
Computer Science and Engineering 2013, 3(3): 51-55
DOI: 10.5923/j.computer.20130303.01

Method and System for Automated Unit-Level Testing of
FPGA-based Cycle-Accurate Microprocessor Simulator

Using Software Simulator as a Golden Model

Yuri Baida1,2,*, Anton Lechenko1,2, Andrey Efimov2, Alexander Butuzov2

1Moscow Institute of Physics and Technology (State University), Moscow, Russian Federation
2ZAO “Intel A/O”, Moscow, Russian Federation

Abstract For new hardware/software co-designed CPU architectures there is a need for fast and flexib le performance
simulation to perform extensive design space exp loration in both software and hardware domains. To confirm reliability of
design decisions, the simulator should also be accurate, which is usually achieved at the cost of reduced simulat ion speed.
Although FPGA-accelerated simulators have dramat ically higher speed than software simulators, such models require much
higher development effort. An FPGA-based model generally assumes a top-down design flow, where the system can be
tested only after all units have been developed. The paper describes a method and system for bottom-up development and
automated unit-level testing of FPGA-based cycle-accurate simulator leveraging functionality of existing software simulator.

Keywords Microprocessor, CPU, Cycle-accurate, Simulator, Simulation, Model, Unit-level, Testing, FPGA

1. Introduction
An important part of most CPU microarchitecture

development projects is a performance model – a very
detailed cycle-accurate model which helps conduct detailed
performance characterizat ion studies.

The conventional approach is to develop performance
models in software using high-level programming
languages like C++. This approach leverages power and
flexib ility of the high-level language, availability of tools,
dedicated libraries and frameworks, and, of course, skilled
programmers.

Unfortunately, conventional software simulators provide
accuracy at the expense of simulation speed of no more than
a few thousand model cycles per second. Thus, running
long workloads with accurate performance tracking is
practically impossible due to unacceptably long execution
times.

In the realm of RTL (reg ister-transfer level) simulation,
tremendous speedup can be achieved using FPGA-based
prototypes[1]. E.g., Intel Atom[2] and Intel Nehalem[3]
CPU core models were successfu lly implemented on
FPGAs with emulation frequency of 50 MHz and 520 KHz
res pect ively . However, development o f FPGA -based
prototypes is very difficult , expensive, time-consuming and

* Corresponding author:
yuri.baida@gmail.com (Yuri Baida)
Published online at http://journal.sapub.org/computer
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

possible only during the late stages of design flow after
complet ion of RTL development.

Recent investigations[4] exp lored FPGA-accelerated
processor simulat ion which is possible without final RTL
and thus can be done at early stages of CPU design flow.
This means that the hardware description used to configure
the FPGA is not an exact description of the target circuit.
Instead, it is a behavioural description of the target circuit
external t iming, e.g. the simulator may take any number of
FPGA clock cycles to simulate one model clock cycle.

Development of FPGA-based models generally assumes
top-down design flow, where all units must have been
created before the full system can be tested. The challenge
pursued by this paper is to provide instrumentation for
independent bottom-up development and automated
unit-level testing, leveraging functionality of an existing
software simulator.

2. Underlying Technology
2.1. Latency-delay Port S pecification

The microprocessor performance model in this paper is
specified using a latency-delay port (LDP) specification, an
existing technique for describing a cycle-by-cycle model of
a target hardware system[5].

The set S of states of the target microprocessor is
decomposed into sets of states of n individual modules
(branch predictors, caches, etc.) which can be written using
set theory notion as a Cartesian product

52 Yuri Baida et al.: Method and System for Automated Unit-Level Testing of FPGA-based Cycle-Accurate
Microprocessor Simulator Using Software Simulator as a Golden Model

1 2
.

nM M MS S S S= × × × (1)
Modules are arranged in a directed mult igraph connected

by ports (see Figure 1). A port is simply a communication
primitive annotated with a static latency, representing the
number of model cycles that messages takes to pass through
the port.

Figure 1. LDP-specification of a simple five-stage CPU pipeline

An important basic concept of LDP-specification we
leverage in this paper is that modules can communicate only
by sending messages through ports.

2.2. Bluespec SystemVerilog

In this study, we use Bluespec SystemVerilog hardware
description language (HDL), a high-level object-oriented
language[6] based on a computational model, where all
hardware behaviour is described as a set of rules (aka
guarded atomic actions).

The main benefits of Bluespec HDL are:
− strong type checking,
− polymorphism (like in C++ templates),
− built -in h igh-level modules (e.g. FIFO),
− integration with Verilog and VHDL RTL.

