Effect of on Resistance Modulation in RF Switches
Linearity

Christopher Liessner*, Samson Mil’shtein

Electrical and Computing Engineering, University of Massachusetts, Lowell, USA

Abstract Radio frequency (RF) switch modeling has evolved as semiconductor processes have been developed and refined. However, to date no modeling has included the effect of the variation of the resistance of a switch on its linearity when the switch is in the on state. This paper presents an analysis that predicts the effect on signal linearity when the series resistance is modulated.

Keywords FET switch, Linearity, pHEMT switch, RF switch

1. Introduction

Field Effect Transistor (FET) RF switches are used in nearly all wireless communication devices, from cell phones to Wi-Fi to GPS systems [1-9]. With a growing communications market, their numbers will also grow. However, the continued growth is contingent on the constant evolution and refinement of RF switches. Specifically, newer communications architectures and implementations for fourth generation communications (4G), such as 3GPP Long Term Evolution (LTE) and IEEE802.11n, require higher frequencies and corresponding bandwidths while minimizing the distortion [1, 5, 7-9]. Minimizing distortion translates to maximizing linearity. There have been many steps over the past several years to improve the linearity of switches to meet the demanding specifications. Correspondingly, defining and modeling FET as switches have also improved [12-18], although most work has been done viewing the FET as simply a microwave device or as an amplifier [19-34]. This author has found no analysis specifically tying modulation of the ON resistance (Ron) to linearity or what inherent characteristics in a FET, such as transconductance, might lead to ON resistance sensitivity to modulation.

2. Background

The wireless performance requirements in today’s RF devices call out very stringent IP3 specifications depending upon the architecture and options used (65 dBm for GSM and WCDMA) – and have been very difficult to meet [35 – 37]. Nonetheless, researchers and companies have striven to create switches to meet these requirements. In 2006, Mil’shtein and Liessner et. al. introduced methods to improve linearity of FET switches [38-40]. In 2010, Andrew Dearn and Liam Devlin of Plextek Ltd. presented high linearity SPDT switches with IP3 at 1.9 GHz up to 54 dBm, with the second harmonic recorded at 80 dBc for that device [41]. Also, in 2010, Michael Yore, et.al. of Triquint Semiconductor reported a SP7T pHEMT switch with IMD2 typically better than -100 dBm and IMD3 typically better than -105dBm [42]. As of 2013, commercially, Skyworks currently offers an ultra-high linearity SP2T switch, SKY13405-409LF, capable of a typical IP3 of 68 dBm [37].

3. Analysis

Looking at the DC I-V characteristics of a FET switch, the channel resistance for a switch when it is in the ON state is effectively the inverse slope of the Ids versus Vds for a given Vgs at low values of Vds:

\[
R_{on} = \frac{1}{\frac{I_{ds}}{V_{ds}}} = \frac{V_{ds}}{I_{ds}}
\]

(1)

In this linear region of Ids versus Vds, this ratio is essentially a constant with a constant Vgs. However, this ratio – or equivalently the resistance, Ron - changes as a function of Vgs. Since Ron is a function of Vgs, taking the derivative of (1) with respect to Vgs will look as follows:
Reviewing the definition of the transconductance, g_m (4), and substituting it into equation (3), along with equation for R_{on} (1), we establish a relationship between the sensitivity of R_{on} to V_{gs}, V_{ds}, and I_{ds} in equation (5).

Equation (5) establishes a direct correlation between the change in R_{on} to its dc value, the value of the dc current (I_{ds}), and the transconductance (g_m), to the variation in the gate voltage (∂V_{gs}). It is seen that the smaller R_{on} is, the smaller the sensitivity to change in V_{gs}. In addition, as the dc I_{ds} increases, the variation in R_{on} also diminishes. This is because a larger I_{ds} implies a smaller R_{on}; and the smaller R_{on} is, the smaller the impact that any variation on it has on the overall signal.

Now we need to relate this derivation to switch linearity for a series switch, and to the 3rd intermodulation products in particular. In Figure 1 is shown the simple power transfer circuit of a switch in the ON state. P_{in} and P_{out} are described in equations (6) and (7). Manipulating equations (6), (7), and (8), and realizing that R_{on} is typically much less than the Z_L, we can derive the relationship of P_{in} to P_{out} relative to R_{on}. The associated insertion loss is described by equation (10).

\[
\frac{\partial R_{on}}{\partial V_{gs}} = - \frac{R_{on} \cdot g_m}{I_{ds}}
\]

(5)

Deriving for a two-tone solution, as used for IP3 measurements, equation (13) becomes as follows:

\[
y(t) = G_1 \cdot \cos(at) + G_2 \cdot \cos(2at - \varphi) + G_3 \cdot \cos(3at - 3\varphi) + \ldots
\]

(13)

Now we can proceed with deriving the appropriate IM3 calculation. From equation (9) and (14), we can separate out the IM3 products:

\[
\Delta M3 = 3G_3 \cdot A^2
\]

(15)

If P_{in} is a constant value A, and we used the simplified attenuation factor in (9) we can now define the G function from (15) as:

\[
G = \left[\frac{1}{1 + \frac{2R_{on}}{Z_L}} \right]
\]

(16)

To find G_3, from equation (13) we will use equation (17), and identifying ∂R_{on} and ∂V_{gs}, and calling k the RF coupling, we derive equation (20).

\[
G_3 = \frac{1}{3!} \frac{d^3 G}{dx^3} = \frac{1}{6} \frac{d^3 G}{dx^3}
\]

