Computer Science and Engineering. 2011; 1(1): 15-21
DOI: 10. 5923/j.computer.20110101.03

A Model Software Reuse Repository with an Intelligent

Classification and Retrieval Technique

P. Niranjan"", C. V. Guru Rao’

'Computer Science and Engineering, Kakatiya Institute of Technology & Science, Warangal, 506015, India
*Computer Science and Engineering, S.R. Engineering College, Hasanparthi, Warangal, 506371, India

Abstract The essence of software reuse is the use of engineering knowledge or artefacts from existing software com-
ponents to build a new system. Software reuse can significantly improve the quality of software products and reduces the
overall development cost. Software reuse repository must be designed and developed in such a way that they can easily
locate the components based on the requirements of the developers.

This work proposes a new methodology for efficient classification and retrieval of multimedia software components based
on user requirements by using attribute classification scheme with genetic algorithm. In this intelligent classification we use
Genetic algorithm that performs the classification of reusable software components in an intelligent manner and retrieves

the components based on the requirements of the developers.

Keywords Software Reuse, Reuse Repository, Intelligent Classification, Genetic Algorithm

1. Introduction

Software reuse is the use of engineering knowledge or
artefacts from existing software to build new systems[1].
The most common reuse product is the source code. Not
only limiting to the source code reuse the other work prod-
ucts like the design, documentation, architecture, test data,
tool and requirement specification can also be reused.

Software reuse is an important area of software engi-
neering research that promises significant improvements in
software productivity and quality[4]. Reuse has the poten-
tial to reduce cost, increase the quality of the products and
shortens the time of software development. Reuse makes
sense because the similarity found across software systems
is significant. It is usually found that 60% to 70% of one
development activity is common to the next activity. From
this point of view software reuse can be promoted as a pro-
ductivity and quality enhancement. As it is observed now a
day’s the cost pressure is increasing example in case of
telecommunication and banking domains[3].

The biggest problem of software reusability in many or-
ganisations is the ability to locate and retrieve the existing
software components. To overcome this problem, a neces-
sary step is the ability to organize and catalogue collections
of software components, to quickly search a collection to
identify candidates for potential reuse, which can be used
by developer to incorporate the components to build new

* Corresponding author:

npolala@yahoo.co.in (P. Niranjan)

Published online at http://journal.sapub.org/computer

Copyright © 2011 Scientific & Academic Publishing. All Rights Reserved

efficient applications based on the requirements.

The best quality reuse repository tool is required to have
a wide variety of high quality components, which are or-
ganized in an efficient manner using a classification tech-
nique and must be able to retrieve the best components that
match user requirements. Effective software reuse requires
that the users of the system have access to appropriate
components. The user must access these components accu-
rately and quickly and if necessary be able to modify
them[2, 16].

This paper focus on the new methodology of intelligent
classification and retrieval of software components from the
reuse repository, this method implements a genetic algo-
rithm for the effective classification of components in the
repository and retrieves the best fit components from the
repository based on the user requirements.

This paper is organized into the following sections. Sec-
tion 2 is the literature survey which describes about the
various existing classification techniques that are used to
classify the components in the repository. Section 3 de-
scribes about the architecture of the proposed system in
detail. Section 4 describes in detail about the intelligent
classification and retrieval technique in two phases the
component classification phase and retrieval phase. Section
5 explains about the genetic algorithm for identifying the
classifiers. Section 6 deals with the experiments and the
results. Section 7 explains about the graphs in details which
deal with experimental results. Section 8 deals with conclu-
sion and future work followed by references.

2. Related Research



16 P. Niranjan ef al.:

In the recent past research on software reuse has been
focusing on several areas: examining programming lan-
guage mechanisms to improve software reusability, devel-
oping software processes and management strategies that
support the reuse of software, strategies for setting up li-
braries containing reusable code components and classifica-
tion and retrieval techniques to help a software professional
to select the component from the software library that is
appropriate for his or her purposes.

