
Electrical and Electronic Engineering. 2011; 1(2): 79-84 
DOI: 10.5923/j.eee.20110102.13 

 

Analysis of Performance and Implementation Complexity 
of Array Processing in Anti-Jamming GNSS Receivers 

Chung-Liang Chang*, Bo-Han Wu 

Department of Biomechatronics Engineering, National Pingtung University of Science and Technology,  
Pingtung County, 91201, Taiwan, R.O.C 

 

Abstract  This paper investigates the existing spatial-temporal interference suppression methods which attempt to miti-
gate interference before the GNSS receiver performs correlation. These methods comprise non-blind signal processing 
techniques and blind signal processing techniques by using the antenna array. Also, an extensive comparison of these tech-
niques for GNSS is established, which is evaluated from the view of convergence rate, numerical stability, computational 
loads, and realization complexity. The research offers a foundation of the spatial-temporal adaptive processing (STAP) 
practical realization and the design for new processors. 
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1. Introduction 
In recent years, spatial-temporal adaptive processing 

(STAP) is a well- known technique that has been proposed to 
remove narrowband interference and eliminate broadband 
interferences[1-5]. Most of these algorithms may be catego-
rized into three classes according to whether a training signal 
is used or not. One class of these algorithms is the non-blind 
adaptive algorithm in which a training signal is used to adjust 
the array weight vector. Another technique is to use a blind 
adaptive algorithm which does not require a training signal. 
Still another is semi-blind adaptive algorithm in which the 
desired signal information can be obtained by inertia navi-
gation system. 

Generally, it takes three steps to employ STAP so as to 
deal with interference mitigation. The first step is to estimate 
the covariance matrix of input signal. The second step is to 
utilize adaptive algorithm in order to obtain weight vector. 
The last step is to output signal through the addition acquired 
by weighting the measurement data. Each algorithm out-
performs others in a specific way. For example, some are 
better in performance. However, they are higher in imple-
mentation complexity and longer in computation time, which 
makes it difficult in real time processing and hardware im-
plementation. As a result, in addition to taking performance 
into consideration, we must also consider hardware imple-
mentation complexity and computation cost. Besides, huge 
adoption of multiplications/additions also increases cost. 
Thus, proper adjustment in algorithm form such as reduced 
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rank and possible implementation can upgrade system per-
formance to a certain degree. This paper focuses on analyses 
and evaluation of the performance of commonly used STAP 
techniques in order to further understand the benefits and 
drawbacks and provide evaluation reference in hardware 
implementation. 

The remainder of this paper is organized as follows. Sec-
tion 2 gives a description of GPS signal model. It also briefly 
reviews various types of STAP algorithm. The comparison 
of STAP requirement and implementation complexity is 
given in Section 3. Finally, a short summary follows in Sec-
tion 4. 

2. Stap Overview 
In this section we analyze an adaptive spatial-temporal 

processing for GPS interference mitigation processing. The 
design criterion of adaptive antenna algorithm can be im-
posed at spatial domain or temporal domain. One class of 
these algorithms is the non-blind adaptive algorithm in 
which a training signal is used to adjust the array weight 
vector. For example, it contains least-mean squares method 
(LMS)[6], sample matrix inversion method (SMI)[7], re-
cursive least-squares (RLS) method[8], minimum variance 
distortionless response (MVDR) method[9,10], and multi-
stage nested wiener filter (MSNWF)[11], etc. Another tech-
nique is to use a blind adaptive algorithm which does not 
require a training signal. Namely, it consists of power 
minimization (PM) method[12], and Reduced-rank PM ap-
proach, etc. These techniques are employed to dynamically 
adjust antenna array pattern response to further reduce the 
power of interfering signal sources. In this section, according 
to the results of study, we give the general spatial-temporal 
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signal model for GPS interference mitigation. The spa-
tial-temporal signal model at the thk  sample of N  antenna 
element can be described as 1NM ×  matrix: 

1
( ) = ( ) + ( ) + ( )

JN

s j j j
j

k P k P k k
=
∑x As U i v        (1) 

where  
[ ]11 1 12 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) H

N N M NMk x k x k x k x k x k x k=x    

, 
M  is number of tap of each antenna, ( )H

  denotes the 
conventional transpose, 

s sM M ϕ θ×= ⊗ ,A I a ; 

