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Abstract  Wireless networks present many challenges to standard routing algorithms. Ultimately, what we want from a 
routing algorithm is for it to be optimal in terms o f robustness, scalability, power, and time; however, it will be shown that 
guaranteed delivery generally comes at the expense of any one of these desirables. This paper will exh ibit a progression from 
routing in static networks to routing in unit d istance wireless networks in  order to illuminate the reality of the balance between 
what we want from wireless ad hoc routing algorithms and what we can expect from them. Much of the analysis presented 
will be on Dijkstra’s algorithm, the Bellman-Ford algorithm, Compass Routing, Face Routing, as well as localized methods 
to extract p lanar subgraphs. 
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1. Introduction 
The ongoing advancements in wireless technology have 

allowed for many different devices (old and new) to 
communicate in a wireless network at a declining cost. 
While some of these networks may consist purely of 
stationary devices, mobility is the primary advantage of 
wireless communicat ion. Thus the underlying mechanisms 
that dictate how a packet is sent from one device to another 
should reflect not only our understanding of how wireless 
mobile devices operate, but also our desire for optimal 
performance. The representation of networks as geometrical 
graphs provides the foundation for ingenuity in routing 
protocols. Graphs provide insight into both the optimal 
aspects of a routing algorithm as well as its limitations. To 
this end, a thorough examination of several routing 
algorithms along with their inherent structures and 
optimality aspects will be presented, beginning with the 
classical approach in  static networks and ending with 
methods used in homogenous wireless networks. 

2. Classical Approaches 
While it will be shown that the following static routing 

algorithms are not appropriate for wireless networks in 
general, the underlying methods and objectives provide the 
foundation to which several effective routing protocols are 
based on[1]. 
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2.1. Link-State Protocol: Dijkstra’s Algorithm 

The algorithm presented below produces the shortest path 
from a source 𝑠𝑠  to all possible destinations 𝑣𝑣  on a 
directed graph 𝐺𝐺 with non-negative edge weights w. Its 
implementation in networking is known as a link-state 
algorithm[2, 3]. Let |𝐺𝐺| denote the number of nodes in the 
graph. Let 𝐷𝐷(𝑣𝑣) be the total weight of the shortest path 
from the source 𝑠𝑠 to destination 𝑣𝑣 . Let 𝑐𝑐(𝑢𝑢, 𝑣𝑣) be the 
cost of routing from 𝑢𝑢 to 𝑣𝑣  (i.e., the sum of all edge 
weights along the path from 𝑢𝑢  to 𝑣𝑣 . Finally, let 𝑁𝑁 
contain the vertices in 𝐺𝐺 whose shortest paths have been 
determined. 

Algorithm DIJKSTRA LS(𝐺𝐺 ,𝑤𝑤, 𝑠𝑠) 
Input: a graph 𝐺𝐺  (represented by an adjacency list), 

non-negative edge weights 𝑤𝑤, and source 𝑠𝑠. 
Output: weight of shortest path from source 𝑠𝑠  to all 

destinations 𝑣𝑣. 
1. 𝑁𝑁 = {𝑠𝑠} 
2. for  all destinations 𝑣𝑣 ∈ 𝐺𝐺 
3. if 𝑣𝑣 is adjacent to 𝑠𝑠 
4. then 𝐷𝐷(𝑣𝑣) = 𝑐𝑐(𝑠𝑠 , 𝑣𝑣) 
5. else 𝐷𝐷(𝑣𝑣) = ∞ 
6. for  𝑖𝑖 ≔ 1 to |𝐺𝐺| − 1 
7. Amongst all nodes 𝑛𝑛 ∉ 𝑁𝑁 adjacent to any 
8. 𝑣𝑣 ∈ 𝑁𝑁, add 𝑛𝑛 to 𝑁𝑁 such that 
9. 𝐷𝐷(𝑣𝑣) + 𝑐𝑐(𝑣𝑣 , 𝑛𝑛) is a minimum. 
The structure of the above algorithm comes from[2], 