2.1. Existing Software Component Classification and
Retrieval Techniques

2.1.1. Free Text Classification

Free text retrieval performs searches using the text con-
tained within documents. The retrieval system is typically
based upon a keyword search[16]. All of the document in-
dexes are searched to try to find an appropriate entry for the
required keyword. The major drawback with this method is
the ambiguous nature of the keywords used. Another dis-
advantage is that a search my result in many irrelevant
components. A typical example of free text retrieval is the
‘grep’ utility used by the UNIX manual system. This type of
classification generates large overheads in the time taken to
index the material, and the time taken to make a query.

2.1.2. Enumerated Classification

Enumerated classification uses a set of mutually exclusive
classes, which are all within a hierarchy of a single dimen-
sion[6]. A prime illustration of this is the Dewey Decimal
system used to classify books in a library. Each subject area,
e.g. Biology, Chemistry etc, has its own classifying code. As
a sub code of this is a specialist subject area within the main
subject. These codes can again be sub coded by author. This
classification method has advantages and disadvantages
pivoted around the concepts of a unique classification for
each item. The classification scheme will allow a user to find
more than one item that is classified within the same section /
subsection assuming that if more than one exists. This type
of classification schemes is one dimensional, and will not
allow flexible classification of components into more than
one place. As such, enumerated classification by itself does
not provide a good classification scheme for reusable soft-
ware components.

2.1.3. Attribute Value Classification

Attribute value Classification scheme uses a set of attrib-
utes to classify a Component[6]. For example, a book has
many attributes such as the author, the publisher, and a
unique ISBN number and classification code in the Dewey
Decimal system. These are only example of the possible
attributes. Depending upon who wants information about a
book, the attributes could be concerned with the number of
pages, the size of the paper used, the type of print face, the
publishing date, etc.

2.1.4. Faceted Classification

A Model Software Reuse Repository with an Intelligent Classification and Retrieval Technique

Faceted classification schemes are attracting the most at-
tention within the software reuse community. Like the at-
tribute classification method, various facets classify com-
ponents however there are usually a lot fewer facets than
there are potential attributes. Ruben Prieto-Diaz[2, 8, 12 and
17] has proposed a faceted scheme that uses six facets. Each
of the facets has to have values assigned at the time the
component is classified.

3. Proposed System

Newly developed software components are classified and
stored in reuse repository using the intelligent classification
scheme. Existing components, which were classified using
any one of the above four mentioned classification tech-
niques, need to be reclassified according to the requirements.
The architecture of the proposed system is shown below.

Existing,

U
Components ser

Enters Preferences

atd
Theeshold Vlue
Intelligent Eeuse Reirieval
Classification Bepository System
Scheme Lihrary

Figure 1. Proposed System Architecture.

The intelligent classification scheme describes each po-
tential reusable component in the form of 9 characteristics.
The classification scheme encodes the characteristics of the
component into a series of bit strings (0’s and 1’s form) of
36 bits in length and these bit strings are processed by the
genetic algorithm for the purpose of discovering the classi-
fiers, where each classifier holds the homogeneous set of
software components which are relevant in characteristics
in its classifier set.

User will retrieve his desired component by specifying
the required attributes of the components. The component
retrieval system retrieves the desired components whose
characteristics match the user specified attributes.

The following sections describes about the intelligent
classification and retrieval techniques in detail.



Computer Science and Engineering. 2011; 1(1): 15-21 17

Reusable Component 1

1 Feusable Component 2|4
Reusable Component 3
Reusabhle Component 4|
Reusable Component 5

Encoding of Reurahle Software
Componenis
[? characteristics * 4 bits for each
characteristic = 36 bits {05 and 1%}
for each Reusahle Component]

3

4, Process the bit sirings to  |Component 1:101010101..(36hits length)

CGENETIC discover the classifiers |Component 2:101010101...... "
ALGORITHRM Comp 4 3:101101111...... "
Component 4:100000100...... "

5. Classifier|discovory phase

Classifier 1
Each classifier holds the encoded
information of reusahle software
components which are h us in
nature
Classifier 1
Classifier 3
\\\_____/ y
6. Component Reirieval phase T
- tered The user request
- FeT enters in bi o
Uger enters his preferences to | - preferences encoded o t(ou;m?‘mé?m?a:.‘ll
zearch for a reusahle component 0% and 1% lassifiers

Figure 2. Detailed explanation of the intelligent classification and re-
trieval technique based reuse repository system.

