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Abstract  Active vision integrates the information coming, through the retina, from the outside world with that gener-
ated internally by the brain, especially by eye movements (saccades). We investigate the influence that the eyes motor con-
trol might play on visual search. Thirteen cerebellar patients and twenty-five healthy subjects performed a high cognitively 
demanding task (Trail Making Test), we correlated the performance of eye motor control with the abilities to perform the 
task efficiently, and we found a strict correlation between the two factors on patients. The experimental evidence supports 
an indirect role of the cerebellum on cognitive performance due to noise feedback. 
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1. Introduction 
Since the visual system has limited computational re-

sources[43, 8], it is necessary to limit detailed processing to 
selected aspects of the input: for this reason, humans select 
some regions from the scene to process in depth limited 
information, then move the eyes to a location. This mecha-
nism is usually referredto as “selective attention”[32]. Se-
lective attention is managed by two competitive mechanism: 
saliency of the scene (bottom-up) and internal intention 
(top-down) (see Figure 1). These two mechanisms contribute 
to build the priority (maybe Bayesian;[27, 19, 44]) map[12] 
which suggests the next location to explore; after that, the 
eye movement (saccade) is planned and controlled through 
the cerebellum-cerebral loop[29]. Selective attention and eye 
movements cooperate to the perception of a stable visual 
world (see[33] for premotor theory of attention; see[22] for 
corollary discharges), we refer to this vision as “active vi-
sion”. 

Since the eye movement is influenced by noise[4], sac-
cades are generated with movement profiles that minimize 
the impact of all forms of motor noise[30]; then, the question 
is “could sensory-motor noise feedback influence the selec-
tive attention?” (Figure 1). To answer this question we 
studied the visual exploration made by patients affected by 
cerebellar atrophy: it is well known that patients affected by 
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cerebellar disease have reduced capacities to control eye 
movement[47, 21]; indeed, the neuronal circuitry of the 
cerebellum (CBLM) is thought to encode internal models 
that reproduce the dynamic properties of body parts[14]. 
These models control the movement allowing the brain to 
precisely control the movement without the need for sensory 
feedback[3, 16, 18]. The CBLM is linked to the cerebral 
cortex via two-stage feedforward and feedback systems[20]. 
Input from cerebral cortical regions terminates on nuclei in 
the basis pontis[29], which in turn convey mossy fibreef-
ferents to the CBLM. Feedback projections from the cere-
bellar cortex travel via the deep cerebellar nuclei and ter-
minate in the thalamus, which then sends projections back to 
the cerebral cortex[17, 45]. This loop is a forward model 
avoiding direct input from the sensory apparatus[11] like an 
open adaptive filter[15]. Then, there are sufficient findings to 
account for a dominant role of the CBLM on motor control, 
while, the hypothesis that CBLM influences cognitive func-
tionsremains unclear (see[37, 36] for a review).Various 
authors have argued a role of CBLM in visual-spatial func-
tions:[46] and[42] supported the hypothesis that the CBLM 
is involved on spatial rotation.[2] suggested that only mid 
cerebellar regions (cerebellar vermal structures such as the 
pyramid) are indirectly involved in covert visual attention 
via oculomotor control mechanisms. On the contrary, ex-
periments made by[5] failed to support the hypothesis that 
the CBLMis involved with attentional set shifting. 

In our research, we aimed to study the role of cerebellum 
in visual search: we correlated the motor entropy to visual 
search performance, and we found that patients’ motor con-
trol might play a role to select the next region to explore. 
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Figure 1.  Attention and motor control. Selective attention is controlled by two cognitive top-down factors, such as knowledge, expectation and current 
goals, and bottom-up factors that reflect sensory stimulation. These two factors contribute to construct a priority map which guides next eye movement. After 
that, attention and motor planning collaborate to perform a stable vision of the world. Motor execution is controlled by cerebro-cerebellar loop; the effort on 
managing this movement and the noise to make a stable vision may influence next area selection (dashed line) such as an optimal control system. From the 
physiological point of view, Saliency Map is built on Visual Area (VA; see[1, 25]), Top-Down information is encoded on Prefrontal Cortex and Frontal Eye 
Fields (PFC and FEF; see[23]), these two maps are integrated on Superior Colliculus (SC; see[24, 9]), the motor command is executed and controlled 
through the cerebellum-cerebral loop (CBLM; see[20]). The optimal control vision, here described, could modulate the reward system[13] to minimize the 
effort on controlling movements.{TC “1 Attention and motor control. Selective attention is controlled by two cognitive top-down factors, such as knowledge, 
expectation and current goals, and bottom-up factors that reflect sensory stimulation. These two factors contribute to construct a priority map which guides 
next eye movement. After that, attention and motor planning collaborate to perform a stable vision of the world. Motor execution is controlled by cere-
bro-cerebellar loop; the effort on managing this movement and the noise to make a stable vision may influence next area selection (dashed line) such as an 
optimal control system. From the physiological point of view, Saliency Map is built on Visual Area (VA; see[1, 25]), Top-Down information is encoded on 
Prefrontal Cortex and Frontal Eye Fields (PFC and FEF; see[23]), these two maps are integrated on Superior Colliculus (SC; see[24, 9]), the motor command 
is executed and controlled through the cerebellum-cerebral loop (CBLM; see[20]). The optimal control vision, here described, could modulate the reward 
system[13] to minimize the effort on controlling movements.” \f f} 