The Bluespec compiler transforms source code into
high-quality Verilog RTL, which can be further synthesized
into net lists using well-known industrial CAD tools such as
Synopsys Synplify Pro or Xilinx ISE.

2.3. The HAsim Framework

HAsim is a framework for FPGA -based cycle-accurate
microprocessor simulators jo intly developed by Intel and
Massachusetts Institute of Technology[7].

HAsim offers a method for writing t iming models that
run on FPGAs, using programming techniques similar to
software-based timing models. It decreases development
effort p roviding a LEAP virtual p latform, a set of interfaces
for FPGA applicat ion with a consistent set of useful
services and device abstractions, a memory hierarchy and a
flexib le RRR (Remote Request-Response) asynchronous
communicat ion protocol across a range of physical FPGA
platforms.

However, the original HAsim methodology uses top-down
design flow and doesn’t provide methods and tools for
independent unit-level development.

Although we use the HAsim framework for FPGA -based

hardware models, the proposed method can be used with any
simulation framework which employs the LDP-specification
described earlier.

3. Methodology
3.1. General Idea

As opposed to the conventional methods, this paper
proposes a method for bottom-up independent development
of units and system for automated unit-level testing, which
leverage the functionality of the existing software simulator.

From the formal point of view, taking into account
equation (1), bottom-up design and unit-level testing means
that we should implement and check only the

iMS (2)

number of states for each individual module and

1
i

n

UL M
i

Q S
=

=∑ (3)

states to test all units instead of

1
1

i n i

n

FS M M M M
i

Q S S S S
=

= × × =∏  (4)

states in case of full-system testing.
Suppose the microprocessor consists of N elementary

gates with k states (e.g., 4=k for a NAND gate) equally
distributed across n modules, we have the ratio

11 1
NN

N n nFS
N

UL
n

SQ k k
Q n n

nk

   −  −    
 
 
 

= = = (5)

that shows the benefit of the unit-level testing process.

3.2. Design Flow

Integrated design flow we propose consists of 3 stages
(see Figure 2), and at each stage the design is verified using
the reference software model. The verification process at
each stage is automated.

The development process starts from exp loring the
software model (golden model) and implementation of
port-equivalent modules in Bluespec HDL. Th is stage is the
most time-consuming since a developer should not only
study the software implementation of the module but also
implement it in Bluespec HDL.

Since modules communicate only through ports, the
module’s logic consists of 3 main parts:

− read messages from the input ports;
− process input data according the given algorithm;
− write messages (if any) in the output ports.

The handler of each port is usually implemented by a
separate Bluespec HDL rule. This well corresponds to the
independent nature of ports and allows adding new ports to
the design without modificat ion of the existing code.

In the next stage of the flow, ports of the software model
are replaced with special extended ports capable of saving

Instruction
fetch

Instruction
decode

Execution

1

Write
back

1

2

Memory
access

1

1

1

Modules graph

Port
(2 cycles of latency)

Module

 Computer Science and Engineering 2013, 3(3): 51-55 53

the trace of messages passed through them. Traces of
messages passed through input ports of the module, are
used further as testing stimuli, while the ones from output
ports are used as a reference. Once generated by the golden
model, traces are stored in a special database.

Once the unit has been implemented in Bluespec HDL, it
is wrapped into a unit-level model described in the next
section and is ready to be simulated at each subsequent
stage without modificat ions.

After successful compilation to Verilog RTL description
by the Bluespec compiler, the unit model can be run by the
native Bluespec simulator (Bluesim) or by a well-known
industrial RTL simulator (e.g., Synopsys VCS). From our
experience, Bluesim is roughly twice as fast as VCS.

Figure 2. Integrated methodology design flow

Finally, the verified RTL code is synthesized, mapped,
placed and routed by FPGA vendor implementation tools.
The generated bit-file is loaded into FPGA and the model is
executed using the same test vectors as those used by the all
stages of model development.

3.3. Unit-level Model

Using the proposed method, each module of the model
can be developed and tested independently, thus the total
development time is dramat ically decreased. On the other
hand, this requires a unit-level testing environment, which
is used before the full model is completed.

Each unit-level model reads data from the test database to
emulate absent neighbour modules. The unit-level model is
verified by comparing the output trace with the reference
trace produced by the corresponding module of the software
simulator.

The unit-level model structure is presented in Figure 3.
The unit stub reads test vectors from the software model
received via RRR channels through loggers’ hub and writes
the data to the corresponding ports. The particular test
traces from the database can be stored in FPGA as well as
loaded on-the-fly from the machine hosting the FPGA.

