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Abstract  The semiconductor industry is continuously facing four main challenges in film characterization techniques: 
accuracy, speed, throughput and flexibility. Virtual Metrology (VM), defined as the prediction of metrology variables using 
process and wafer state information, is able to successfully address these four challenges. VM is understood as definition and 
application of predictive and corrective mathematical models to specify metrology outputs (physical measurements). These 
statistical models are based on metrology data and equipment parameters. The objective of this study is to develop a model 
predicting the CVD oxide thickness (average) for an IMD (Inter Metal Dielectric) deposition process using FDC data (Fault 
Detection and Classification) and metrology data. In this paper, two VM models are studied: one based on Partial Least 
Squares Regression (PLS) and one based on Tree ensembles. We will demonstrate that both models show good predictive 
strength. Finally, we will highlight that model update is key for ensuring a good model robustness over time and that an 
indicator of confidence of the predicted values is necessary too if the VM model has to be use on-line in a production envi-
ronment. 
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1. Introduction 
The semiconductor manufacturing industry has a large- 

volume multistage manufacturing system. To ensure high 
stability and high production yield, reliable and accurate 
process monitoring is required[1]. Advanced Process Con-
trol (APC) is currently deployed for factory-wide control of 
wafer processing in semiconductor manufacturing. The APC 
tools are considered to be the main drivers to guarantee a 
continuous process improvement[2].  

However, most APC tools strongly depend on the physical 
measurement provided by metrology tools[3]. Critical wafer 
parameters are measured, such as, for example, the thickness 
and/or the uniformity of thin films. If a wafer is misproc-
essed in an early stage but detected at the wafer acceptance 
test, unnecessary resource consumption is unavoidable. 
Measuring every wafer’s quality after each process step 
could avoid late wafer scraps but it is too expensive and time 
consuming. Therefore, metrology, as it is employed for 
product quality monitoring today, can only cover a small 
fraction of sampled wafers. Virtual metrology (VM) in con-
trast enables prediction of every wafer’s metrology meas-
urement based on production equipment data and previous  
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metrology results[4-7, 27]. This is achieved by defining and 
applying predictive models for metrology outputs (physical 
measurements) as a function of metrology and equipment 
data of current and previous steps of fabrica tion[8-10,28-31
].Of course it is necessary to collect data from equipment 
sensors to characterize physical and chemical reactions in the 
process chamber. Sensor data will constitute the basis for the 
statistical models that will be developed. A typical Fault 
Detection and Classification (FDC) system collects on-line 
sensor data from the processing equipment by sensors for 
every wafer or batch. They are called process variables or 
FDC data. Reliable and accurate FDC data are essential in 
VM model [11]. The objective of a VM module is to develop 
a robust prediction that can provide estimation of metrology 
and which is able to handle process drifts whether they are 
induced by preventive maintenance actions or not. 

This paper deals with the prediction of PECVD (Plasma 
Enhanced Chemical Vapor Deposition) oxide thickness for 
an Inter Metal Dielectric (IMD) layers using FDC and me-
trology data. Two types of mathematical models are studied 
to build VM modules for PECVD processes. Partial Least 
Squares Regression (PLS)[12-13] and a non-linear approach 
based on Tree ensembles[14-16] are considered. The tech-
nical challenge and innovation are to build a single robust 
model, either with PLS or Tree ensembles, which is valid for 
several products, different layers and two different chucks. 
The alternative would be to make a model per layer, chuck 
and product, but we strongly believe that the maintenance of 
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many single models, in our case 12 different models, is not 
compatible with the constraints of the industry. 

Section II deals with fabrication process. In section III we 
present the mathematical background to build VM models. 
Results are described in sections IV. Some perspectives 
about what the next steps of this work will be are given in 
section V. Finally, section V concludes this paper with a 
summary. 