2. Method 
We used a highly cognitive demanding task, namely the 

trail making test[6, TMT], in which subjects were asked to 
follow an alphanumeric sequence with their gaze. The trail 
making stimulus was a pop-up high contrast image con-
sist ing of a sequence of numbers and letters (1-A-2-B-3-C-4
-D-5-E) arranged in an unpredictable manner[40]. The TMT 
is particularly suitable for studying selective attention, as it 
does not require any explicit feedback by subjects, and the 
test performance can be evaluated by a computational 
method. 

2.1. Subjects 

Eight SCA2 patients, a mixed group of five patients with 
undefined genetic cerebellar ataxia (NDC) and 25 healthy 
subjects were enrolled in the study. All were in the age range 
25-45 years. Subjects were seated at viewing distance of 78 
cm from a 32” colour monitor (51 cm × 31 cm). Eye position 
was recorded using an ASL 6000 system, which consists of a 
remote-mounted camera sampling pupil location at 240 Hz. 
A 9-point calibration and 3-point validation procedure was 
repeated several times to ensure all recordings had a mean 
spatial error of less than 0.3 deg. Head movements were 
restricted using chin rest and bite. 

2.2.Gaze Evaluation 

Numbers and letters were sampled as a pre-defined rec-
tangular region of interest (ROI) centred on letters and 
numbers and having widths and heights merging from 80x80 
pixels to 100 ×100 pixels. The same ROI spatial distribution 

was pre-defined for all tasks. Fixations were calculated using 
a dispersion-based algorithm proposed by Salvucci[34] and 
adapted by Veneri-Piu[39] and saccades by Fisher[13] al-
gorithm. The minimum duration of fixation was set at 50 ms, 
the maximum dispersion to identify fixations was at one 
degree and the saccade threshold at 30 deg/sec[21]. 

We evaluated two types of indicators: motor control noise 
and test performance. To give a quantitative value of motor 
noise during the visual search, we used the wavelet entropy, 
which provided a value of gaze variability[4]. Entropy was 
calculated through coif2 wavelet[38] over x and y axis (Ex, Ey) 
and averaging the two values (E=(Ex+Ey)/2). 

Cognitive performance was evaluated calculating the 
Euclidean distance for each fixation to next target (DT) or to 
nearest ROI (DN)[41]. 

2.3. Statistics 

ANOVA was used to find the difference among the groups; 
post-hoc analysis was performed by the Sidak procedure for 
multiple Student’s t tests. Kolmogorov-Smirnov test was 
used to evaluate the assumption of normal distribution. 
Correlation was evaluated through parametric Pearson test 
and non-parametric Spearman test.Descriptive statistics are 
given as the mean ± standard deviation or median (25-75% 
interquartile range) as appropriate. p<0.05 was considered 
significant. 

3. Results 
The goal of the wavelet entropy indicator was to estimate 

the motor control noise during the task: Figure 2.a shows the 
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scatter diagram of Ex, Ey of the groups. A qualitative analysis 
of the graph shows an increase of entropy from CTRL to 
NDC to SCA2. ANOVA reported significant difference 
(F(2,35)=18.32, p<0.001) on E=(Ex+Ey)/2 and post-hoc 
Sidak procedure confirmed significant difference between 
CTRL-SCA2 (pCTRL-SCA2<0.001) and NDC-SCA2 
(pNDC-SCA2=0.018); no significant difference was found be-
tween CTRL-NDC (pCTRL-NDC=0.28). Indeed, NDC is a small 
mixed group where the disease is not explicit and provided a 
useful reference to study the mechanism (Figure 2.b). 

To study the scan path made by subjects, we evaluated the 
ongoing distance to target for each fixation (DT); DT pro-
vided an indicator to understand the ability of humans to 
converge to the target. ANOVA reported significant differ-
ence among groups (F(2,35)=9.476, p<0.01) and post-hoc 
Sidak procedure confirmed significant difference be-
tweenCTRL-SCA2 (pCTRL-SCA2<0.01), CTRL-NDC (pNDC-SCA2 
≤ 0.01); no significant difference was found between 
SCA2-NDC (pSCA2-NDC=0.622). 