The unit stub gathers output data and sends it back to the
test environment. The loggers’ hub concentrates streams
from all loggers and controls model communications via the
dedicated RRR channel. The unit stub and loggers are
connected with loggers’ hub by soft connections[8] –
communicat ion primit ives that free the designer from
coding the stub-to-hub interfaces manually.

Figure 3. Unit-level model structure

As one can see, the entire infrastructure for automated
testing is localized on the level o f the HAsim framework
lib raries, while the module code is unaffected. Thus the
used validation methodology is highly scalable and flexib le.

In spite of the complexity of the testing system, the
whole testing environment, including unit stub, loggers, etc.
can be generated automatically by a special script using the
extended LDP-specification of the model (e.g. stored in an
XML format). Therefore, overhead on unit-level testing is
minimized.

Bluespec source code

Verilog RTL

Bluespec compiler

Bluesim

RTL simulation

Synthesis

Mapping
Placing & Routing

Bit-file

FPGA run

Bluespec stage

RTL stage

FPGA stage

Explore module
source code.

Write equivalent
Bluespec code

Test
database Checker

Unit
Under
Test

Unit Stub

Log Reader

Loggers’ Hub

Test database

Soft
connection

RRR channels

Port

Logger

Port

Logger

FPGA

Host

54 Yuri Baida et al.: Method and System for Automated Unit-Level Testing of FPGA-based Cycle-Accurate
Microprocessor Simulator Using Software Simulator as a Golden Model

4. Evaluation
In this section we evaluate the proposed method and

system in two ways. First, we determine the design effort
savings enabled by the use of the proposed technique.
Second, we evaluate the host machine d isk space usage.

Evaluation is provided with an example of a modern
out-of-order superscalar quad-core microprocessor with the
following structure shown in Figure 4.

Figure 4. The microprocessor model structure

4.1. Design Effort

To evaluate effectiveness of the proposed method, we
calculate the number of lines of source code (so called LOC
metric) and the well-known COCOMO 2.0 (Constructive
Cost Model)[9] cost estimat ion regression model developed
by B.W. Boehm.

For LOC calculat ion, we take into account only lines
written manually; blank and comment lines are ignored.

The source code size for all modules of the developed
microprocessor simulator (as well as the size of generated

source code of service unit stub modules) is shown in Tab le
1.

Table 1. Lines of code for all simulator modules (written manually) and
corresponding unit stubs (generated automatically)

Module
Lines of code

Module’s
logic (SML)

Unit stub
(SUS)

Instruction cache 2,156 2,139

Fetch unit 1,562 2,183

Decode unit 474 1,176

IDQ 1,156 1,677

Front end 5,348 7,175

Execution unit 503 1,323

Scheduling unit 1,937 3,551

Back end 2,440 4,874

Memory ordering unit 3,848 2,089

Data cache 2,297 1,148

Level-2 cache 2,178 2,058

Level-3 cache 551 672

Memory subsystem 8,874 5,967

Feeder 1,469 2,757

Microprocessor 18,131 20,773

Considering cycle-accurate hardware simulator modules’
logic implementation as an “embedded project” using the
COCOMO terminology, we have estimated design effort as:

1.23.6 18.1 116b
ML MLE a S= × = × = man-months. (6)

The code of unit stubs is much simpler than simulat ion
logic, so we use “organic project” coefficients:

1.052.5 20.8 60b
US USE a S= × = × = man-months. (7)

From the other hand, the real model development took 11
months of 4 people, which gives us 44 man-months effort
value. COCOMO-based effort estimation is roughly 3 times
higher, which is exp lained by the fact that the COCOMO
assumes top-down development process without automated
testing system we have.

Automatic tools for unit stubs’ code generation saved us
about 60 man-months of design effort while developing the
tools took only about 3 man-months. Finally, all these factors
show very high effectiveness of the proposed methodology.

4.2. Disk Space Us age
Disk space of the host machine is highly utilized by test

vectors once generated using reference software simulator.
In our case test vectors for the database of 670 tests consume
about 71 GB.

Although test database requires considerable amount of
disk space, on-the-fly generation is unacceptable since the
unit-level model speed will be bounded by the speed of the
software model.