while a more detailed analysis of its functionality and 
correctness is outlined in[3]. Lines 6 through 9 are known 
as relaxing an edge. A total of |𝐺𝐺| − 1 edges are relaxed, 
each requiring 𝑂𝑂(|𝐺𝐺|) computations, which results in an 
overall complexity of 𝑂𝑂(|𝐺𝐺|2). The implementation of a 
binary heap for the priority queue improves the relaxation 
computation to 𝑂𝑂(log|𝐺𝐺|)and thus the overall complexity 
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to 𝑂𝑂(|𝐺𝐺|log|𝐺𝐺|). 
Regardless, the implementation of link-state protocols 

generally requires global state information from the graph. 
That is, the topology and link-costs are known to every 
node, which culminates in one exhaustive routing table that 
is maintained between all nodes. Hence a small change in 
the topology of the system can propagate into large errors in 
the routing table. Even with the availab le global state 
informat ion, routing loops can still occur; for instance when 
two nodes 𝑎𝑎 and 𝑏𝑏 attempt to route through each other to 
get to a destination 𝑑𝑑. An example of this event will be 
provided in the next section, as the directed distance vector 
routing protocol is also sensitive to changes in topology. 
Thus the use of Dijkstra’s algorithm in  wireless ad hoc 
networks is ill suited due to its static nature, 
time-complexity , and the overhead requirements it imposes 
on a network by requiring global state information. 

2.2. Directed Distance Protocol: The Bellman-Ford 
Algorithm 

The directed distance-vector routing protocol is nearly  
identical to the Bellman-Ford algorithm – but with one 
modification: the relaxat ion phase uses an infin ite while 
loop in order to achieve a quiescent state that responds to 
link-cost changes or updated distance vectors[2]. 

A major distinction between link-sate and directed 
distance-vector routing algorithms is the amount of 
informat ion that is available to a given node in  a network. 
The algorithm below uses localized informat ion of a source 
to calculate the distance vector to each of its neighbours. 
Once each node has calculated its distance-vector, it is 
broadcasted to each of their respective neighbours. The 
result is a minimum weight-spanning tree. 

Algorithm BELLMAN -FORD DDV(𝑮𝑮,𝒘𝒘, 𝒔𝒔) 
Input: a graph 𝑮𝑮 (represented by an adjacency list), edge 

weights 𝑤𝑤, and source 𝑠𝑠. 
Output: weight of shortest path from source 𝑠𝑠  to all 

destinations 𝑣𝑣. 
1. D(s) = 0  
2. for  all destinations v ∈ G  
3.  if v is adjacent to s 
4.   then D(v) = c(s, v) 
5.    send D(v) to all adjacent nodes v 
6.   else D(v) = ∞ 
7. while (there exists a link cost change or updated 

distance vector to some adjacent 𝑣𝑣) 
9.  do: for all 𝑛𝑛 ∈ 𝐺𝐺, 
10.  𝐷𝐷(𝑛𝑛) = min{𝐷𝐷(𝑛𝑛) ,𝐷𝐷(𝑣𝑣) + 𝑐𝑐(𝑣𝑣 , 𝑛𝑛) } 
11.  send updated distance vector: 𝐷𝐷(𝑣𝑣) =

[𝐷𝐷(𝑣𝑣) : 𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑛𝑛𝑎𝑎  𝑣𝑣 ∈ 𝐺𝐺] to all adjacent nodes 𝑣𝑣 
14.   if 𝐷𝐷(𝑠𝑠) > 𝐷𝐷(𝑣𝑣) + 𝑐𝑐(𝑣𝑣, 𝑠𝑠) 
15.    then report negative weight cycle 
16.     break 
Figure 1 illustrates how the Bellman-Ford algorithm 

produces the shortest path in the g iven graph with 𝐴𝐴 as the 
source. Figure 2 exemplifies the distributive and 
asynchronous nature of the algorithm where each  node 

maintains its own routing table and sends updated distance 
vectors to neighbouring nodes. 