[ ]( ) ( ) ( -1) ( -( -1))Τ H
sk s k s k s k M=s 

, 
j jj M M ϕ θ×= ⊗ ,U I a  , ( )j ki  

has the same structure as (k)s , JN  is the total number of 
interfering signals, ⊗  denotes the Kronecker product op-
erator, and Τs  is the sampling rate; (k)v  is zero-mean, 
temporal and spatially white with variance 2

nσ I . 
s s,ϕ θa  and 

j j,ϕ θa  denote the 1N× steering vector with respect to GPS 
satellite and thj  interfering source, respectively. The spa-
tial-temporal weight vector can be described as  

[ ]11 1 12 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) H
N N M NMk w k w k w k w k w k w k=w    

(2) 
In this case, both w  and kx( )  are 1NM× column vec-

tors. In the following, several STAP methods are described.  

2.1. LMS Algorithm 

The first suitable criterion to establish the complex 
weights is to choose them to minimize the mean-square 
error between the desired signal d k( ) , and the beamformer 
output Hw x . The weight w  is selected to minimize the 
cost function 

{ } { }2 2= - =HJ E d k E e k− τ( ) w x ( )        (3) 

where {}E ⋅  is the expectation value, 0τ ≥  is the delay of 
the training signal selected to output the best performance, 
and  ⋅  denotes a Euclidean norm of a vector. Because the 
covariance matrix, R , and the cross-correlation vector, r , 
are not known prior to processing, one uses their instanta-
neous estimates, as 

{ }( ) ( )HE k k=R̂ x x               (4) 

and 
{ }= ( - ) ( )ˆ E d k kτr x              (5) 

Then, the weight is updated as 
+1 = +k k k e kµw( ) w( ) x( ) ( )            (6) 

where µ  a gain constant to control convergence. Due to 
the extreme simplicity of this algorithm, it may also be im-
plemented by analog means. Nevertheless, its convergence 
relies on the eigenvalue spread of R̂ , and in practical situa-
tions it is often too slow. 

2.2. SMI Algorithm 

This algorithm overcomes the convergence problem of the 
LMS algorithm. By solving this optimum question, we can 
find 

1
optw R r−=                 (7) 

The optimal weights can be computed by obtaining the 
estimates of the covariance matrix R  and the cross- corre-
lation matrix r , by time-averaging from the block of input 
data. The estimate of the covariance matrix R̂  is given by: 

{ }data samples

1= ( ) ( )H
i i

i L

ˆ k k
L ∈

∑R x x           (8) 

and the cross-correlation vector is computed as 

{ }data samples

1= ( - ) ( )i
i L

ˆ d k k
L

τ
∈
∑r x         (9) 

From the above, ( )i kx  denotes the thi  input signal vec-
tor. From Eq. (8) and (9), it is possible to compute several ( L ) 
LS-solution for a single snapshot ( )i kx . These solutions can 
be combined (after they all are computed) by adding them 
together. In this method, the correlation matrix and weight-
ing vector computed with respect to the previous spa-
tial-temporal block is utilized. It is called time coherent 
block adaptive beamforming and the new weighting vector is 
updated in accordance with  

( ) = ( -1) + (1- ) ( )k k kµ µw w w          (10) 
where µ  is a variable between 0 and 1 that is chosen to 

minimize the output variance Hw Rw . Note that the proces-
sor is also repeated for each GPS satellite to calculate user’s 
position and requires attitude information. 

2.3. RLS Algorithm 

A method by estimating both R̂  and r̂  using the 
weighted sum is employed to overcome not only the con-
vergence limitations of the LMS algorithm but also the nu-
merical and calibration issues of the SMI algorithm. 

{ }

-

data samples

1= ( ) ( )k i H
i i

i L

ˆ k k
L

λ
∈
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and 

{ }

-

data samples

1= ( - ) ( )k i
i

i L

ˆ d k k
L

λ τ
∈
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The “forgetting” factor λ , 0 1λ< ≤ , puts more emphasis 
on the most recent samples than the older data.  After some 
manipulation, the weight vector w  may be updated by  

( ) = ( -1) + ( ) ( ) ( -1) ( )Hk k k d k k kτ − − w w p w x   (13) 

with the gain vector ( )kp  given by 
-1 -1

-1 -1

( -1) ( )( ) =
1+ ( ) ( -1) ( )

k kk
k k k

λ
λ H

R xp
x R x

        (14) 

Many variants of this algorithm exist and that has been 
studied by various authors. 

