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Abstract  This paper deals with the robust output tracking problem of uncertain large-scale systems with input delay and 
the time-delay interconnections. Due to the informat ion transmission between subsystems, time delays are often encountered 
in large-scale systems and lead to the source of system instability. First, the original nonlinear time-delay systems can be 
represented by the Takagi-Sugeno fuzzy model, which combines some simple local linear time-delay  systems with their 
linguistic description. Then, a  feasible and systematic design scheme is presented to synthesize the decentralized 
fuzzy-model-based sliding mode controller. The adaptive fuzzy approach is proposed to approximate the upper bound of the 
uncertainties including the time-delay interconnections and the input delay. Based on the Lyapunov stability theorem, the 
proposed control scheme can not only guarantee the robust stability of the whole closed-loop system with input delay and 
time-delay  interconnections, but also obtain the good tracking performance. Finally, simulation results are given to confirm 
the effectiveness of the proposed controller in this paper.  
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1. Introduction 
Recently, there have been a number of research works on 

stability analysis and design for a class of large-scale 
interconnected systems, such as electrical networks, nuclear 
reactors, and hydraulic systems, etc. Due to the large-scale 
system with interconnected terms, the decentralized 
controller is preferred to be adopted as a control 
methodology such that design procedures can be simplified 
and the computational burden can be shared by all the 
subsystem controllers[1-5]. In fact, for the complexity of 
large-scale systems, the uncertainty and time delay are often 
encountered in these systems. Therefore, the problem of 
control design and stabilization for a class of large-scale 
systems with uncertainties and time delays becomes an 
important topic.  

In practices, due to  the in formation t ransmission between 
subsystems, t ime delays inev itab ly  occur in  large-scale 
systems. Also, the existence of time delays is often a source 
of instability in various engineering systems. Therefore, the 
stabilizat ion problem of large-scale systems with delayed 
states and the time-delay interconnections has been widely  
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studied in the literature[6-10]. It has been shown that the 
presence of input delays, if not considered in a controller 
design, may cause instability or serious deterioration in the 
performance of the resulting nonlinear control systems 
[11-14]. In this study, the problem of the decentralized 
control for a class of input-delayed large-scale systems with 
the time-delay interconnections is investigated.  

On the other hand, fuzzy logic control has been 
successfully applied to the control design of nonlinear 
control systems[15-18]. It is well-known that fuzzy logic 
control, which is based on fuzzy sets and fuzzy reasoning 
with a set of linguistic control rules, does not need a rigorous 
mathematical model and is more insensitive to plant 
parameter variations and noise disturbance. It has been 
shown that the method of T-S fuzzy models, in terms of 
IF-THEN rules with a linear input-output relation, gives an 
effective and feasible approach to the control problem of 
complex nonlinear systems[19-23]. Therefore, in this study, 
the proposed control scheme is based on the T-S fuzzy model 
to deal with the control design of uncertain large-scale 
system with delayed input and time-delay interconnections.  

Sliding-mode control (SMC) systems have been 
extensively studied and widely applied to many engineering 
systems. Due to  its good robustness to uncertainties, sliding 
mode control has proven to be an effective method for robust 
control of nonlinear systems. In  recent literature, some 
researchers proposed the design methods of fuzzy logic 
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control based on sliding-mode approaches for a class of 
ill-defined or poorly modelled systems[24-29]. Recently, the 
stability and control design of large-scale systems has 
attracted the attention of many control researchers and been 
studied extensively[30-34]. Wang et al.[33] and Hsiao et 
al.[34] presented linear state feedback control approaches 
based on T-S fuzzy model for the large-scale system, 
respectively. Unlike previous works, this paper is to present 
a different control scheme to tackle the problem of 
large-scale systems with delayed input and the time-delay 
interconnections, without the assumption that the upper 
bounds of the interconnections and modelling errors must be 
known.  

This paper is concerned with the robust stability and 
output tracking control problem of decentralized 
fuzzy-model-based sliding mode controller for uncertain 
large-scale systems with delayed input and the time-delay 
interconnections. First, in this paper the original nonlinear 
time-delay large-scale systems can be represented by the 
Takagi-Sugeno fuzzy model, which  combines some simple 
local linear t ime-delay systems with their linguistic 

description. Then, an effective and feasible design scheme is 
developed to synthesize the proposed decentralized 
fuzzy-model-based sliding mode controller with some 
adaptive fuzzy laws to approximate the upper bound of the 
uncertainties including the time-delay interconnections and 
the delayed input. Finally, simulation results are given to 
demonstrate the validity of the proposed controller in this 
paper.  

