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Abstract  For new hardware/software co-designed CPU architectures there is a need for fast and flexib le performance 
simulation to perform extensive design space exp loration in both software and hardware domains. To confirm reliability of 
design decisions, the simulator should also be accurate, which is usually achieved at the cost of reduced simulat ion speed. 
Although FPGA-accelerated simulators have dramat ically higher speed than software simulators, such models require much 
higher development  effort. An FPGA-based model generally  assumes a top-down design flow, where the system can be 
tested only after all units have been developed. The paper describes a method and system for bottom-up development and 
automated unit-level testing of FPGA-based cycle-accurate simulator leveraging functionality of existing software simulator. 
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1. Introduction 
An important part of most CPU microarchitecture 

development projects is a performance model – a very 
detailed cycle-accurate model which helps conduct detailed 
performance characterizat ion studies. 

The conventional approach is to develop performance 
models in software using high-level programming 
languages like C++. This approach leverages power and 
flexib ility of the high-level language, availability of tools, 
dedicated libraries and frameworks, and, of course, skilled 
programmers. 

Unfortunately, conventional software simulators provide 
accuracy at the expense of simulation speed of no more than 
a few thousand model cycles per second. Thus, running 
long workloads with accurate performance tracking is 
practically impossible due to unacceptably long execution 
times. 

In the realm of RTL (reg ister-transfer level) simulation, 
tremendous speedup can be achieved using FPGA-based 
prototypes[1]. E.g., Intel Atom[2] and Intel Nehalem[3] 
CPU core models were successfu lly implemented on 
FPGAs with emulation frequency of 50 MHz and 520 KHz 
res pect ively . However, development  o f FPGA -based 
prototypes is very difficult , expensive, time-consuming and  
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possible only during the late stages of design flow after 
complet ion of RTL development. 

Recent investigations[4] exp lored FPGA-accelerated 
processor simulat ion which is possible without final RTL 
and thus can be done at early stages of CPU design flow. 
This means that the hardware description used to configure 
the FPGA is not an exact description of the target circuit. 
Instead, it is a behavioural description of the target circuit 
external t iming, e.g. the simulator may take any number of 
FPGA clock cycles to simulate one model clock cycle. 

Development of FPGA-based models generally assumes 
top-down design flow, where all units must have been 
created before the full system can be tested. The challenge 
pursued by this paper is to provide instrumentation for 
independent bottom-up development and automated 
unit-level testing, leveraging functionality of an existing 
software simulator. 

2. Underlying Technology 
2.1. Latency-delay Port S pecification  

The microprocessor performance model in this paper is 
specified using a latency-delay port (LDP) specification, an 
existing technique for describing a cycle-by-cycle model of 
a target hardware system[5]. 

The set S  of states of the target microprocessor is 
decomposed into sets of states of n  individual modules 
(branch predictors, caches, etc.) which can be written using 
set theory notion as a Cartesian product 
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Modules are arranged in a directed mult igraph connected 

by ports (see Figure 1). A port is simply a communication 
primitive annotated with  a static latency, representing the 
number of model cycles that messages takes to pass through 
the port. 

 
Figure 1.  LDP-specification of a simple five-stage CPU pipeline 

An important basic concept of LDP-specification we 
leverage in this paper is that modules can communicate only 
by sending messages through ports. 

2.2. Bluespec SystemVerilog  

In this study, we use Bluespec SystemVerilog hardware 
description language (HDL), a high-level object-oriented 
language[6] based on a computational model, where all 
hardware behaviour is described as a set of rules (aka 
guarded atomic actions). 

The main benefits of Bluespec HDL are:  
− strong type checking, 
− polymorphism (like in C++ templates), 
− built -in h igh-level modules (e.g. FIFO), 
− integration with Verilog and VHDL RTL. 

The Bluespec compiler transforms source code into 
high-quality Verilog RTL, which can be further synthesized 
into net lists using well-known industrial CAD tools such as 
Synopsys Synplify Pro or Xilinx ISE. 

2.3. The HAsim Framework 

HAsim is a framework for FPGA -based cycle-accurate 
microprocessor simulators jo intly developed by Intel and 
Massachusetts Institute of Technology[7]. 