4. Intelligent Classification and
Retrieval Scheme

The Intelligent method of classification and retrieval of
software components from the reuse repository is divided
into two phases. The first phase is the component classifica-
tion phase, which is sub divided into the encoding and clas-
sifier discovery phases. The second phase explains about the
retrieval of components from the reuse repository.

Intellizent Method of
Clazzification and reirieval of
sofihware componenits

Component Component
Clazsification Phase ERetrieval Phase
Encoding of Claszzifier
Software Componenis Driccovery

Figure 3. Phases of Intelligent Classification and Retrieval Technique.

4.1. Phase 1: Intelligent Component Classification Phase

In the component classification phase the components are

classified using the 9 characteristics. The classification
scheme uses a genetic algorithm which evolves the small
number of classifiers by dividing the set of available com-
ponents stored in the reuse repositories into certain subsets.
This innovative way of classification of components using
the genetic algorithm will result in the fast retrieval of the
correct components according to the requirements that are
specified by the user.

This phase is further divided into two sub phases, the
encoding phase and the classifier discovery phase. In the
encoding phase the components characteristics are encoded
to binary form that is understood by the genetic algorithm.
The genetic algorithm processes the bit strings and evolve
the classifiers where each classifier holds the set of homo-
geneous software components.

4.1.1. Encoding of the Software Components

Each of the reusable software components are described
with a set of 9 characteristics, which were identified by
examining a component from both the functional and
non-functional perspectives. The 9 characteristics include
the following.

1. Component Name
Functionality
Domain
Operating System
Algorithm
Implementation Language
Developer
Time Complexity
. Price

Each of the above mentioned characteristics of a software
component are encoded to a binary string of 0’s and 1’s ,
where length of each characteristic of a component is four
bits and therefore the total string length of the component is
the aggregation of the number of bits needed to represent all
possible values of each distinct characteristic. Therefore the
total string length of each reusable software component is 36
bits, which includes all the 9 characteristics of a software
component, represented in the binary form. This 36 bit string
is used by the genetic algorithm to discover the component
classifiers.

0PN U AW

111011011100100000010011001010011010

Component Name: "Online Credit Card Transacton"
Functonality: "Online Monetary Transaction"
Domain: “"Banlking Donain"

Operating System: Windows XP, Linux, Unix
Algorithm: General

Implementation Language: Java

Developer: IBM

Time Complexdity: O{N)

Price: $25-50

Figure 4. Example of a Component encoding.

4.1.2. Classifier Discovery

The genetic algorithm attempts to discover several dif-
ferent classifiers, where each of the classifier, classifies a



18 P. Niranjan et al.

number of software components into a homogeneous set in
terms of characteristics. The classifier sets may have com-
mon elements as the classification process is based on
component characteristics, with which it attempts to find
large group of components with common values. There will
be large no of components classified against a small number
of classifiers.

Searching for a component will be performed by exam-
ining the user preferences against the classifiers rather than
the actual components, something which will result in a fast
searching process. The threshold parameter value specifies
the similarity of a component with a classifier (that is the
number of perfectly matched characteristics).

4.2. Phase 2: Component Retrieval

In the component retrieval phase, user will search for a
specific component. First the user will enter the desired
characteristics of a component which he wants to retrieve
from the reuse repository, through an interface. Second the
user will set the matching threshold value (obviously the
lower the threshold value the more components will be re-
turned and higher the threshold value, exactly the compo-
nents that matches user entered characteristics will get re-
turned).

The System will encode the user request as a bit string and
will compare it against all classifiers that were discovered in
the classifier discovery phase. The closest match will signify
the “winning” classifier and the components that are classi-
fied under the winning classifier will get returned.