The rest of this paper are organized as fo llows. In Section 
2, some properties of the T-S fuzzy system are reviewed, and 
the large-scale systems with time delays and uncertainties 
are formulated in  detail. Furthermore, the control design 
method  to  synthes ize the p roposed  decent ralized fuzzy-
model-based sliding mode controller and the analysis of 
robust stability are included in Section 3. In Section 4, 
simulation results are given to verify the effectiveness of the 
proposed decentralized controller in this paper. At last, a 
conclusion is given in Section 5. 

2. Problem Formulation 
The fuzzy dynamic model, proposed by Takagi and Sugeno, is described by fuzzy IF-THEN rules, which represents local 

linear input-output relations of nonlinear systems. Let us consider the uncertain input-delayed large-scale systems with 
time-delay interconnections which can be described by the following fuzzy  model: 
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ijA R ×∈  and ( )( )ttxf i

l
i ,  are defined as follows: 
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which represent the interconnection matrix and the nonlinear perturbation, respectively, where l
ijn

l
ij

l
ij i

aaa ,,, 21   and 
l

ini
f∆  are unknown. 

Assumption 1: All pairs ( )l
i

l
i BA , , Ni ,,2,1 = , are controllable. 

By using the fuzzy inference method with  a singleton fuzzifier, product inference, and center-average defuzzifier, the fuzzy 
model (1) can be expressed as the following global model: 
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Accordingly, the main control ob jective of this paper is to utilize the decentralized fuzzy-model-based sliding mode control 
( )tui  such that the robust stability of the whole closed-loop system with input delay and time-delay interconnections can be 

guaranteed. 

3. Decentralized Fuzzy-Model-Based Adaptive Sliding Mode Controller Design 
In this section, the control objective is to design a decentralized fuzzy-model-based sliding mode control scheme such that 

the desired state trajectory of the closed-loop system is ach ieved and the effects of system uncertainty can be attenuated while 
maintaining the boundedness of all signals inside the control loops. 

Using the T-S fuzzy model (4) of the original system, it can be obtained that 
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From (2), (3), and (5), we obtain  
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or equivalently of the form 
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Define the controller as the following form: 
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where ( )siu t  will be determined in the latter. 
Substituting (10) into (7), it y ields 
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The control objective is to drive the state ( )txi  to track a 
specific desired state 
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with iΦ  being a known positive bounded constant. 
Let the tracking error vector of the thi subsystem be 

defined as 



 International Journal of Control Science and Engineering 2012, 2(6): 157-171 161 
 

 

( ) ( ) ( )1 2, ,i i ie t e t e t=  ( ),
i

T

ine t 
       (12) 

where ( ) ( ) ( )txtxte diii βββ −= , in,2,1=β , and 

.,,2,1 Ni =   
From (6), (9), and (10), the error dynamic system of the  thi
subsystem can be expressed as  

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1 2

2 3

1

1 1

,

,

   

i i

i

i i

i i

i i

in in

r N
l l

in si i ij din
l j

e t e t

e t e t

e t e t

e t u t h x t

−

= =




=

 =





=


 = + ∆ −


∑∑









 

 (13) 

Assumption 3: The results after combining input-delayed 
and time-delay interconnections with perturbation in the 
system (13) are bounded by 
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where 0iξ  are unknown constants and smooth functions 

( )jij xξ  are unknown s mooth functions with ( ) 00 =ijξ . 
To solve these situations, we employ an adaptive gain 

0îξ  to adapt the unknown constant 0iξ  and the fuzzy logic 

system ( )ijjij x θξ̂
 
to approximate unknown functions 

( )jij xξ  respectively. 

In this case, we replace ( )jij xξ  by the fuzzy logic 
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Define the fuzzy basis function as 
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where ( )jF xl
i

µ  are Triangular membership functions.  