(17)
Where δ is defined as:

$$\delta = \left(1 + \frac{2R_{\text{on}}}{Z_L} - \frac{A_1}{Z_L} \sqrt{2kr_{\text{on}}R_{\text{on}}} \right)$$

Plugging (20) into (15) yields the final equation for finding the amplitude of 3rd order intermodulation product with a modulated R_{on}. The logarithmic version of IM3 in dB is found in equation (23).

$$\text{IM}^3 = -10\log \left(\left(\frac{kr_{\text{on}}R_{\text{on}}} {Z_L} \right)^3 \frac{6}{\delta^4} \right) \cdot A^2$$

$$\text{IM}^3_{\text{dB}} = 20\log \left(\left(\frac{kr_{\text{on}}R_{\text{on}}} {Z_L} \right)^3 \frac{6}{\delta^4} \right) \cdot A^3$$

To calculate the IIP3, first P_{in} must be properly defined. Since ∂R_{on} is much less than Z_L,

$$P_{\text{in}} = \frac{A^2}{2(Z_L + R_{\text{on}})}$$

Since measurements are made using dBm as the standard, the amplitude is multiplied by a factor of 1000 to properly scale.

$$P_{3,\text{dBm}} = 10\log \left(\frac{A^2 \cdot 500} {Z_L + R_{\text{on}}} \right)$$

And the IIP3 is shown below:

$$\text{IIP}^3 = \frac{3}{2} P_{\text{in}} - 10\log \left(\left(\frac{kr_{\text{on}}R_{\text{on}}} {Z_L} \right)^3 \frac{6}{\delta^4} \right) \cdot A^2$$

However, note that I_{ds} is not arbitrary -- it is tied to the power input (or, equivalently, the RMS input voltage), the ON resistance, and the load impedance as follows:

$$I_{ds} = \sqrt{\frac{P_{\text{in}}}{Z_L + R_{\text{on}}}} \cdot \sqrt{\frac{P_{\text{in}}}{Z_L + R_{\text{on}}}}$$

And therefore:

$$\text{IIP}^3 = \frac{3}{2} P_{\text{in}} - 10\log \left(\left(\frac{kr_{\text{on}}R_{\text{on}}} {Z_L} \right)^3 \frac{6}{\delta^4} \right)$$

With δ represented now as:

$$\delta = \left(1 + \frac{2R_{\text{on}}}{Z_L} - \frac{A_1}{Z_L} \sqrt{2kr_{\text{on}}R_{\text{on}}} \right)$$

And as expected, the power cancels out in this equation since compression and dispersive effects are not in the model. This leaves the IIP3 a function of R_{on}, g_m, Z_L, and the coupling factor k. Note that this analysis only shows the affect and sensitivity of a switch due to transconductance in the region of interest and fluctuations to R_{on}; it does not provide a model for a specific pHEMT structure otherwise.

![Figure 2. IIP3: k=0.5](image)
4. Results

A series of plots were made to show the predicted impact on switch linearity. R_{on} was swept over a range of 0.1Ω to 2Ω, and four different transconductance values were selected: 500mS, 250mS, 100mS, and 10mS. The RF coupling factor was selected to be at 50%, 100%, and 10% in three separate plots. The load impedance was set to 50Ω. Figures 2, 3, and 4 show the results. Figures 5 and 6 display the affect of a 2:1 VSWR on the load, with Figure 5 calculated for 100Ω and Figure 6 determined for a 25Ω. Note that the diminished Z_L also represents potential loading caused by an OFF switch element on the switch.

5. Discussion

Looking at the linearity for the ON state of RF FET switches, analysis and calculations suggest the hypothesis of a sharp transconductance profile for optimum linearity. This reduces the affect of RF coupling onto the gate of the FET. Using the equations established, the plots in figures 2 – 4
show the clear advantage to minimizing the \(g_m \) value in a switch FET when it is in the ON state. Higher \(g_m \) in the ON state produces more distortion at the output, even with minimal RF coupling. Referring to figure 4, which shows results based on a coupling factor of \(k = 0.1 \), a device with a \(R_{on} = 1 \) ohm and a \(g_m = 500 \) mS can only achieve an IIP3 of 70 dBm, whereas a device with the same \(R_{on} \) but with a \(g_m = 100 \) mS can reach an IIP3 = 92 dBm. This is a 22 dB improvement. As the coupling factor increases to 0.5 and 1.0 as shown in figures 2 and 3 respectively, the improvement achieved by the lower \(g_m \) increases even further: at \(k = 0.5 \) there is a 31 dB gain, and at \(k = 1.0 \) there is a >80 dB improvement. Despite that, a high transconductance is preferred for the transition of switch states and higher \(I_{ds} \). A sharp, peaked, impulse-shaped transconductance profile is suggested to be best, since it allows for a lower \(g_m \) during a switch ON state. The coupling factor, \(k \), affects the intermodulation products as expected - more coupling results in less linearity and poorer IP3 values. While this occurs regardless of \(g_m \), it is demonstrated in figures 2–6 and discussed above, that a lower \(g_m \) compared to a higher \(g_m \) improves the IP3 performance. It is noticed in Figures 5 and 6, that a lesser load impedance actually improves the linearity. The reason for this is that the higher \(I_{ds} \) is, the greater the linearity; the compression and dispersion effects are not modeled here.
6. Conclusions

After extensive analysis, a new approach to characterizing FET switches has been proposed, analyzed, and mathematically supported. A new analytical tool has been created to provide guidance to designing switches with high linearity, and it has been shown that a lower transconductance value when the FET is in the ON state yields superior linearity over a FET with higher transconductance, suggesting a different transconductance profile than what is often proposed, such as an impulse.

REFERENCES