2.4. MVDR Algorithm 

We assume that the direction of signal of interest is known. 
The MVDR technique is used to minimize the output noise 
variance in accordance with placing constraints. The fol-
lowing MVDR with M  linear constraints:  

{ }H H
M 1w

min s .t . = ×w Rw w A 1          (15) 

where A  is as depicted in Eq (1). The minimization can 
be solved using the Lagrange multiplier techniques and the 
spatial-temporal MVDR optimal solution is given by the 
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following expression:  

( ) 11 1
1

H
opt M

−− −
×=w R A A R A 1       (16) 

The MVDR weight vector assumes that the covariance 
matrix, R , is known, and is referred to as an optimal 
beamformer. However, the existence of steering vector error 
worsens the performance of the approach. In practice the 
covariance matrix is not known but rather must be estimated 
using training data. 

2.5. PM Algorithm 

Because the received GPS signal power is well below the 
thermal noise floor, we can simply constrain the weight on 
the first tap of reference antenna 1, and then minimize the 
output power, namely:  

=1H H
MNmin s .t .

w
w Rw w c           (17) 

where [ ]= 0 1 0 H
MN , , ,c 

 is the 1MN× vector. The 
weights for the auxiliary antennas are determined when those 
which drive the output power of the beamformer are down to 
the noise floor as possible. Thus, using the method of La-
grange multipliers, the solution to (17) is 

1
-1

1= MNH
MN MN

−w R c
c R c

            (18) 

This approach has the advantage of not requiring the di-
rection of arrival (DOA) GPS signal information. It can also 
be implemented easily. 

2.6. Reduced-Rank PM Algorithm 

Owing to the large dimensionality of the spatial-temporal 
covariance matrix and weight vector, STAP techniques will 
result in a larger computational burden and convergence 
slowly. Consequently, the reduced-dimension method has 
been proposed recently. Reduced-dimension methods are 
mainly adopted so as to constraint weight vector to lie in a 
lower dimensional subspace by the transformation matrix 

( )NM J J NMD × < , namely let: 
= NM J× rw D w                (19) 

so (17) can be described as 
= 1H H H H

NMmin s .t .r r rw
w D RDw w D c      (20) 

the solution to (18) is 

( )
( )

1

1=
H

NM

H H H
NM NM

−

−

H

r

D RD D c
w

c D D RD D c
        (21) 

where HD RD  is Hermitian-symmetric with J J×  di-
mension matrix, which is less than the one of R , it leads to 
lower computational complexity and rapid convergence. 
The reduced dimension transformation matrix D  can be 
found by techniques such as the cross-spectral (CS) metric or 
principal-components (PC). 

2.7. MSNWF Technique 
Dr. Zoltowski proposed a reduced-dimension STAP 

technique based on MSNWF. It is illustrated that the 
MSNWF does not require computing the inversion of R , 

thereby reducing computational complexity. The MSWF 
algorithm is summarized below. The interpretation of the 
“desired” signal 0 ( )z k  varies amongst the different type of 
spatial-temporal processors.  

● Initialization: 0 ( )z k  and 0 =k kx x( ) ( ) 
● Forward Recursion: for =1,2,...,n J : 
step 1. Compute the weights vector 

{ }
{ }
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step 2. Compute the intermediate vector ( )nz k  
-1( ) = ( )H

n n nz k  kw x  
step 3. Update the output vector ( )n kx  

1( ) = ( ) - ( )n n n nk k z k−x x w  
● Backward Recursion: for = -1 1n J, J , ..., ,  with  

( ) = z ( )J Je k k  
step 1. Compute and update the single weight vector 
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It is crucial to observe that all operations of the MSNWF 
involve complex vector-vector products, not complex ma-
trix-vector products (for the single space-time weight con-
straint), there by indicating computational complexity 
( )NMJΟ  per snapshot. The MSNWF algorithm can reduce 

computational complexity and improve the speed of con-
vergence compared with CS metric or PC. 
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Figure 1.  Illustration of the STAP procedures 