Note that the purpose of lines 14 to 16 is to check for 
negative weight cycles within the graph. This may be 
unnecessary if all edge weights are non-negative, but 
depending on what the routing costs are representing, 
negative weights may be unavoidable. For instance, they 
might signify the load carried or removed from a packet as 
it travels from a source to a destination. It is simply one of 
many preventative measures against routing loops. 
Unfortunately, the Bellman-Ford  algorithm can  converge 
very slowly, and despite its ability to accept changes in 
topology it is prone to routing loops. An example of how a 
link-cost change can result in  a routing loop is shown in 
Figure 3.[2] 

 
Figure 1.  Bellman-Ford algorithm applied to the graph on nodes 
𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷 with 𝐴𝐴 as the source. The green arrows represent the shortest 
path from 𝐴𝐴 to all other nodes. The change in shortest path reflects the 
iterative updates in distance vectors 

 
Figure 2.  Routing tables associated with the graph in Figure 1. Arrows 
indicate the forwarding of distance vectors to adjacent vertices. Highlighted 
cells indicate the detection of new shortest paths derived from recently 
updated distance vectors 
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Figure 3.  Example of how a link-cost change can result  in a routing loop 

In the first picture of Figure 3, the shortest path has 
already been determined between nodes, 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 . The 
problem arises when the link cost between nodes 𝐵𝐵 and 𝐶𝐶  
changes from 5 to 20. At  this moment, 𝐵𝐵  detects the 
link-cost change and updates its distance vector accordingly 
to route through 𝐴𝐴 to get to 𝐶𝐶 . But 𝐴𝐴 is not aware of the 
link-cost change and will continue to route through 𝐵𝐵 to get 
to 𝐶𝐶  which results in a routing loop between 𝐴𝐴  and 𝐵𝐵 . 
However, through continually updating their distance 
vectors, 𝐴𝐴 will eventually route to 𝐶𝐶  directly, terminating 
the routing loop. This phenomenon is known as the 
count-to-infin ity problem[2]. Adding poisoned reverse is a 
technique designed to counteract this issue and can be 
applied to the example in Figure 3 in the following way: 
since the link-cost change results in 𝐵𝐵 attempting to route 
through 𝐴𝐴 to get to 𝐶𝐶 , 𝐵𝐵 will b roadcast its cost of routing to 
𝐶𝐶  as 𝐷𝐷(𝐶𝐶) = ∞. When 𝐴𝐴  receives the updated distance 
vector from 𝐵𝐵, it will now believe that a d irect path from 𝐵𝐵 
to 𝐶𝐶  does not exist and will therefore route to 𝐶𝐶  directly (as 
it would have all along if global state information was 
available). 

While localized information certain ly decreases the 
overhead costs of routing protocols, it enables errors to 
propagate from node to node. Despite the existence of 
preventative measures such as adding poisoned reverse, 
Dijkstra's algorithm and the Bellman-Ford algorithm are 
neither robust nor computationally efficient enough to 
handle the dynamic nature of wireless ad hoc networks. In 
order to formulate routing protocols that are appropriate for 
these purposes, desirable structures will be analysed next. 

3. Structures of Wireless Ad Hoc 
Networks 

The remainder of the algorithms to be presented are 
known to work in p lanar, connected, unit distance wireless 
graphs. First, a  justification for modeling wireless ad-hoc 
networks in unit d istance graphs will be outlined, followed 
by localized methods to extract planar sub graphs. 

3.1. Unit Distance Wireless Graphs  
Let 𝑃𝑃𝑛𝑛  be a set of 𝑛𝑛 points in the Euclidean plane. The 

unit distance wireless graph of 𝑃𝑃𝑛𝑛  (𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺(𝑃𝑃𝑛𝑛 )) contains 
all 𝑛𝑛  points, and edges 𝑎𝑎(𝑢𝑢, 𝑣𝑣)  such that the distance 
between 𝑢𝑢 and 𝑣𝑣 is with in 1 unit  (i.e ., 𝑑𝑑(𝑢𝑢, 𝑣𝑣) ≤ 1)[4]. 
An example of a 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺  on a set of 6 points is illustrated 
in Figure 4. 