HAsim offers a method for writing t iming models that 
run on FPGAs, using programming techniques similar to 
software-based timing models. It decreases development 
effort p roviding a LEAP virtual p latform, a set of interfaces 
for FPGA applicat ion with a consistent set of useful 
services and device abstractions, a memory hierarchy and a 
flexib le RRR (Remote Request-Response) asynchronous 
communicat ion protocol across a range of physical FPGA 
platforms. 

However, the original HAsim methodology uses top-down 
design flow and doesn’t provide methods and tools for 
independent unit-level development.  

Although we use the HAsim framework for FPGA -based 

hardware models, the proposed method can be used with any 
simulation framework which employs the LDP-specification 
described earlier. 

3. Methodology 
3.1. General Idea 

As opposed to the conventional methods, this paper 
proposes a method for bottom-up independent development 
of units and system for automated unit-level testing, which 
leverage the functionality of the existing software simulator. 

From the formal point of view, taking into account 
equation (1), bottom-up design and unit-level testing means 
that we should implement and check only the 
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states in case of full-system testing. 
Suppose the microprocessor consists of N elementary 

gates with k states (e.g., 4=k  for a NAND gate) equally 
distributed across n modules, we have the ratio 
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that shows the benefit of the unit-level testing process. 

3.2. Design Flow 

Integrated design flow we propose consists of 3 stages 
(see Figure 2), and at each stage the design is verified  using 
the reference software model. The verification process at 
each stage is automated. 

The development process starts from exp loring the 
software model (golden model) and implementation of 
port-equivalent modules in Bluespec HDL. Th is stage is the 
most time-consuming since a developer should not only 
study the software implementation of the module but also 
implement it in Bluespec HDL. 

Since modules communicate only through ports, the 
module’s logic consists of 3 main parts: 

− read messages from the input ports; 
− process input data according the given algorithm; 
− write messages (if any) in the output ports. 

The handler of each port is usually implemented by a 
separate Bluespec HDL rule. This well corresponds to the 
independent nature of ports and allows adding new ports to 
the design without modificat ion of the existing code. 

In the next stage of the flow, ports of the software model 
are replaced with special extended ports capable of saving 
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the trace of messages passed through them. Traces of 
messages passed through input ports of the module, are 
used further as testing stimuli, while the ones from output 
ports are used as a reference. Once generated by the golden 
model, traces are stored in a special database.  

Once the unit has been implemented in  Bluespec HDL, it  
is wrapped into a unit-level model described in the next 
section and is ready to be simulated at each subsequent 
stage without modificat ions. 

After successful compilation to Verilog RTL description 
by the Bluespec compiler, the unit model can be run by the 
native Bluespec simulator (Bluesim) or by a well-known 
industrial RTL simulator (e.g., Synopsys VCS). From our 
experience, Bluesim is roughly twice as fast as VCS. 

  
Figure 2.  Integrated methodology design flow 

Finally, the verified RTL code is synthesized, mapped, 
placed and routed by FPGA vendor implementation tools. 
The generated bit-file  is loaded into FPGA and the model is 
executed using the same test vectors as those used by the all 
stages of model development. 

3.3. Unit-level Model  

Using the proposed method, each module of the model 
can be developed and tested independently, thus the total 
development time is dramat ically decreased. On the other 
hand, this requires a unit-level testing environment, which 
is used before the full model is completed.  

Each unit-level model reads data from the test database to 
emulate absent neighbour modules. The unit-level model is 
verified by comparing the output trace with the reference 
trace produced by the corresponding module of the software 
simulator.  

The unit-level model structure is presented in Figure 3. 
The unit stub reads test vectors from the software model 
received via RRR channels through loggers’ hub and writes 
the data to the corresponding ports. The particular test 
traces from the database can be stored in FPGA as well as 
loaded on-the-fly from the machine hosting the FPGA. 

The unit stub gathers output data and sends it back to the 
test environment. The loggers’ hub concentrates streams 
from all loggers and controls model communications via the 
dedicated RRR channel. The unit stub and loggers are 
connected with loggers’ hub by soft connections[8] – 
communicat ion primit ives that free the designer from 
coding the stub-to-hub interfaces manually.  

 
Figure 3.  Unit-level model structure 

As one can see, the entire infrastructure for automated 
testing is localized on the level o f the HAsim framework 
lib raries, while the module code is unaffected. Thus the 
used validation methodology is highly scalable and flexib le. 