1.1. Fabrication Process 

The film layer under investigation for thickness modeling 
is part of the IMD used in the Back-End of Line (BEOL) of a 
0.35µm technology process. This oxide layer is used three 
times during the production of a four metal layer device. 
PECVD USG (Undoped Silicon Glass) films are commonly 
used to fill the gaps between metal lines due to their con-
formal step coverage characteristics. However, as the device 
geometry is shrinking, the gap fill capability of USG films is 
no longer sufficient. State of the art technique is the combi-
nation of HDP (High Density Plasma) and USG films to 
provide a high-productivity and low-cost solution. HDP is 
used to fill the gap just enough to cover the top of the metal 
line and then the USG is used as a cap layer on top of the 
HDP oxide film[17]. 

 
Figure 1.  Layer structure for inter metal dielectric 

Figure 1 shows the layer structure for one inter metal layer 
just before the Chemical Mechanical Polishing (CMP) step. 
The process steps are identical for all three stages. We use 
identical equipment production recipes, identical metrology 
setup and identical cleaning procedures for all three stages in 
the process flow. After metal deposition and structuring 
(lithography and etch) the HDP oxide is deposited. The HDP 
oxide film thickness is then measured by ellipsometry, using 
a 9-site template recipe. FDC data for VM modeling are 
collected during the USG deposition right after the HDP 
process. The full oxide stack is measured by the same el-
lipsometer tool also using a 9-site template recipe. 

A schematic drawing of the process flow can be seen in 
figure 2. To guarantee the collection of a proper set of data 
within a few weeks, ten wafers per lot are measured before 
and after the USG process. The objective of the VM model is 
to use the predictive results as an input parameter for the 
following CMP process step. The CMP tool uses this input 
data for calculating the polishing time of each wafer and 
therefore the integrated layer thickness measurement could 
be skipped. The benefit of this VM implementation is an 

increased throughput and cost reduction. 

 

 

Figure 2.  Process flow 

Wafers are processed in a twin-chamber of a PECVD tool. 
The same deposition recipe is used for the deposition of 
different inter-metal layers and several products. During 
wafer processing, the relevant process parameters that 
characterize the PECVD process, such as gas flows, pressure, 
temperature plasma parameters, etc., are gathered. These 
temporal data are then consolidated with statistical methods. 
The temporal data (sensors) are collected at a sampling rate 
of 0.5 second. If too many samples are missing during the 
data collection, the data are discarded and the wafer is not 
used in the VM modeling. The temporal data are then 
transformed into the so-called FDC Indicators. A FDC In-
dicator is the summarization of temporal data into a single 
point, based on a given algorithm (mean, range, maximum, 
minimum, slope, etc). A data set consists of data from pro-
duction equipment (input data X for VM modeling) and 
metrology equipment (output data Y for VM modeling). To 
assure the quality and effectiveness of VM models it is 
necessary to do preliminary quality studies of process and 
metrology equipments like variance analysis or repeatability 
and reliability studies (R&R studies). In addition, context 
information like layer, product and chuck is essential as 
categorical input for VM modeling. 

Input data X consists of 24 indicators and three contextual 
variables. The output variable Y represents the average of the 
PECVD oxide thickness of each wafer. 

2. Mathematical Models 

2.1. Notation 

The following notation conventions are used in this paper: 
scalars are designated using lowercase italics. Vectors are 
generally interpreted as column vectors and are designated 
using bold italic lowercase (i.e. x). Matrices are shown in 
bold italic uppercase (i.e. X), where xij, with (i=1,…, I) and 
(j=1,…, J), is the ijth element of X(I×J). Let X of pℜ be an 
input data set and Y of mℜ be arranged in the following 
way: 

 

Virtual Metrology 
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where ( )T
i i,1 i, px , ,x= x  and ( )T

i i,1 i,my , , y= y . The char-
acters I, J, N, p, q, m and n are reserved for indicating the 
dimension of vectors and matrices of data. 

2.2. VM Modeling 

There are some important points when designing the 
mathematical models and a methodology that should be 
considered. In this section we propose two successive stages 
to deploy mathematical models in order to build a VM 
Module for an individual process: 

2.2.1. Data partitioning: Training set and Test Set 

Let X (I×p) and Y (I×m) be the available data set (cleaned 
and normalized) respectively from production and metrology 
process. The data set partitioning consist in the extraction of 
two units: a unit of 70% of the data set for the train-
ing-validation (training and cross validation) and a unit of  
30% of the data set for the test. Let XN (N×p) and YN (N×m) 
be the training-validation data set, and let XN (n×p) and YN 
(n×m) be the test data set with N+n=I. It is possible to split 
the available data set in a temporal way (chronological se-
lection) without loss of representativeness. In this case study 
we have chosen this type of data partitioning before the 
application of the three mathematical models. 