The reasoning behind using 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺  to model wireless 
networks stems from the concept of broadcast ranges. That 
is, wireless devices are limited in their ab ility to 
communicate with other devices in accordance to their 
broadcast range. In the 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺 , all broadcast ranges are 
assumed to be uniform, hence 𝑢𝑢 can send a packet  directly 
to 𝑣𝑣 if and only if 𝑣𝑣  is contained within the circle of 
radius 1 centered at 𝑢𝑢. 

Finally, it is entirely reasonable to assume that a wireless 
device has knowledge of its co-ordinates due to the wide 
use of Global Positioning Systems. 

3.2. Gabriel Graphs 
Consider a set of n points in the Euclidean plane Pn . 

The Gabriel circle C(p, q) of two points p, q is defined as 
the circle that passes through both points and has the 
segment pq as a diameter, with the condition that no other 
point r from Pn  lies within  C(p, q). 

 
Figure 4.   𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺 of a set of 6 points: {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹}. Each circle has a 
radius of 1 unit 

The Gabriel graph of 𝑃𝑃𝑛𝑛 , 𝐺𝐺𝐺𝐺(𝑃𝑃𝑛𝑛 ), consists of all 𝑛𝑛 points 
and edges 𝑎𝑎(𝑝𝑝, 𝑞𝑞)  such that 𝐶𝐶(𝑝𝑝,𝑞𝑞)  exists[5]. Figure 5 
demonstrates the construction of the Gabriel graph on 3 
points. 

 
Figure 5.  Gabriel Graph of a set of 3 points: {𝐵𝐵,𝐶𝐶,𝐷𝐷} 

To show that the Gabriel graph is planar we will first 
assume the opposite and then arrive at a contradiction.  

Suppose that there exists a set of points 𝒫𝒫 such that the 
Gabriel graph 𝐺𝐺𝐺𝐺 (𝒫𝒫) is non-planar. Then there exists at 
least one edge intersection between two edges 𝑎𝑎(𝑝𝑝,𝑞𝑞) and 
𝑎𝑎(𝑟𝑟 , 𝑠𝑠) . Since 𝑎𝑎(𝑝𝑝, 𝑞𝑞) is a Gabriel edge it follows that 
neither 𝑟𝑟 nor 𝑠𝑠 lies inside 𝐶𝐶(𝑝𝑝, 𝑞𝑞). Then regardless of the 
position of 𝑟𝑟 or 𝑠𝑠 outside of 𝐶𝐶(𝑝𝑝, 𝑞𝑞), the circle 𝐶𝐶(𝑟𝑟 , 𝑠𝑠) 
will contain at least one of the points 𝑝𝑝 or 𝑞𝑞 . But then 
𝑎𝑎(𝑟𝑟 , 𝑠𝑠) cannot be a Gabriel edge, which contradicts the 
supposition. Therefore, the Gabriel graph on a set of points 



4 Tzvetalin S. Vassilev et al.:  Wireless Routing in Ad-Hoc Networks   
 

 

𝒫𝒫 is always planar. Figure 6 illustrates the proof of the 
Gabriel graph’s planarity. 

Finally, given a connected 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺  on a set of points 𝑃𝑃𝑛𝑛 , 
the intersection of 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺(𝑃𝑃𝑛𝑛 ) and 𝐺𝐺𝐺𝐺(𝑃𝑃𝑛𝑛 )  results in a 
connected planar subgraph 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺′ (𝑃𝑃𝑛𝑛 )[5]. 

To prove the connectedness of 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺’(𝑃𝑃𝑛𝑛 ), suppose that 
𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺(𝑃𝑃𝑛𝑛 ) is connected and 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺’(𝑃𝑃𝑛𝑛 ) is disconnected. 