Then the fuzzy logic system (15) is equivalent to a fuzzy 
basis function expansion 
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According to the proposed decentralized sliding  mode 
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it implies that tracking error tends to zero  as ∞→t . Based on Assumption 3, we get the decentralized control law as 
follows: 
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Now, the following adaptive laws for those unknown parameters in (14) and (19) are chosen as: 
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where 1iγ , 2iγ , and 3iγ  are positive constants specified by the designer. The proposed control law will guarantee the 
asymptotical stability for the error dynamics of (13), and it will be proved in the following theorem. 

Theorem 1: For the subsystems consisting of (1), the decentralized fuzzy-model-based sliding mode control law is chosen 
as (10) with (25), and consider the adaptation laws (27)-(29). If Assumptions 1-3 are satisfied, then the following properties 
are guaranteed: 

1). All the signals in the closed-loop system are bounded. 
2). The tracking error ( )tei  decreases asymptotically to zero. 
Proof: In order to prove this theorem, we consider the following Lyapunov function:  
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Using the control of ( )tusi , the slid ing surface may be expressed as 
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Then the derivative of iV1  can be stated as follows: 
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Thus, we get 
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Then, computing the time derivative of iV2 , we have 
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Thus from (27)-(29), we obtain 
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(39) 

Then, we know that ( )tVt ∞→lim  exists, i.e. ( )∞V  exists. It is easy to show that ( )
0

V t dt
∞

∫   exists. Hence, we can 

obtain that 
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Since ( ){ }tV  is convergent, from the above analysis we obtain that the solutions iS , iωˆ , ijθ , and ijξ̂  are bound. 

Because of the boundedness of all the signals, it is obvious from (33) that iS  is bounded. From (40) and based on the above 

discussion, this implies that 2LSi ∈ . According to Barbalat’s Lemma[35], we can get ( ) 0lim =∞→ tSit . Then ( )tei  
tends to zero at ∞→t . Thus, we conclude that the asymptotic state tracking can be achieved. 

4. An Example and Simulation Results 
In this example, we consider a large-scale system T  composed of two fuzzy subsystems iT  defined as 
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Figure 1.  The membership function of  and  

 

Figure 2.  The membership function of  and  
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Subsystem 2: 
Rule 1: 
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The membership functions for ( )11x t , ( )12x t , ( )21x t , and ( )22x t  are shown in Figs. 1-2.  Moreover, the 
interconnections and perturbations among two subsystems are given as 
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( )21If  is about 0x t
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Figure 3.  T rajectory of the state  and desired state  

 

Figure 4.  Trajectory of the state  and desired state  
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where 11 21 4c c= = . The init ial values are chosen as ( ) ( )1 2ˆ ˆ0 0 0ω ω= = , ( ) ( )11 120 0 0x x= = , 

( ) ( )21 220 0 0,x x= = ( ) ( )21 220 0 ,θ θ= = 1 ( ) ( )11 120 0 ,θ θ= = 1  and ( )10 0ξ  ( )20 0 0ξ= = , and 11 21 50α α= = , 

12 22 15α α= = , 1 2 3β β= = , and 11 12 13 21 22 23 1,γ γ γ γ γ γ= = = = = =  and 1 7,K =  2 7,K = and 

1 0.12 secτ =  and 2 0.14 sec.τ =  Simulat ion results are shown in Figs. 3-8. Figs. 3-6 show the trajectories of the states 

( )1x t , ( )2x t  and desired states ( )1dx t , ( )2dx t . Fig. 7 and Fig. 8 show the responses of the control laws ( )1u t  and 

( )2u t , respectively. 

 

Figure 5.  T rajectory of the state ( )21x t  and desired state ( )21dx t  

 

Figure 6.  T rajectory of the state ( )22x t  and desired state ( )22dx t  
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Figure 7.  The control signal ( )1u t  

 

Figure 8.  The control signal ( )2u t  

5. Conclusions 
The problem of robust stability and output tracking 

control for a class of uncertain large-scale input-delay 
systems with t ime-delay interconnections is investigated in 
this paper. In addition, a feasible and systematic design 
method is provided to develop the decentralized fuzzy - 
model-based adaptive sliding mode controller with some 
adaptive laws to approximate the upper bounds of the 

uncertainties including the time-delay interconnections and 
the delayed input. Based on the Lyapunov stability theorem, 
the proposed control scheme not only guarantees the robust 
stability of the whole closed-loop system, but also achieves 
the good tracking perfo rmance. An example and simulation 
results are illustrated to verify the effect iveness of the 
proposed controller in this paper. 
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