistence. TGARCH model is used to evaluate asymmetric 
aspect of volatility of the energy series. It  is expected that 
volatility increases more by positive shocks than by negative 
shocks. The asymmetry coefficient is relatively higher for 
crude oil. In terms o f evaluating asymmetric aspect of 
volatility, our estimation suggests that except coal return 
volatility, asymmetry is observed in the volat ility of crude o il, 
natural gas.  

This research is of great importance to risk managers, port 
folio managers, policy  makers, and market part icipants to 
understand volatility of major energy components. Energy 
derivative market is one of the largest derivative markets and 
efficient pricing of such derivatives requires accurate 
estimation and understanding of volatility. Our focus is on 
asymmetry and persistence of volatility to understand nature 
of energy volatility precisely.  
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i Reference [9] calcul ates that oil has 78% and natural gas has 38% annual price volatilities. Reference [17] calcul ates volatilities of different commodities and finds 
that crude oil prices are 65% more volatile than other commodities.  
ii Reference [13] notes that large changes tend to be followed by large changes, of both sign, and small changes tend to be followed by small changes.  
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