Then there exists points 𝑢𝑢, 𝑣𝑣 ∈ 𝑃𝑃𝑛𝑛  such that they are 
adjacent in 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺(𝑃𝑃𝑛𝑛 ) but not adjacent in 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺’(𝑃𝑃𝑛𝑛 ). 
This necessitates the existence of a third point 𝑎𝑎 ∈ 𝑃𝑃𝑛𝑛  such 
that 𝑎𝑎  lies within the Gabriel circle 𝐶𝐶(𝑢𝑢, 𝑣𝑣) . But then 
𝑑𝑑(𝑎𝑎, 𝑢𝑢) < 𝑑𝑑(𝑢𝑢, 𝑣𝑣) and 𝑑𝑑(𝑎𝑎 , 𝑣𝑣) < 𝑑𝑑(𝑢𝑢, 𝑣𝑣). Hence there are 
edges 𝑎𝑎(𝑎𝑎 , 𝑢𝑢) and 𝑎𝑎(𝑎𝑎, 𝑣𝑣) resulting in a path from 𝑢𝑢 to 𝑣𝑣 
in 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺′(𝑃𝑃𝑛𝑛 ) (which  contradicts the above supposition). 
Therefore if 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺(𝑃𝑃𝑛𝑛 ) is connected, then 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺’(𝑃𝑃𝑛𝑛 ) 
is connected as well[5]. 

It follows that a connected planar subgraph can be 
extracted from any connected 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺  by having each node 
in the graph check for the existence of Gabriel circles 
between itself and its neighbours. Thus, there exists a 
localized method to extract planar subgraphs which can be 
accomplished for each point 𝑝𝑝 ∈ 𝑃𝑃𝑛𝑛  in 𝑂𝑂(𝑘𝑘 ln𝑘𝑘)  time, 
where 𝑘𝑘 is the number of neighbouring nodes to 𝑝𝑝[5].  

 
Figure 6.  Planarity of the Gabriel graph on a set of 4 points: {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷} 

3.3. Delaunay Graphs 

The Delaunay graph is an excellent structure to have 
within  networks as it  contains every Gabriel edge. Although 
the relative neighbourhood graph will not be discussed in 
this paper, it is worth mentioning that the Gabriel graph 
contains the relative neighbourhood graph as a subgraph, 
and the relative neighbourhood graph contains the 
minimum spanning tree as a subgraph. Hence the Delaunay 
graph contains many valuable structures as subgraphs. 
Finally the connectedness and planarity of the Delaunay 
graph and all its subgraphs can be derived from the idea of 
“forbidden zones” (e.g., the Gabriel circle between any two 
points is a forbidden zone for any other point) and using the 
relationships between the above-mentioned structures. 

However, this is beyond the scope of this paper and will be 
left for the interested reader as an exercise.  

Before defining the Delaunay graph of a set of points 𝑃𝑃𝑛𝑛 , 
we must define the convex hull. The convex hull of a  set of 
points 𝑃𝑃𝑛𝑛  is the smallest enclosing polygon 𝒫𝒫 comprising 
of all points 𝑝𝑝, 𝑞𝑞 ∈ 𝑃𝑃𝑛𝑛  with the condition that every line 
𝑙𝑙(𝑝𝑝, 𝑞𝑞) is completely  contained within 𝒫𝒫[6]. 

The Delaunay graph 𝐷𝐷(𝑃𝑃𝑛𝑛 ) partitions the convex hull 
into disjoint triangles with the condition that the 
circumcircle of each triangle does not contain any other 
point in 𝑃𝑃𝑛𝑛 .  
𝐷𝐷(𝑃𝑃𝑛𝑛 )  is uniquely defined if no 4 points are 

co-circular[5]. 
𝐷𝐷(𝑃𝑃𝑛𝑛 ) is dual to the Voronoi diagram which div ides the 

plane into 𝑛𝑛 disjo int regions. Each region is defined by a 
point 𝑝𝑝 ∈ 𝑃𝑃𝑛𝑛  such that anything within the region is closer 
to 𝑝𝑝 than any other point 𝑞𝑞 ∈ 𝑃𝑃𝑛𝑛 . The Voronoi d iagram 
can be computed in 𝑂𝑂(𝑛𝑛 log𝑛𝑛) time; therefore, due to its 
duality, 𝐷𝐷(𝑃𝑃𝑛𝑛 ) can be calculated in the same time[6]. 

It has been suggested in[5] to force a wireless network to 
contain the Delaunay graph by either increasing the 
transmission rates of the wireless devices or by deploying 
more radio stations. 

