
Computer Science and Engineering. 2011; 1(1): 15-21
DOI: 10. 5923/j.computer.20110101.03

A Model Software Reuse Repository with an Intelligent
Classification and Retrieval Technique

P. Niranjan1,* , C. V. Guru Rao2

1Computer Science and Engineering, Kakatiya Institute of Technology & Science, Warangal, 506015, India
2Computer Science and Engineering, S.R. Engineering College, Hasanparthi, Warangal, 506371, India

Abstract The essence of software reuse is the use of engineering knowledge or artefacts from existing software com-
ponents to build a new system. Software reuse can significantly improve the quality of software products and reduces the
overall development cost. Software reuse repository must be designed and developed in such a way that they can easily
locate the components based on the requirements of the developers.
This work proposes a new methodology for efficient classification and retrieval of multimedia software components based
on user requirements by using attribute classification scheme with genetic algorithm. In this intelligent classification we use
Genetic algorithm that performs the classification of reusable software components in an intelligent manner and retrieves
the components based on the requirements of the developers.

Keywords Software Reuse, Reuse Repository, Intelligent Classification, Genetic Algorithm

1. Introduction
Software reuse is the use of engineering knowledge or

artefacts from existing software to build new systems[1].
The most common reuse product is the source code. Not
only limiting to the source code reuse the other work prod-
ucts like the design, documentation, architecture, test data,
tool and requirement specification can also be reused.

Software reuse is an important area of software engi-
neering research that promises significant improvements in
software productivity and quality[4]. Reuse has the poten-
tial to reduce cost, increase the quality of the products and
shortens the time of software development. Reuse makes
sense because the similarity found across software systems
is significant. It is usually found that 60% to 70% of one
development activity is common to the next activity. From
this point of view software reuse can be promoted as a pro-
ductivity and quality enhancement. As it is observed now a
day’s the cost pressure is increasing example in case of
telecommunication and banking domains[3].

The biggest problem of software reusability in many or-
ganisations is the ability to locate and retrieve the existing
software components. To overcome this problem, a neces-
sary step is the ability to organize and catalogue collections
of software components, to quickly search a collection to
identify candidates for potential reuse, which can be used
by developer to incorporate the components to build new

* Corresponding author:
npolala@yahoo.co.in (P. Niranjan)
Published online at http://journal.sapub.org/computer
Copyright © 2011 Scientific & Academic Publishing. All Rights Reserved

efficient applications based on the requirements.
The best quality reuse repository tool is required to have

a wide variety of high quality components, which are or-
ganized in an efficient manner using a classification tech-
nique and must be able to retrieve the best components that
match user requirements. Effective software reuse requires
that the users of the system have access to appropriate
components. The user must access these components accu-
rately and quickly and if necessary be able to modify
them[2, 16].

This paper focus on the new methodology of intelligent
classification and retrieval of software components from the
reuse repository, this method implements a genetic algo-
rithm for the effective classification of components in the
repository and retrieves the best fit components from the
repository based on the user requirements.

This paper is organized into the following sections. Sec-
tion 2 is the literature survey which describes about the
various existing classification techniques that are used to
classify the components in the repository. Section 3 de-
scribes about the architecture of the proposed system in
detail. Section 4 describes in detail about the intelligent
classification and retrieval technique in two phases the
component classification phase and retrieval phase. Section
5 explains about the genetic algorithm for identifying the
classifiers. Section 6 deals with the experiments and the
results. Section 7 explains about the graphs in details which
deal with experimental results. Section 8 deals with conclu-
sion and future work followed by references.