Alternatively, the Kennard-Stone method [15] can be used 
to perform the data set partitioning. The inputs variables 
domain X of pℜ , ( )T

i i,1 i, px , ,x= x  is considered for the 
Kennard-Stone method.. It is a sequential method to select a 
training set uniformly which covers the entire X variable’s 
space. The selection criteria use the Euclidean distance.  

2.2.2. Mathematical Modeling 

A linear regression model of a given process can be writ-
ten as: 

Y = XB + E                  (1) 
where X is the matrix of input data, Y is the matrix of 

output data, B is the matrix of regression coefficients and E 
is the matrix of errors whose elements are independently 
distributed with mean zero and variance σ2[18-19]. Linear or 
non linear regression methods can be applied to the matrices 
X and Y to compute the coefficient matrix B. The regression 
model is built in two levels: the Training-validation level 
with the training-validation data set and the test level with 
the test data set. The training of models that are linear with 
respect to their parameters (such as linear regressions, 
polynomials models) can be performed easily with the tra-
ditional least-squares method, whereas the training of mod-
els that are nonlinear with respect to their parameters (such 
as neural networks) requires more complex methods. More 
details about the training of mathematical models can be 

found in[16]. 
Global approaches to model selection in the train-

ing-validation level are Cross-validation[20] and Leave-One 
-Out, methods for estimating generalization error based on 
resampling[21]. It is obvious to perform the model selection 
on the basis of the Validation Root Mean Square Error on the 
Training-validation data set (VRMSE). The VRMSE is given 
by equation (2): 
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where yi is the measured output value, ŷi is the estimated 
output value from the model, and N is the size of the train-
ing data set. The VRMSE is often used for comparing vari-
ous models. In n-fold Cross-Validation the data are divided 
into n subsets of (approximately) equal size. The net is 
trained n times, where one of the training subsets is left out. 
Only the omitted subset is used to compute the error crite-
rion of interest. If n is equal to the sample size it is called 
leave-one-out cross-validation. The prediction performance 
of the selected model is estimated using the test data set. 
The performance indicator is the Test Root Mean Square 
Error of Prediction (TRMSE) computed on the test data set: 
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where yi is the measured output value, ŷi is the estimated 
output value from the model, and n is the size of test data set. 

2.3. PLS Models 

Consider a set of historical process data consisting of an (I 
× p) matrix of process variable measurements (FDC data) X 
and a corresponding (I × m) matrix of metrology data Y. 
Projection to Latent Structures or Partial Least Squares (PLS) 
can be applied to the matrices X and Y to estimate the coef-
ficient matrix B in (1).  

PLS PLSˆ ˆ= +Y XB E               (4) 
where PLSŶ is the PLS estimate of the process output Y. 

PLS modeling consists of simultaneous projections of both 
the X and Y spaces on low dimensional hyper planes of the 
latent components. This is achieved by simultaneously re-
ducing the dimensions of X and Y, by seeking q (< p) latent 
variables which mainly explains covariance between X and Y. 
Therefore this method is useful to obtain a group of latent 
variables which explain the variability of both, Y and X. The 
latent variable models for linear spaces are given by Equa-
tions (5) and (6) [12]: 

T= +X TP E                 (5) 
T= +Y TQ F                 (6) 

where E and F are error terms, T is an (I × A) matrix of 
latent variable scores, and P (p × A) and Q (m × A) are 
loading matrices that show how the latent variables are re-
lated to the original X and Y variables. The sample covari-
ance matrix is XTYYTX. The first PLS latent variable t1 = Xw1 
is the linear combination of the X-variables that maximizes 
the covariance between t1 and the Y space. The first PLS 
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weight vector w1 is the first eigenvector of the sample co-
variance matrix XTYYTX. After the scores for the first com-
ponent have been computed, the columns of X are regressed 
on t1 to give a regression vector: 