4. Routing in Wireless Ad-Hoc Networks 
There are many approaches to routing in wireless ad-hoc 

networks. An absolute necessity in employable routing 
protocols is the guaranteed delivery of packets to their 
destination. Compass Routing and Face Routing can 
guarantee delivery in certain geometric structures as 
outlined below. 

4.1. Compass Routing  

Given a planar 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺  on a set of points 𝑃𝑃𝑛𝑛  in the 
Euclidean plane, suppose that a point 𝑢𝑢 intends to send a 
packet to a destination 𝑣𝑣  (Note if 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺(𝑃𝑃𝑛𝑛 )  is 
non-planar, then compute 𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺’(𝑃𝑃𝑛𝑛 )). The forwarding 
packet must maintain  the location of its: current position 𝑢𝑢, 
destination 𝑣𝑣, and all nodes 𝑛𝑛 adjacent to 𝑢𝑢. 

Algorithm COMPASS (𝑢𝑢, 𝑣𝑣, 𝑛𝑛) 
Input: the location of a packet’s: current position 

 

u , 
destination

 

v , and adjacent nodes 

 

n. 
Output: arrival of packet at its destination 
1. Forward packet  to neighbour w ∈ n such that the 

slope of l(u, w) is closest to l(u, v) amongst all 𝑙𝑙(𝑢𝑢, 𝑛𝑛) 
2. if w = v 
3. then report arrival of packet at destination, break 
4. else COMPASS (𝑤𝑤, 𝑣𝑣, 𝑛𝑛) 
Figure 7 illustrates how this recursive algorithm would  

proceed on a graph of 8 nodes. Nevertheless, Compass 
routing is known to work on Delaunay graphs that are 
uniquely defined, but is still prone to routing loops in 
graphs with low convexity, and can even fail in convex 
graphs[5]. 
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Figure 7.  Forwarding of a packet from 𝑢𝑢 to its destination 𝑣𝑣 using Compass routing in the given graph of 8 nodes 

Randomized compass routing guarantees delivery in  
convex subdivisions by modifying the above algorithm to 
forward packets randomly to adjacent nodes 𝑤𝑤 ∈
{𝑤𝑤𝑐𝑐𝑤𝑤 ,𝑤𝑤𝑐𝑐𝑐𝑐𝑤𝑤 } ⊆ 𝑛𝑛 where 𝑤𝑤𝑐𝑐𝑤𝑤  and 𝑤𝑤𝑐𝑐𝑐𝑐𝑤𝑤  are the neighbours 
of 𝑤𝑤 that minimize the clockwise and counter-clockwise 
angle between all 𝑙𝑙(𝑢𝑢, 𝑛𝑛) and 𝑙𝑙(𝑢𝑢, 𝑣𝑣). The packet could 
theoretically take a very long time to arrive at its destination 
but in practice, randomized compass routing performs 
well[5]. 

4.2. Face Routing 

Just as the name suggests, face routing considers the 
disjoint regions induced on the plane by the edges of the 
𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺  on a set of points 𝑃𝑃𝑛𝑛 , wherein some edges are 
considered to appear twice (namely the edge shared 
between two traversed faces). In addit ion to a distance 𝑑𝑑 
(in itially set to 0), a packet must maintain the locations of: 
its origin  𝑢𝑢, an intermediate point 𝑠𝑠, the destination 𝑣𝑣, and 
the previous two nodes visited 𝑢𝑢𝑝𝑝1  and 𝑢𝑢𝑝𝑝2 . This last 
requirement helps prevent the occurrence of routing 
loops[4]. 