 
(a) 

 
(b) 

Figure 2.  (a) Wavelet entropy over x and y for patients and healthy sub-
jects. (b) Significant difference was found on wavelet entropy between 
healthy subjects (CTRL) and SCA2 patients; NDC patients are a mixed group 
not easy to identify, but confirmed the high entropy eye motor control.{TC 
“2 (a) Wavelet entropy over $x$ and $y$ for patients and healthy subjects. 
(b) Significant difference was found on wavelet entropy between healthy 
subjects (CTRL) and SCA2 patients; NDC patients are a mixed group not 
easy to identify, but confirmed the high entropy eye motor control.” \f f} 

Pearson and Spearman test reported correlation between E 
and DT for NDC patients (p<0.05, ρ = 0.892, Figure 4.a), and 
correlation for SCA2 patients (p<0.05, ρ = 0.736, Figure 4.b) 
not confirmed by Spearman (p=0.18). No correlation was 
found for CTRL subjects (p=0.43). 

Our preliminary conclusion was that motor control noise 
might influence test performance. To study why and how this 
effect could be valuable, we analysed distance to the nearest 
ROI (DN); DN measured the effect of target averaging, 
which is a strategy to select a region among available tar-
gets[35]. DN reported the same characteristic of DT 
(pCTRL-SCA2<0.001, pCTRL-SCA2<0.01, pNDC-SCA2=0.89), but not 
correlation with E (Figure 3). 

 
Figure 3.  Exploration strategies. Significant differences of exploration 
strategies were found between patients and subjects; patients performed the 
test with sparser fixation (target averaging) 

 
(a)DNC 

 
(b)SCA2{TC “4 Correlations between ongoing distance to target and en-
tropy for patients SCA2 (a) and NDC (b).” \f f} 
Figure 4.  Correlations between ongoing distance to target and entropy for 
patients SCA2 (a) and NDC (b) 
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Table 1.  Mean value and standard deviation (in brackets) of tests.{TC “1 Mean value and standard deviation (in brackets) of tests.” \f t} 

Indicators  CTRL NDC SCA2 
Group 

dimension N 25 5 8 

Age  27-50 40-55 42-55 
Distance to nearest ROI (px) DN 0.728 (±0.437) 1.447 (± 0.38) 1.601 (± 0.414) 

Distance to target (px) DT 4.96 (± 2.226) 8.945 (± 1.581) 7.570 (± 2.316) 
Entropy (px) E 1.507 (± 0.116) 1.59 (± 0.096) 1.76 (± 0.036) 

 

4. Discussion and Conclusions 
The significant difference of DN and DT (Table 1) and the 

correlation with E provided evidence that patients performed 
the test with different strategies.  

The role of the CBLMon in visual-spatial functions was 
argued by various authors[2, 37, 36, 46].[16] argued for a 
fascinating theory in which the CBLM may control mental 
activities by internal models[31]; indeed, the nature of hu-
mans is a continuous adaptation of action depending from 
previous action and stimulus. This hypothesis is systemati-
cally supported by recent application of optimal control 
theory;[27],[4] and[30] argued that humans’ vision is an 
optimal mechanism minimizing the effect of motor or cog-
nitive noise. Our findings are compatible with this hypothe-
sis: patients preferred sparser fixations avoiding saccade 
directed to the target. This effect has been referred to as 
center-of-gravity (CoG). CoG occurs when targets are sur-
rounded by non-targets, and the saccades, instead of landing 
at the designated target, land in the midst of the whole con-
figuration. CoGwas considered a necessary mechanism to 
execute more efficient explorations[10]. 

The non-correlation of DN with E suggested that this 
mechanism was a strategy to minimize the effort to control 
saccade rather than a direct influence on saccade control. 

Indeed, Cerebellum could influence selective attention 
(Top-Down) sending afferent information of noise (Figure 1) 
in order to minimize the functional cost of energy; this 
mechanism requires a reward for area that maximizes the 
efficiency. There are several finding[9] and experiments[26] 
addressing the superior colliculus (SC) in competitive 
stimulus selection[7];[28] and later[20], identified a strict 
collaboration between CBLM and SC, this collaboration 
could be the primary candidate to implement the mechanism 
hypothesized. Our hypothesis is that the reward idea, hy-
pothesized by several authors[14], in which emotions and 
other factors could influence top-down attention, have to be 
integrated with afferent information coming from the cere-
bellum such as the active vision mechanism. During the last 
decade, attention has been studied independently of the 
motor control, but it is plausible that these two mechanisms 
influence each other in order to maximize efficiency. 
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