2. Related Research

16 P. NNiranjan et al.: A Model Softwware Reuse Repoository with an Inntelligent Classiification and Reetrieval Techniquue

In the rece
focusing on
guage mechan
oping softwar
support the re
braries contain
tion and retrie
to select the
appropriate fo

2.1. Existing
Retrieval Tec
2.1.1. Free Tex

Free text re
tained within
based upon a
dexes are sear
required keyw
the ambiguou
advantage is
components. A
‘grep’ utility u
classification
index the mate

2.1.2. Enumer

Enumerated
classes, which
sion[6]. A pri
system used to
e.g. Biology, C
a sub code of
subject. These
classification
pivoted aroun
each item. The
more than one
subsection ass
of classificatio
allow flexible
one place. As
not provide a
ware compone

2.1.3. Attribut

Attribute va
utes to classif
many attribut
unique ISBN
Decimal syste
attributes. Dep
book, the attri
pages, the size
publishing dat

2.1.4. Faceted

ent past resear
several areas:
nisms to impr
re processes a
euse of softwa
ning reusable
eval techniques
component fr

or his or her pu

Software Com
chniques
xt Classificatio
etrieval perfor
documents. T
keyword sear

rched to try to
word. The majo
us nature of th

that a search
A typical exam
used by the UN
generates larg
erial, and the t

rated Classifica

d classification
h are all within
ime illustration
o classify book
Chemistry etc,
this is a specia

e codes can ag
method has

nd the concept
e classification
e item that is cl
suming that if
on schemes is

e classification
such, enumer
good classific

ents.

te Value Classi

alue Classifica
fy a Compone
tes such as th
number and c

em. These are
pending upon
ibutes could b
e of the paper
te, etc.

d Classification

rch on softwa
: examining p
rove software
and managem
are, strategies
code compone
s to help a sof
rom the softw
urposes.

mponent Clas

on
rms searches u
The retrieval s
rch[16]. All of
find an approp
or drawback w
he keywords u
h my result in
mple of free te
NIX manual sy
ge overheads in
time taken to m

ation

n uses a set of m
n a hierarchy
n of this is th
ks in a library.
, has its own cl
alist subject ar
ain be sub cod
advantages a

ts of a unique
n scheme will a
assified within

f more than on
s one dimensi
n of componen
rated classifica
cation scheme

ification

ation scheme u
ent[6]. For exa
he author, the
classification c
e only examp
who wants in
e concerned w
used, the type

n

are reuse has b
programming
reusability, de

ment strategies
 for setting u
ents and classi
ftware professi

ware library th

sification and

using the text
system is typic
f the documen
priate entry fo

with this metho
used. Another
n many irrele
ext retrieval is
ystem. This typ
n the time take
make a query.

mutually exclu
of a single dim

he Dewey Dec
Each subject a

lassifying code
rea within the m
ded by author.
and disadvant
e classification
allow a user to
n the same sect
ne exists. This
onal, and will
nts into more
ation by itself
e for reusable

uses a set of at
ample, a book
e publisher, an
code in the De
le of the poss

nformation abo
with the numbe
e of print face

been
lan-

evel-
that

up li-
fica-
ional
at is

d

con-
cally

nt in-
r the
od is
dis-

evant
s the
pe of
en to

usive
men-
cimal
area,
e. As
main
This

tages
n for
 find
tion /
type
l not
than
does
soft-

ttrib-
k has
nd a
ewey
sible
out a
er of

e, the

Face
tention
tribute
ponent
there a
17] ha
of the
compo

3. Pr
New

stored
schem
any on
niques
The ar

The
tential
The cl
compo
36 bits
genetic
fiers, w
softwa
in its c

Use
the req
retriev
charac

The
classif

eted classifica
n within the s
e classification
ts however th
are potential at
as proposed a f

facets has to
onent is classif

roposed S
wly developed

in reuse repos
me. Existing co

ne of the abo
s, need to be re
rchitecture of t

Figure 1.

e intelligent cl
reusable com

lassification sc
onent into a se
s in length and
c algorithm fo
where each cl
are component
classifier set.
er will retrieve
quired attribut

val system ret
cteristics match
e following se
fication and ret

ation schemes
oftware reuse

n method, var
here are usuall
ttributes. Rube
faceted scheme
o have values
fied.