5. Genetic Algorithm for Identifying the
Classifiers

A dedicated Genetic Algorithm[5] was developed to
evolve candidate classifiers and select the optimal solution in
terms of number of components in the corresponding classes,
which works in discrete steps as follows:

1. Create a random population of 100 chromosomes (poten-
tial classifiers)
2. For every generation of genetic algorithm

2.1 Apply crossover operation to every pair of classifiers,
where each pair is randomly selected according to the
crossover probability

2.2 Apply mutation to a randomly selected classifier ac-
cording to the mutation probability
3. Perform component classification for each of the 100
classifiers:

a) Compare each classifier’s values of characteristics
with those of each component. If component is close
enough (determined by a threshold) to a classifier then as-
sign the component to the class represented by this classi-
fier.

b) Select the top 20 classifiers (chromosomes) in terms of
the number of assigned components. Then find the average
numbers of assigned components to 20 classifiers. This is

A Model Software Reuse Repository with an Intelligent Classification and Retrieval Technique

the average fitness of current generation.

c) If the average fitness of the current generation is
greater than that of the previous generation then create a
new population by selecting chromosomes according to
their fitness and repeat step 3. Otherwise do not create new
population and repeat the step 2

The above algorithm is repeated until a termination con-
dition is reached. In our case the algorithm terminates if no
improvement in the average fitness of the population is ob-
served for 100 generations. A very important parameter is
the value of threshold, which determines whether a compo-
nent belongs to a certain classifier. For example, a value of
40% means that at least 40% of the values of the classifier
characteristics are identical to those of a component. This
threshold value essentially determines the “success” level of
a classifier to gather a rich number of components in his
class.

6. Experimentation and Results

The first phase of the experiments was concerned with the
classification of pool of components. In the second phase we
investigate the retrieval of specific components.

6.1. Classification Phase

For the classification phase we created a randomly 1000
components, each comprising 36 bits. The results reported
are averages over 100 runs. The classification of the com-
ponents is based on the 9 characteristics as described in
section 4. The threshold parameter is of paramount impor-
tance to our method, since it is a measure of similarity be-
tween the component characteristics and the classifier
characteristics. We set the threshold value to assume the
values of 30%, 40%, 50%, 60%, 70% and 80% for com-
parison purposes. The value of 30% produced classifiers,
where each classified almost all of the available software
components. This denotes that the classifiers derived cannot
differentiate between the components. The threshold value
of 80% did not produce good results either, because each
classifier classified only between one and three components,
which is also undesirable as it leaves many components
unclassified.

The results for the threshold values of 40%, 50% and 60%
are listed in Table 1. The “Average” column denote the
average number of components classified by each classifier,
while “Not Classified”, denotes the number of unclassified
components. The scores of 50% are quite successful, since
there are no unclassified components and each classifier
includes almost half of the components (47%). Thus, in the
retrieval phase only half of the components need to be
searched. Moving along the same line, the value of 60% is
also satisfactory since each class contains a small number of
components (58 on average), but there is a significant
number of unclassified components. The threshold value of
40% did not perform at all as it classified almost all of the
components are classified by its classifiers.



Computer Science and Engineering. 2011; 1(1): 15-21 19

6.2. Retrieval Phase

In the Retrieval phase testing, we created a 10 random
user requests searching for software components. Then the
threshold value is set from 40% to 70% at increments of 10%
as shown in Table2. We can observe that the 40% threshold
returned a richer number of components, but not all of them

were relevant to the user’s requirements as expected. The 50%

and 60% values retrieved less but more relevant components.
The 70% threshold returned results for some queries only but
it retrieved exact matching components for user’s request.

Threshold Threshold Threshold
Parameter Value: 40% Parameter Value: 50% Parameter Value: 60%
Average Average Average Average Average Average
{no. of (no. of {no. of {no. of {no. of {no. of
Classified |Unclassified | Classified |Unclasgified | Clasrified |Unclassified

Compenents)|Components ) (Componenis) Components) (Componente ) Components)

920 0 450 0 20 70

Tahle 1. Experimental REesults of Component Classification by 20 Classifiers

Thresheld Threzheld Threzheld Threzheld
Parameter Value:40%|Parameter Value:50%|Parameter Value: g0 % |Parameter Value:T70%)

Average nuber of Components per Classifier
27 ‘ 20 12 2

Table 2. Fetrieval Phase Remilts

7. Graphs

7.1. Graph for Comparing the Search Effectiveness of
Various Classification Schemes

Search effectiveness refers to how well a given method
supports in finding relevant components in the repository. It
tells about the number of relevant items retrieved over the
total number of retrieved items.