While running a regression test, about 15 GB is consumed
by the testing system, and the model itself with all libraries

Fetch
unit

Instruction
cache

1

2

Decode
unit

Instruction
decoder

queue (IDQ)

1

1

Scheduling
unit

Front end

Execution
unit

11
Back end

2

1

Data
cache

Memory
ordering unit

1

3

1

Level-2
cache

 Level-3 cache
(shared)

Fe
ed

er
(in

te
rfa

ce
 to

 th
e

ho
st

-b
as

ed
 fu

nc
tio

na
l p

ar
tit

io
n)

Memory subsystem

5

20

1

1

10

200

1

1

RAM latency

5

1

Core 0

 Computer Science and Engineering 2013, 3(3): 51-55 55

occupies about 150 MB. This means that about 100 GB of
hard disk space will be enough for test database storage and
regression testing.

The full-system testing requires up to 100x less disk space
for the database since the full model has a very limited
number of input/output ports. However, disk space is much
cheaper today than developers’ time, thus larger disk space
consumption should be considered as a very small and
acceptable disadvantage of the proposed method. There are
also known test traces archiving techniques which could be
used in case of much larger test data base[10, 11].

5. Conclusions
In this paper we presented a method of unit-level testing

of an FPGA-based cycle-accurate microprocessor simulator
using a software simulator as a golden reference.

The proposed bottom-up unit-level development and
validation flow significantly reduces debug and validation
efforts (all model units can be developed and tested
independently) as opposed to the conventional top-down
design flow, where all units must be developed first, and
only the full system can be tested.

Test infrastructure for automated validation is localized
while the model unit code is unaffected, making proposed
validation methodology highly scalable with little effort as
opposed to traditional hardware validation techniques where
unit code should be modified, which imposes huge
overhead in terms of t ime and effort.

ACKNOWLEDGEMENTS
We want to express our sincere appreciation to each of

those who participated in developing the FPGA-based
performance model using the proposed method: Roman
Fadeev, Mikhail Tsvetkov and Roman Khvatov.

We would also like to thank the HAsim team, namely Joel
Emer, Michael Adler, Michael Pellauer, Angshuman
Parashar, Kermin Fleming and all others who contributed in
HAsim development.

Many thanks to Sergey Shishlov whose valuable input
helped us shape the narrative in this paper.

REFERENCES
[1] Simoneau W., Sendag R. “An FPGA-based multi-core

platform for testing and analysis of architectural techniques”.
Proc. of IEEE International Symposium on Performance
Analysis of Systems and Software. 2012, pp. 68-77.

[2] Wang P. H., Collins J. D., Weaver C. T., et al. “Intel Atom
processor core made FPGA-synthesizable”. Proc. of ACM/
SIGDA International Symposium on Field Programmable
Gate Arrays, 2009, pp. 209-218.

[3] Schelle G., Collins J., Schuchman E., et al. “Intel Nehalem
processor core made FPGA synthesizable”. Proc. of ACM/
SIGDA International Symposium on Field Programmable
Gate Arrays, 2010, pp. 3-12.

[4] Pellauer M., Vijayaraghavan M., Adler M., et al. “Quick
performance models quickly: closely-coupled partitioned
simulation on FPGAs”. Proceedings of IEEE International
Symposium on Performance analysis of systems and software,
2008, pp. 1–10.

[5] Pellauer M., Vijayaraghavan M., Adler M., et al. “A-Port
networks: preserving the timed behavior of synchronous
systems for modeling on FPGAs”. ACM Transactions on
reconfigurable technology and systems, 2009, vol. 2, no. 3, pp.
1-26.

[6] Nikhil R. S. “Abstraction in hardware system design”. ACM
Queue, 2011, vol. 9, no. 8, pp. 40-54.

[7] Pellauer M., Adler M., Kinsy M., et al. “HAsim: FPGA-based
high-detail multicore simulation using time-division
multiplexing”. Proc. of IEEE International Symposium on
High performance computer architecture, 2011, pp. 406-417.

[8] Pellauer M., Adler M., et al. “Soft connections: addressing the
hardware-design modularity problem”. Proceedings of
Design automation conference, 2009, pp. 276-281

[9] Boehm B. W., Abts C., Brown W. et al. “Software cost
estimation with Cocomo II”, Prentice Hall, 2000, 544 p.

[10] Johnson E., Ha J., Baqar Z. M. “Lossless trace compression”.
IEEE Transactions on Computers, 2001, vol. 50, no. 2, pp.
158–173.

[11] Burtscher M., Ganusov I., Jackson S. J. et al. “The VPC
trace-compression algorithms”. IEEE Transactions on
Computers. 2005, vol. 54, no. 11, pp. 1329–1344.

	1. Introduction
	2. Underlying Technology
	3. Methodology
	4. Evaluation
	5. Conclusions
	ACKNOWLEDGEMENTS