ystem
d software com
sitory using th
omponents, wh
ove four ment
classified acco

the proposed sy

. Proposed Syste

assification sc
mponent in the
cheme encodes
eries of bit stri
d these bit str

or the purpose
lassifier holds
ts which are r

e his desired
tes of the com
trieves the de
h the user spec
ections describ
trieval techniq

are attracting
community. L

rious facets cl
ly a lot fewer
en Prieto-Diaz[
e that uses six

assigned at t

mponents are cl
he intelligent c
hich were clas
tioned classific
ording to the re
ystem is shown

em Architecture.

cheme describ
form of 9 cha

s the character
ings (0’s and 1
rings are proce

of discovering
s the homogen
relevant in ch

component by
mponents. The
esired compon
cified attributes
bes about the

ques in detail.

the most at-
Like the at-
assify com-
facets than

[2, 8, 12 and
facets. Each

the time the

lassified and
lassification

ssified using
cation tech-
equirements.
n below.

bes each po-
aracteristics.
ristics of the
1’s form) of
essed by the
g the classi-
neous set of
haracteristics

y specifying
 component

nents whose
s.
e intelligent

 Commputer Science aand Engineeringg. 2011; 1(1): 15-21 17

Figure 2. Deta
trieval technique

4. Intellig
Retrieval

The Intellig
software com
into two phase
tion phase, wh
sifier discover
retrieval of co

Figure 3. Pha

4.1. Phase 1:

In the comp

iled explanation
based reuse repos

gent Classi
Scheme

gent method o
mponents from

es. The first ph
hich is sub div
ry phases. The
omponents from

ses of Intelligent C

Intelligent Co

ponent classifi

of the intelligent
sitory system.

ification a

of classificatio
the reuse rep

hase is the com
vided into the e
 second phase
m the reuse rep

Classification and

omponent Cla

ication phase th

t classification an

and

on and retrieva
pository is div
mponent classi
encoding and c
explains abou

pository.

d Retrieval Techni

assification Ph

he component

nd re-

al of
vided
fica-
clas-

ut the

que.

hase

s are

classif
schem
numbe
ponent
This in
the ge
correct
specifi

This
encodi
encodi
to bina
The ge
the cla
geneou

4.1.1.

Each
with a
examin
non-fu
the fol

1.
2.
3.
4.
5.
6.
7.
8.
9.
Each

compo
where
bits an
the agg
possib
total st
bits, w
compo
is used
classif

4.1.2.

The
ferent

fied using the
me uses a gene
er of classifier
ts stored in the
nnovative way
netic algorithm
t components
ied by the user
s phase is fur
ing phase and
ing phase the
ary form that
enetic algorith
assifiers where
us software co

Encoding of th

h of the reusa
a set of 9 cha
ning a comp

unctional persp
llowing.
Component N
Functionality
Domain
Operating Sy
Algorithm
Implementati
Developer
Time Comple
Price

h of the above
onent are enco

length of eac
nd therefore th
gregation of th

ble values of ea
tring length of

which includes
onent, represen
d by the genet
fiers.

Figure 4.

Classifier Disc

e genetic algor
classifiers, w

e 9 character
etic algorithm
rs by dividing
e reuse reposit
y of classificat
m will result i
according to

r.
rther divided
d the classifier
components ch
is understood

hm processes t
e each classifi

omponents.

he Software Co

able software c
aracteristics, w

ponent from b
pectives. The

Name
y

stem

on Language

exity

e mentioned ch
oded to a bina
ch characteristi
e total string l

he number of b
ach distinct ch
f each reusable
s all the 9 cha
nted in the bina
tic algorithm to