The graph for comparing the search effectiveness of
various classification schemes is depicted below in figure 4.
The horizontal axis on the graph represents the list of various
existing classification schemes along with the intelligent
classification scheme. The no of data items are represented
along the vertical axis. The total data items retrieved are
shown in white colour and the coloured area indicates the
percentage of the relevant items among all the retrieved
items.

Explanation:

Comparing with existing classification techniques, the
integrated classification scheme performs well in retrieving
the most relevant components according to the user re-
quirements, but this scheme classifies components in the
repository using only few attributes. Whereas, our proposed
intelligent classification and retrieval system classifies the
components in a broad manner on the basis of both func-
tional and non-functional characteristics, which makes the
proposed system more efficient in nature in retrieving most
relevant components. The retrieved components working
performance is highly commendable when integrated in the
newly developing software systems, as the system supports
the retrieval of most relevant items matching the user re-

quirements.

The threshold value parameter which is important in the
Intelligent classification and retrieval technique will effec-
tively determine whether a component belongs to certain
classifier or not. For example, a value of 40% threshold
means that at least 40% of the values of the classifier char-
acteristics are identical to those of a component. Thus, the
selection of threshold value parameter will also plays a
prominent role in retrieving most relevant components
among the existing components.

1G 1
—— "
T 9 -
'g
8 -
g 4.
e 7 |
g EI _//: I I B
N -
e (.
A . —
S 3 |
Ll
S 1 _/_
RN - -
P \.Gb & ) '@'b <
@ « 2 & L 2
& &qu &7 & ad HS\\{*
¥ &
" List of Classificetion Schemes” xéi‘\%

&
Figure 5. Finding Most Relevant Components.

The graph representing the finding of most relevant
components is shown for the threshold values 40%, 50% and
60 % which marked the high performance results, in re-
trieving the most relevant components among all the com-
ponents but they retrieved very less components but all of
those matched with most of the user requirements.

7.2. Graph for Comparing the Search Time of Various
Classification Schemes

Search time is the amount of time spent by the reuse re-
pository system to locate the specific component in response
to the user request. The graph for comparing search time of
various classification schemes is shown in figure 5. The
horizontal axis on the graph represents the various existing
classification schemes along with the proposed scheme and
the vertical axis represents the total search time to retrieve
the components. The total data items retrieved are shown in
white colour and the coloured area indicates the search time
to retrieve those data items.

The intelligent classification and retrieval scheme uses a
genetic algorithm, this genetic algorithm attempts to dis-
cover the several different classifiers, each of which classi-
fies a set of homogeneous components in terms of charac-



20 P. Niranjan et al.

teristics.

Searching for a component will be performed by exam-
ining the user preferences against the classifiers rather than
the actual components this will result in a faster searching of
components. The graph in figure 5 shows the search time of
components in the proposed system. The graph showing the
intelligent classification and retrieval scheme search time
performs well for the threshold values of 50% and 60% with
successful outcome.

/

L

q

|

0

|
+§)

+

S

“No. of Data items Retrieved”
» A

[] -..-r‘_ -..-H—-.-—’_-.—M—-.-J_-...-M7
| I I I I |
gy & & £ & ¢
o T ke b ™
g & & & & &
S £ € 3
é‘\o 42,0 = 0.}‘:

“List of Classification Schemes” )
B Relevent Items Retreived ¢

O Total items Retreived
Figure 6. Search Time of Components.

8. Conclusion and Future Work

An effective software reuse repository software tool is
designed and successfully implemented with the proposed
intelligent classification and retrieval scheme. Our Classifi-
cation is based on small set of classifiers which are evolved
using the genetic algorithm. Each classifier evolved by the
genetic algorithm attempts to classify the large number of
software components according to the common characteris-
tics. Retrieval of the relevant components is performed by

comparing the user requirements with those of the classifiers.

Thus, comparing a component’s specification with only
those of the classifiers instead of the entire set of available
components in the repository will significantly save the
search time of the components. A threshold is also used
when evolving the classifiers, which determines the degree
(percentage) of similarity with a classifier that is required to
classify a component in a certain class. The threshold value
has been found to have a profound influence in both the
classifier’s design phase (with the GA) and the retrieval
phase.