1
1

1 1

T

T=
X tp
t t

                    (7) 

In NIPALS (Nonlinear estimation by iterative Partial 
Least Squares) algorithm[13] the second latent variable t2, 
orthogonal to t1, is calculated from the new matrix of co-
variance X2

TY2Y2
TX2, where X2 and Y2 are calculated by the 

equations (8) and (9): 
2 1 1

T= −X X t p                (8) 

2 1 1
T= −Y Y t q                 (9) 

q1 is obtained by regression of the columns of Y in t1, i.e.: 

1
1
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T
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t Y

q
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                    (10) 

The second latent variable is computed by the equation 
t2=Xw2, where w2 is the first eigenvector of the sample co-
variance matrix X2

TY2Y2
TX2, and so on. The new latent vec-

tors or scores (t1, t2,…) and the weight vectors (w1, w2, …) are 
orthogonal. The final models for X and Y are given by 
Equations (5) and (6). 

Latent variable models assume that both the process and 
metrology data spaces are observed with error and that both 
are effectively of very low dimension (i.e. non-full rank). 
The dimension A of the latent variable space is often quite 
small compared with the dimension of the process data space, 
and it is determined by cross-validation or some other pro-
cedure. Effectively, these models reduce the dimension of 
the problem through a projection of the high-dimensional X 
and Y spaces onto the low-dimensional latent variable space 
T, which contains most of the important information[12]. 

2.4. Tree Ensemble Models 

It has been shown by Breiman et al.[22], in the classifica-
tion case, that under reasonable assumptions, an ensemble 
procedure allows getting accurate models. Indeed, if the base 
model has a low-bias and high variance under some random 
perturbation of the learning conditions, then aggregating a 
large family of such models give birth to a low-bias, low 
variance aggregated model, that is more accurate than the 
individuals models[15]. 

To allow such results to hold, it is critical that the indi-
vidual models are as independently built as possible, while 
maintaining low bias. Tree base learners, either based on 
algorithms such as CART[22] or C4.5[23], are known to 
have a low bias when fully learned (no pruning)[24]. In order 
to be able to build families of trees that have a low correla-
tion to one another, from a finite dataset, several methods 
have been proposed: Bootstrapping the learning set (also 
known as bagging methods), Random splits, Injecting ran-
dom noise in the response or building random artificial fea-
tures as (linear) combinations of the existing ones. All these 
ideas aim at learning trees that are as uncorrelated as possi-

ble. 
Following Breiman[22], we use here a combination of 

bagging from the base learning set, and random splits as our 
main ensemble method. Base learners are regression trees, 
following a modified CART algorithm for tree learning. 
Given X, a set of (I × p) FDC data, and a corresponding Y (I × 
m) metrology, and 2 parameters q (random selection among 
features at the individual split level) and nTrees (number of 
trees grown and aggregated), the algorithm is as follows: 

1. Iterating over the m responses: 
2. Looping 1 -> nTrees: 
a) Build a bootstrap sample (I × p) Xb and corresponding 

Yb (I × 1) response 
b) Build a fully-grown tree τ, following modified CART 

algorithm 
i. randomly selecting q<m candidates for a given split in-

side a node 
ii. Select the best split among the q candidates as the one 

that reduces most the residual variances over the 2 children 
nodes  

iii. Recursively until stopping criterion is reached, i.e. 
node is pure (internal variance equal 0) 

3. Average the predictions, i.e. 

1

1ˆ ( )
nTrees

i
i

y
nTrees

τ
=

= ∑ X               (11) 

Bagging allows the calculation of the so-called 
out-of-bootstrap prediction, which is very similar to 
cross-validation or leave-one-out, since predictions on the 
learning set are derived by averaging, for each individual, the 
set of trees in which this individual is not in the bootstrap 
sample. Hence bagged ensembles have an internal estimation 
of their generalization error. A well-known property of trees 
is their inability to model linear effects, which is why, when 
a strong linear effect from one or several parameters is dis-
covered in the data, we build the tree ensemble on the re-
sidual from the main linear effect. 