Algorithm FACE (𝑑𝑑, 𝑢𝑢, 𝑠𝑠, 𝑢𝑢𝑝𝑝1, 𝑢𝑢𝑝𝑝2,𝑣𝑣) 
Input: distance 𝑑𝑑 (init ially set to 0), and the locations of: 

its origin 𝑢𝑢, a point 𝑠𝑠 (init ially set to 𝑢𝑢), the destination 𝑣𝑣, 
and the previous two nodes visited 𝑢𝑢𝑝𝑝1 and 𝑢𝑢𝑝𝑝2 (init ially  
set to null) 

Output: arrival of packet to its destination 𝑣𝑣 
1. determine the face 𝐹𝐹 , incident to 𝑠𝑠 that is intersected 

by the line 𝑙𝑙(𝑢𝑢, 𝑣𝑣) 

2. begin the traversal of 𝐹𝐹 , updating 𝑢𝑢𝑝𝑝1 and 𝑢𝑢𝑝𝑝2 after 
each edge traversal 

3. if packet arrives at 𝑣𝑣 
4. then report arrival of packet at destination  
6. else upon intersecting the line 𝑙𝑙(𝑢𝑢, 𝑣𝑣), calculate the 

distance 𝑑𝑑’ from u to this intersection point 𝑠𝑠’ 
7. if 𝑑𝑑’ > 𝑑𝑑 
8. then 𝑑𝑑’ = 𝑑𝑑 
9. upon arriv ing back at  𝑠𝑠 traverse 𝐹𝐹  until 𝑠𝑠’  has been 

reached 
10. FACE (𝑑𝑑, 𝑢𝑢, 𝑠𝑠′,𝑢𝑢𝑝𝑝1, 𝑢𝑢𝑝𝑝2,𝑣𝑣) 
Refer to Figure 8 for a simulation of face routing on the 

given graph of 17 nodes. 
Out of all the algorithms presented, face routing is by far 

the most robust as it is known to work on all p lanar 
networks. Due to the constant amount of memory of the 
packet, the algorithm handles changes in topology very well. 
For instance if one of the nodes along the path from 𝑢𝑢 to 𝑣𝑣 
stops transmitting its signal, the packet and its forwarding 
method is unaffected unless the packet resides at the failed 
node in question. If this is the case then the packet of will 
not reach its destination since only one copy of the packet is 
forwarded from node to node. Aside from this scenario, a 
packet is also subject to routing loops if a node along the 
path from 𝑢𝑢 to 𝑣𝑣 continually fails and recovers during a 
face traversal; but this is a highly degenerate case. Finally, 
each of the edges of a given face is traversed at most 
twice[4]. 
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Figure 8.  Face routing on a graph of 17 nodes. Non-blue edges indicate an edge traversal. In this scenario, 4 faces are traversed in total (including the 
external face) in order to deliver a packet from 𝑢𝑢 to 𝑣𝑣 

5. Conclusions 
At first glance it would appear that the link-state and 

distance-vector routing protocols are ill suited for wireless 
ad-hoc networks, but the majority of heuristic protocols 
used are largely influenced by their methodologies[1]. What 
is highly undesirable of these methods is the overhead costs 
associated with maintain ing routing table(s). 

The unit distance wireless graph is a good representation 
of wireless ad hoc networks in which the wireless devices 
all have a uniform broadcast range. Of course, there are 
many cases in which broadcast ranges are not uniform, and 
there are often environmental factors that can inhibit a 
transmitter’s signal strength. However this model provides 
the foundation to which compass routing and more 
importantly face routing can guarantee delivery. 

It was suggested in[4] that since nodes within a unit 
distance wireless graph generally have relatively few 
adjacent nodes, the greedy quadratic time algorithms are 
better suited for determining incident edges, as their 
implementation is simpler. However, the robustness and 
scalability of face routing is undeniable and should at least 
be employed as an alternative routing protocol when routing 

loops persist within a system. 
Many other on-demand routing protocols like face 

routing and compass routing require methods to extract 
planar subgraphs. This paper discussed only the use of the 
intersection of the Gabriel graph and the unit  distance 
wireless graph (𝑈𝑈𝐷𝐷𝑈𝑈𝐺𝐺 ) as an alternative to the greedy 
approach. The relative neighbourhood graph (𝑅𝑅𝑁𝑁𝐺𝐺 ) is 
another nice geometric structure that can be derived in the 
same amount of time and is equally useful in the formation 
of localized routing algorithms[2, 6]. 
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