3. System Computation Requirement 
and Comparison 

The computation requirements in STAP techniques arise 
from the need to cancel unwanted interference and improve 
the signal-to-noise ratio. Figure 1 shows the STAP typically 
performed in one coherent processing interval, which con-
sist of L  blocks, M  delay time tap, and N  antenna 
elements. The resulting training set is used to compute the 
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weights that are applied to the entire data matrix. The 
beamforming operation is a matrix-vector multiplication, 

Hy = w x , where y  is the output data in that beam. In gen-
eral, there are two computational criteria that a practical 
implementation should ideally possess to achieve sufficient 
interference suppression: a rapid convergence rate (i.e., 
sample support size) to reduce nonhomogenous samples that 
contribute for the interference covariance estimation and a 
low computational complexity for real-time processing[13, 
14].  

For convenience, the comparison of various adaptive al-
gorithms in terms of numerical stability and computation 
efficiency are given in Table 1. It is known that the family of 
the “Fast” least squares has serious numerical instability in 
limited precision environment. For example, the steady error 
of algorithm in SMI, RLS is small but it takes a long time to 
calculate. MSNWF is more efficient in calculation time due 
to its adoption of reduced rank and Multi-stage. SMI is rapid 
in convergence rate; however, it is subject to numeric insta-

bility due to the matrix inversion with finite-precision rep-
resentation of the matrix entries. 

LMS is simple in calculation and thus easier in hardware 
implementation. In contrast, SMI, RLS and MVDR are more 
complicated in hardware implementation owing to its re-
quirement of input signal covariance matrix. Later on, 
MSNWF is proposed to reduce complexity in hardware 
implementation. However, besides matrix, inside the struc-
ture of these methods are major differences, which also 
decide the implementation complexity of processors. How-
ever, it is necessary to compute a gain vector in RLS, which 
requires a large amount of computational cost. On the other 
hand, the hardware implementation complexity in both PM 
and Reduced-rank PM is greatly reduced because they 
merely deal with single antenna weight vector. The compu-
tational complexity is reduced in MSNWF because it em-
ploys reduced rank techniques and does not require com-
puting matrix inversion with the perquisite of satellite di-
rection known for available utility. 

Table 1.  Performance comparison of seven adaptive algorithms 

Algorithm LMS SMI RLS MVDR PM Reduced-rank PM MSNWF 

Steady state  Vast Tiny Tiny Middle Middle Middle Tiny 

Converge rate Slow 
(data correlation) Fast Medium Slow Medium Fast Fast 

Numericalstability Stable Unstable 
(LS solution) 

Unstable 
(LS solution) Stable Stable Unstable 

(CS, PC principle) Stable 

Realization complexity Fair Hard Hard Hard Fair Fair Easy 

Table 2.  Complexities comparison of seven adaptive algorithms in different update procedures 

Algorithm  Intermediate Con-
strained Matrix 

Update Weight 
Vector Total Complexity Computation Load 

(Per Snapshot) 

LMS 
MUL ( )2 +NM NM  2 +1NM  ( )2 +3 +1NM NM  

( )2NM Ο    ADD ( )2 -NM NM  2 NM  ( )2 +NM NM  
MEM NM  1+NM  2 1+NM  

SMI 

MUL ( )2 +2 +2NM NM  3 NM  ( )2 2NM NM ++5  
( )2NM Ο    ADD ( )2 +2 -1NM NM  ( )2 +1NM  ( )2 2 +2NM NM  

MEM ( )2 1NM NM+ +  1NM +  ( )2 2 2NM + NM +  

RLS 

MUL ( )2 +2 +2NM NM  5 +2NM  ( )2 +7 +4NM NM  
( )2NM Ο    ADD ( )2 +NM NM  ( )2 +2 +1NM NM  ( )22 1+3 +NM NM  

MEM ( )2 +NM NM  2 1NM +  ( )2 1+3NM NM +  

MVDR 

MUL 3 NM  ( ) ( )3 3 2+NM NM  ( ) ( )3 23 3+ +NM NM NM  
( )3NM Ο    ADD ( )22 - 2NM NM  ( ) ( )3 23 - 2 -NM NM NM  ( )3 3 - 3NM NM  