Finally, tree ensembles have internal estimations of the 
importance of each of the feature that are calculated by av-
eraging their out-of-bootstrap contribution in the prediction 
for each tree. More precisely, one can estimate the increase 
in out-of-boostrap error that scrambling one parameter 
would produce, over several repetition of the scrambling 
procedure. This allows dropping low importance features 
from the model by comparing features importance to probes 
(random features). In the end, the model will be: 

1

1ˆ ( )
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lin nlin
i

i
y
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τ
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= + ∑AX X          (12) 

where lin and nlin are disjoint subsets of the initial set of 
indicators. R2 is defined by equation (18): 
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where yi is the measured output value, ŷi is the estimate 
output value by model, N is the size of training data set and 
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Sy
2 is the variance of y. This metric is estimated from the 

out-of-bootstrap predictions. 

3. Results 
In this section we present the results of two different 

models (PLS and tree ensembles) for prediction of the 
PECVD oxide film thickness. 

3.1. PLS Models with 3 Qualitative Variables 

A PLS model is built without input variable selection. The 
model is calibrated with 306 wafers of the training validation 
data set. The 168 wafers of the test data set are used to 
validate the model. The input variables of the PLS model are 
the 24 quantitative FDC indicators and the three qualitative 
variables which are chuck, layer and product. The PLS 
model with four principal components is selected by 
cross-validation. Q2(cum) is increasing for the first four 
principal components and decreasing for the fifth principal 
component. Actually, using the first four principal compo-
nents, 46.5% of the X variability (quantitative and qualitative 
variables) can explain 89.7% of the output Y (average 
thickness) variability (see table I). Therefore the best statis-
tical model is achieved by using only four principal com-
ponents. 

Table 1.  Result table for the principal components of PLS 

Principal 
Component R2X(cum) R2Y(cum) Q2(cum) 

1 16.2 75.6 74.2 

2 29.5 85.5 83.7 

3 39.0 88.3 85.7 

4 46.5 89.7 86.1 

Analyses have been done on each parameter to quantify its 
importance. In table II the five most important variables can 
be found.  

Table 2.  Variable importance of PLS model 

Variable VIP (4PC) 

X24 2.16 

X10 1.89 

X3 1.77 

X17 1.61 

X25 1.60 

The trained model is applied to the test data set. In figure 3 
the measured and the predicted average oxide film thickness 
for PLS model are shown. The VRMSE and TRMSE are 
around 0.53% and 0.58% of the average thickness, respec-
tively. Figure 3 shows the predicted average oxide film 

thickness using the results of PLS model versus the meas-
ured average thickness. 

 

Figure 3.  Predicted average thickness (by PLS model) versus measured 
average thickness representation 

3.2. Tree Ensembles Model 

Modeling is done using the learning set of 306 wafers. 
After one iteration of the algorithm, one indicator (X10) is 
selected for the prelinear part; the remaining 26 are left for 
tree ensemble modeling, including the three qualitative pa-
rameters chuck, product and layer. The second iteration of 
the algorithm provides a model that selected five parameters: 
X10 in the linear part of the model, and four in the tree en-
semble model (X9, X8, X24 and X25). X24 and 25 are two 
qualitative parameters (see table III). R2 is estimated to be 
0.84, being defined as equation (13). 

Table 3.  Ranking of indicators for the tree ensemble model 

Rank Variable model 

1 X10 Linear 

2 X24 Tree ensemble 

3 X25 Tree ensemble 

4 X9 Tree ensemble 

5 X8 Tree ensemble 

This metric is estimated from the out-of-bootstrap predic-
tions. Other model quality metric include VRMSE, esti-
mated also from the out-of-boostrap predictions, measured at 
0.69% of the average thickness for this model. 