Example of a Com

covery

rithm attempts
here each of

ristics. The c
which evolve
the set of ava

tories into cert
tion of compo
in the fast retr
the requireme

into two sub
r discovery ph
haracteristics a
by the genetic

the bit strings
er holds the s

omponents

components ar
which were id
both the fun
9 characteris

haracteristics o
ary string of 0
ic of a compo
ength of the co

bits needed to r
haracteristic. T

software comp
aracteristics of
ary form. This
o discover the

mponent encoding

s to discover
the classifier,

lassification
es the small
ailable com-
tain subsets.
onents using
rieval of the
ents that are

phases, the
hase. In the
are encoded
c algorithm.
and evolve

et of homo-

re described
dentified by

nctional and
stics include

of a software
0’s and 1’s ,
onent is four
omponent is
represent all
herefore the
ponent is 36
f a software
36 bit string

e component

g.

several dif-
classifies a

18 P. Niranjan et al.: A Model Software Reuse Repository with an Intelligent Classification and Retrieval Technique

number of software components into a homogeneous set in
terms of characteristics. The classifier sets may have com-
mon elements as the classification process is based on
component characteristics, with which it attempts to find
large group of components with common values. There will
be large no of components classified against a small number
of classifiers.

Searching for a component will be performed by exam-
ining the user preferences against the classifiers rather than
the actual components, something which will result in a fast
searching process. The threshold parameter value specifies
the similarity of a component with a classifier (that is the
number of perfectly matched characteristics).

4.2. Phase 2: Component Retrieval

In the component retrieval phase, user will search for a
specific component. First the user will enter the desired
characteristics of a component which he wants to retrieve
from the reuse repository, through an interface. Second the
user will set the matching threshold value (obviously the
lower the threshold value the more components will be re-
turned and higher the threshold value, exactly the compo-
nents that matches user entered characteristics will get re-
turned).

The System will encode the user request as a bit string and
will compare it against all classifiers that were discovered in
the classifier discovery phase. The closest match will signify
the “winning” classifier and the components that are classi-
fied under the winning classifier will get returned.

5. Genetic Algorithm for Identifying the
Classifiers

A dedicated Genetic Algorithm[5] was developed to
evolve candidate classifiers and select the optimal solution in
terms of number of components in the corresponding classes,
which works in discrete steps as follows:
1. Create a random population of 100 chromosomes (poten-
tial classifiers)
2. For every generation of genetic algorithm

2.1 Apply crossover operation to every pair of classifiers,
where each pair is randomly selected according to the
crossover probability

2.2 Apply mutation to a randomly selected classifier ac-
cording to the mutation probability
3. Perform component classification for each of the 100
classifiers:

a) Compare each classifier’s values of characteristics
with those of each component. If component is close
enough (determined by a threshold) to a classifier then as-
sign the component to the class represented by this classi-
fier.

b) Select the top 20 classifiers (chromosomes) in terms of
the number of assigned components. Then find the average
numbers of assigned components to 20 classifiers. This is

the average fitness of current generation.
c) If the average fitness of the current generation is

greater than that of the previous generation then create a
new population by selecting chromosomes according to
their fitness and repeat step 3. Otherwise do not create new
population and repeat the step 2

The above algorithm is repeated until a termination con-
dition is reached. In our case the algorithm terminates if no
improvement in the average fitness of the population is ob-
served for 100 generations. A very important parameter is
the value of threshold, which determines whether a compo-
nent belongs to a certain classifier. For example, a value of
40% means that at least 40% of the values of the classifier
characteristics are identical to those of a component. This
threshold value essentially determines the “success” level of
a classifier to gather a rich number of components in his
class.

6. Experimentation and Results
The first phase of the experiments was concerned with the

classification of pool of components. In the second phase we
investigate the retrieval of specific components.

6.1. Classification Phase

For the classification phase we created a randomly 1000
components, each comprising 36 bits. The results reported
are averages over 100 runs. The classification of the com-
ponents is based on the 9 characteristics as described in
section 4. The threshold parameter is of paramount impor-
tance to our method, since it is a measure of similarity be-
tween the component characteristics and the classifier
characteristics. We set the threshold value to assume the
values of 30%, 40%, 50%, 60%, 70% and 80% for com-
parison purposes. The value of 30% produced classifiers,
where each classified almost all of the available software
components. This denotes that the classifiers derived cannot
differentiate between the components. The threshold value
of 80% did not produce good results either, because each
classifier classified only between one and three components,
which is also undesirable as it leaves many components
unclassified.