MEM ( )2 2NM M+  NM  ( )2 2NM M NM+ +  

PM 

MUL ( ) 22 +NM NM  ( )2 + +1NM NM  ( )2 +4 +1NM NM  
( )2NM Ο    ADD ( )2 +2 - 3NM NM  ( )2 - 1NM  ( )22 +2 - 4NM NM  

MEM ( )2NM  2 NM  ( )2 +2NM NM  

Reduced- 
Rank PM 

MUL 2+ +NMJ J J  
2 + +NMJ NMJ J  

2 22 + + +2NMJ NMJ J J  
[ ]NMJΟ  ADD 23 1- 2 + -NMJ NM J  3 1- - -NMJ NM J  26 2- 3 + - -NMJ NM J J  

MEM 2 NM  2 + +NM NMJ J  4+ +NMJ NM J  

MSNWF 
MUL +NMJ J  +2NMJ J  2 +3NMJ J  

[ ]NMJΟ  ADD NMJ  +2NMJ J  2 +2NMJ J  
MEM NM  2+NM  22 +NM  
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If the computation load is too high when utilizing STAP in 
real time, there is not only difficulty in system implementa-
tion but also loss of real time on line. Table 2 illustrates 
multiplications, additions as well as memory required in 
single measurement data through different STAP algorithms. 

Take SMI for example. We consider inverse matrix op-
erator, which requires multiplications ( )2 +2 +1NM NM  and 
additions ( )2 +2 -1NM NM . The computational load needed in 
adjusting the weight value requires multiplications 3 NM  
and additions ( )2 +1NM , which calls for multiplications 

( )2 +5 1NM NM +  and additions ( )22 +2NM NM  in total compu-
tation complexity. In addition, it requires at least memory 
( )2 2 2NM + NM +  unit and total computational load ( )3[ ]NMΟ  
unit. If the dimension of matrix is too high in SMI, the 
computational load will be too large to be utilized in hard-
ware implementation. When we compare LMS and RLS, 
LMS is simpler in hardware complexity, which is due to the 
calculation of gain vector factor in RLS.(see Table 2) It takes 
large computation load in MVDR because the weight vector 
of each antenna has to be adjusted in this algorithm. In con-
trast, the weight vector of only single antenna has to be ad-
justed in PM. Therefore, MVDR is higher in hardware im-
plementation complexity. The computational time in Re-
duced-rank PM and MSNWF is far shorter than that in other 
algorithms, which is due to the fact that they do not require 
inverse matrix value and in turn, the computational time is 
much shorter. 

4. Conclusions 
This paper makes comparisons and analyses from typical 

STAP performance, mainly from not only computation load, 
multiplications and additions required in algorithm but also 
realization complexity. The research analysis is derived as 
follows: Firstly, MSNWF is best in performance. This ap-
proach employs reduced rank to proceed; therefore, its 
complexity is the lowest in hardware implementation. 
However, this algorithm is also limited because the infor-
mation of satellite signal direction should be required in 
advance. Secondly, LMS is easier in hardware implementa-
tion. However, because its steady state error is larger, its 
performance is worse and not practical in general condition. 

Thirdly, RLS and SMI are only second to MSNWF in 
performance. Nevertheless, their computation load is the 
highest. Under the condition of heavy interference, the 
adoption of multiple antennas and tap number makes them 
(RLS and SMI) higher in hardware implementation com-
plexity than other algorithms. As a result, they are not prac-
tical in use. Fourthly, PM and Reduced-rank PM are medium 
in performance. These two approaches do not require the 
information of satellite direction. Moreover, because Re-
duced-rank PM utilizes reduced rank, the time needed in 
computation load is greatly reduced, which makes it rather 
convenient in hardware implementation. We can acquire 
transformation matrix by such methods as CS or PC. How-
ever, both methods are quite a computational burden since it 

is necessary to produce eigenvectors of covariance matrix 
before finding transformation matrix. 

Lastly, MVDR is more stable in performance without 
beamforming. Though its hardware implementation com-
plexity is higher, it can be a good choice when the antenna 
numbers are fewer. From the above analyses, we can dis-
tinguish the benefits and drawbacks of STAP performance 
and in turn provide a reference for future hardware imple-
mentation and development of new processors. To sum up, a 
processor can not be generally and broadly defined as supe-
rior or inferior. Nevertheless, under certain condition and 
requirement, it is possible to evaluate the overall perform-
ance. 
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