The model is then used to predict average oxide film 
thicknesses for the test set. Figure 4 shows the result of the 
tree ensembles model. The TRMSE is comparable to the 
VRMSE and is equal to 0.59% (see table IV). R2 is calcu-
lated to be 0.84 also, for the test set. 
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Figure 4.  Predicted average thickness (by tree ensemble model) versus 
measured average thickness representation 

Table 4.  Tree ensemble model summary 

Quant. 
variables 

Qual. 
variables Selected R² 

VRMSE TRMSE 

(%) (%) 

22 3 5 0.84 0.69 0.59 

4. Perspectives 
In this paper we have been comparing two different types 

of mathematical modeling (PLS vs. Tree Ensembles). This 
academic study can be considered as the first step for virtual 
metrology, and demonstrates that here, with reasonable pa-
rameter selection; different algorithms yield similar results in 
terms of prediction capacity. So modeling capacity will 
contribute a low part to the algorithmic choices to be made in 
virtual metrology, we think. However, two main challenges 
remain to be addressed before using online virtual metrology 
prediction in Fab environment. The first one is to ensure VM 
models will be robust enough with time; this has to deal with 
model update approaches. The second one is to guarantee 
that predicted values can be trustfully used; this will be ad-
dressed by developing an indicator of confidence for each 
predicted value. The ultimate goal is to provide a reliable 
prediction that can be used for the CMP step. 

The model robustness over time is a key topic that must 
not be neglected. Many factors can impact the model validity 
such as the chamber aging, a sudden chamber malfunction, 
as well as the unscheduled and scheduled preventive main-
tenances [25]. All these events might lead to a change with 
time of some collected variables, used as model input on the 
form of FDC indicators. It is difficult assessing ahead the 
impact that such changes might have on the model validity. 
For all these reasons, a static model, built on a leaning 
dataset with no further updates, doesn’t seem to be a sus-
tainable solution. One should prefer an approach based on 
dynamic models. In that case, many possibilities exist such 
as a regular update, a data-driven update (based on estimated 

quality of the model) and a chamber-driven update (based on 
maintenance events).  

 

Figure 5.  Comparing the evolution of errors distribution between updating 
and non-updating models 

The second challenge is to provide a predictive quality 
index in order to guarantee the accuracy of the model pre-
diction. This quality index could be compared to the GOF 
(goodness-of-fit) available for each measure done in a me-
trology tool. The quality Index will be a combination of two 
metrics. In the case of Tree Ensembles modeling, a 
pre-selection of all available indicators is done; only indi-
cators having a major contribution in predicting the me-
trology output are kept in the model and use for calculated 
the predicted metrology values. The others with no or less 
influence on the metrology output are left aside. However, if 
one of them changes drastically suddenly, as it might happen 
when a chamber malfunction is detected, the VM predicted 
value might be questionable. Indeed, this parameter might 
have a strong influence on the metrology though this pa-
rameter was not kept in the model due to a constant value 
over time, for instance. Should this happen, the corre-
sponding quality metrics should reflect it. The second metric 
is related to the quality of the model prediction itself and can 
roughly be describes as an R- squared (R2). The combination 
of these 2 metrics should give an indication precise enough 
to determine whether or not the predicted value can be used 
in the feed-forward control loop for CMP removal step [26]. 
If the confidence in the predicted value is too low, thus the 
wafer should go with no doubt through a real measurement in 
the metrology tool.  

5. Conclusions 
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This paper presents two mathematical models that have 
been used to develop virtual metrology for predicting the 
average oxide film thickness deposited during a PECVD 
process. The two models have good predictive strength. PLS 
and tree ensemble show equivalent performance on the test 
set, but PLS shows slightly better results on the learning set. 
This could be explained by the elimination of an outlier value 
(point with highest measure thickness) in learning set of PLS 
model. PLS uses four principal components, which are based 
on all the variables. The tree ensemble model uses five 
variables only. Three out of the top five most important 
variables of PLS are used in the tree ensemble model. 

The predictive results are in excellent agreement with the 
measured data. In addition, we have shown as a novelty in 
virtual metrology that it is possible to create a single model 
for different layer, different products and for one chamber 
with two different chucks.  

The first results we have had on model update techniques, 
as well as on building a predictive quality index are very 
encouraging to reach our final goal which is to have Virtual 
Metrology running online in the CMP step.  
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