In spite of the complexity of the testing system, the 
whole testing environment, including unit stub, loggers, etc. 
can be generated automatically by a special script using the 
extended LDP-specification of the model (e.g. stored in an 
XML format). Therefore, overhead on unit-level testing is 
minimized. 
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4. Evaluation 
In this section we evaluate the proposed method and 

system in two ways. First, we determine the design effort 
savings enabled by the use of the proposed technique. 
Second, we evaluate the host machine d isk space usage. 

Evaluation is provided with an example of a modern 
out-of-order superscalar quad-core microprocessor with the 
following structure shown in Figure 4. 

  
Figure 4.  The microprocessor model structure 

4.1. Design Effort  

To evaluate effectiveness of the proposed method, we 
calculate the number of lines of source code (so called LOC 
metric) and the well-known COCOMO 2.0 (Constructive 
Cost Model)[9] cost estimat ion regression model developed 
by B.W. Boehm. 

For LOC calculat ion, we take into account only lines 
written manually; blank and comment lines are ignored. 

The source code size for all modules of the developed 
microprocessor simulator (as well as the size of generated 

source code of service unit stub modules) is shown in Tab le 
1.  

Table 1.  Lines of code for all simulator modules (written manually) and 
corresponding unit stubs (generated automatically) 

Module 
Lines of code 

Module’s 
logic (SML) 

Unit stub 
(SUS) 

Instruction cache 2,156 2,139 

Fetch unit 1,562 2,183 

Decode unit 474 1,176 

IDQ 1,156 1,677 

Front end 5,348 7,175 

Execution unit 503 1,323 

Scheduling unit 1,937 3,551 

Back end 2,440 4,874 

Memory ordering unit 3,848 2,089 

Data cache 2,297 1,148 

Level-2 cache 2,178 2,058 

Level-3 cache 551 672 

Memory subsystem 8,874 5,967 

Feeder 1,469 2,757 

Microprocessor 18,131 20,773 

Considering cycle-accurate hardware simulator modules’ 
logic implementation as an “embedded project” using the 
COCOMO terminology, we have estimated design effort as: 

1.23.6 18.1 116b
ML MLE a S= × = × =  man-months.   (6) 

The code of unit stubs is much simpler than simulat ion 
logic, so we use “organic project” coefficients: 

1.052.5 20.8 60b
US USE a S= × = × =  man-months.  (7) 

From the other hand, the real model development took 11 
months of 4 people, which gives us 44 man-months effort 
value. COCOMO-based effort estimation is roughly 3 times 
higher, which is exp lained by the fact that the COCOMO 
assumes top-down development process without automated 
testing system we have. 

Automatic tools for unit stubs’ code generation saved us 
about 60 man-months of design effort while developing the 
tools took only about 3 man-months. Finally, all these factors 
show very high effectiveness of the proposed methodology. 

4.2. Disk Space Us age 
Disk space of the host machine is highly utilized by test 

vectors once generated using reference software simulator. 
In our case test vectors for the database of 670 tests consume 
about 71 GB. 

Although test database requires considerable amount of 
disk space, on-the-fly generation is unacceptable since the 
unit-level model speed will be bounded by the speed of the 
software model. 

While running a regression test, about 15 GB is consumed 
by the testing system, and the model itself with all libraries 
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occupies about 150 MB. This means that about 100 GB of 
hard disk space will be enough for test database storage and 
regression testing. 

The full-system testing requires up to 100x less disk space 
for the database since the full model has a very limited 
number of input/output ports. However, disk space is much 
cheaper today than developers’ time, thus larger disk space 
consumption should be considered as a very small and 
acceptable disadvantage of the proposed method. There are 
also known test traces archiving techniques which could be 
used in case of much larger test data base[10, 11]. 

5. Conclusions 
In this paper we presented a method of unit-level testing 

of an FPGA-based cycle-accurate microprocessor simulator 
using a software simulator as a golden reference. 

The proposed bottom-up unit-level development and 
validation flow significantly reduces debug and validation 
efforts (all model units can be developed and tested 
independently) as opposed to the conventional top-down 
design flow, where all units must be developed first, and 
only the full system can be tested. 

Test infrastructure for automated validation is localized 
while the model unit code is unaffected, making proposed 
validation methodology highly scalable with little  effort as 
opposed to traditional hardware validation techniques where 
unit code should be modified, which imposes huge 
overhead in terms of t ime and effort. 
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