Future work involved with this proposed intelligent
scheme is the multimedia presentation of the components.
Ranking of components that are returned by the system can
also be included as an enhancement to future work.

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

A Model Software Reuse Repository with an Intelligent Classification and Retrieval Technique

REFERENCES

William.B. Frakes and Kyo Kang, “Software Reuse Research
Status and Future” IEEE transactions on Software Engineer-
ing, Vol. 31, No.7, July 2005.

Ruben Prietzo-Diaz, “Implementing Faceted Classification
for Software Reuse”, Communication of the ACM, vol.34,
no.5 May 1991.

Title: “Reuse Repository” Ewa stemposz, Alina stasiecka,
Kazimierz subieta Polish- Japanese Institute of Information
Technology, Wersaw.

William B. Frakes and Thomas. P.Pole, “An Empirical Study
of Representation Methods for Reusable Software Compo-
nents”, IEEE Transactions on Software Engineering vol.20,
no.8, Aug. 1994, pp.617-630.

D. E. Goldberg, “ Genetic Algorithms”, Addison- Wesley,
1989.

Jeffrey S. Poulin and Kathryn P.Yglesias “Experiences with a
faceted Classification Scheme in a Large Reusable Software
Library (RSL)”, In The Seventh Annual International Com-
puter Software and Applications Conference (COMP-
SAC’93), 1993,pp.90-99.

Specification, Design and Implementation of a Reuse Repo-
sitory, 31% annual international COMPSAC 2007, IEEE
Transactions on Software Engineering, 2007.

Ruben Prieto-Diaz, “Implementing Faceted Classification for
Software Reuse” © 1990 IEEE, pp.300-304.

P. Niranjan, C V Guru Rao“A Mock up tool for software
component Reuse Repository” 1JSE, vol 1 , no 2, April
2010.

Chao- Tsun Chang, William c. chu, Chung-shyan Liu, Hongji
Yang “A Formal Approach to Software Components Classi-
fication and Retrieval.

Jain- Yun Nie, Francois Paradis, Jean Vaucher “ Using In-
formation Retrieval for Software”.

R. Prieto-Diaz and P.Freeman, “Classifying Software for
Reuse”, IEEE Software 1987, Vol.4, No.1, pp.6-16.

Juan Llorens, Antonio Amescua, Manuel Velasco “Software
Thesaurus: A Tool for Reusing Software objects”, 1996 IEEE
Transactions Proceedings of SAST.

Aarthi Prasad, “Al- based Classification and Retrieval of
Reusable Software Components” 1993 IEEE Transactions on
Software Engineering.

Achala Sharma, Daman Deep Kaur “Component Classifica-
tion and Retrieval using Data Mining Techniques”, Pro-
ceedings of National Conference on challenges & opportuni-
ties in Information Technology (COIT 2007).

Gerald Jones and Ruben Prieto-Diaz, “Building and Manag-
ing Software Libraries”, © 1998 IEEE, pp.228-236.

Prieto-Diaz, Freeman, “Classifying Software for Reuse”,
IEEE Software, vol.4, mo.1, pp.6-16, 1997.

Jung-eun cha, Young-jung yang, Mun-sub sung a,d Hang-gon
kim, “ Design and implementation of component repository
for supporting the component based development process
“IEEE 2001 paper.



(19]

(20]

Computer Science and Engineering. 2011; 1(1): 15-21 21

Mang Youuxin, Mong Xianghai, Yang Weimin “Component
based Software Reuse Key Technology Research and De-
sign”, International Forum on Information Technology and
Applications, 2009.

B.Jalender, Dr.A.Govardhan, Dr.P.Preamchand “Breaking

the Boundaries for Software Component Reuse Technology
“International Journal of Computer Applications, Vol 13,
No.6, January 2011.

[21]

[22]

Sarbijeet Singh, Sukhvinder Singh, Gurpreet Singh, “Reusa-
bility of the Software “ International Journal of Computer
Applications, Vol 7, No.14, October 2010.

Dr.C.V.Guru Rao, P.Niranjan “A Multilevel Representation
of Repository for Software Reuse “, International Journal of
Computer Science and Information Security, Vol 9, No 9 ,
September 2011.