The results for the threshold values of 40%, 50% and 60%
are listed in Table 1. The “Average” column denote the
average number of components classified by each classifier,
while “Not Classified”, denotes the number of unclassified
components. The scores of 50% are quite successful, since
there are no unclassified components and each classifier
includes almost half of the components (47%). Thus, in the
retrieval phase only half of the components need to be
searched. Moving along the same line, the value of 60% is
also satisfactory since each class contains a small number of
components (58 on average), but there is a significant
number of unclassified components. The threshold value of
40% did not perform at all as it classified almost all of the
components are classified by its classifiers.

 Computer Science and Engineering. 2011; 1(1): 15-21 19

6.2. Retrieval Phase

In the Retrieval phase testing, we created a 10 random
user requests searching for software components. Then the
threshold value is set from 40% to 70% at increments of 10%
as shown in Table2. We can observe that the 40% threshold
returned a richer number of components, but not all of them
were relevant to the user’s requirements as expected. The 50%
and 60% values retrieved less but more relevant components.
The 70% threshold returned results for some queries only but
it retrieved exact matching components for user’s request.

7. Graphs
7.1. Graph for Comparing the Search Effectiveness of
Various Classification Schemes

Search effectiveness refers to how well a given method
supports in finding relevant components in the repository. It
tells about the number of relevant items retrieved over the
total number of retrieved items.

The graph for comparing the search effectiveness of
various classification schemes is depicted below in figure 4.
The horizontal axis on the graph represents the list of various
existing classification schemes along with the intelligent
classification scheme. The no of data items are represented
along the vertical axis. The total data items retrieved are
shown in white colour and the coloured area indicates the
percentage of the relevant items among all the retrieved
items.
Explanation:

Comparing with existing classification techniques, the
integrated classification scheme performs well in retrieving
the most relevant components according to the user re-
quirements, but this scheme classifies components in the
repository using only few attributes. Whereas, our proposed
intelligent classification and retrieval system classifies the
components in a broad manner on the basis of both func-
tional and non-functional characteristics, which makes the
proposed system more efficient in nature in retrieving most
relevant components. The retrieved components working
performance is highly commendable when integrated in the
newly developing software systems, as the system supports
the retrieval of most relevant items matching the user re-

quirements.
The threshold value parameter which is important in the

Intelligent classification and retrieval technique will effec-
tively determine whether a component belongs to certain
classifier or not. For example, a value of 40% threshold
means that at least 40% of the values of the classifier char-
acteristics are identical to those of a component. Thus, the
selection of threshold value parameter will also plays a
prominent role in retrieving most relevant components
among the existing components.

Figure 5. Finding Most Relevant Components.

The graph representing the finding of most relevant
components is shown for the threshold values 40%, 50% and
60 % which marked the high performance results, in re-
trieving the most relevant components among all the com-
ponents but they retrieved very less components but all of
those matched with most of the user requirements.

7.2. Graph for Comparing the Search Time of Various
Classification Schemes

Search time is the amount of time spent by the reuse re-
pository system to locate the specific component in response
to the user request. The graph for comparing search time of
various classification schemes is shown in figure 5. The
horizontal axis on the graph represents the various existing
classification schemes along with the proposed scheme and
the vertical axis represents the total search time to retrieve
the components. The total data items retrieved are shown in
white colour and the coloured area indicates the search time
to retrieve those data items.

The intelligent classification and retrieval scheme uses a
genetic algorithm, this genetic algorithm attempts to dis-
cover the several different classifiers, each of which classi-
fies a set of homogeneous components in terms of charac-

20 P. Niranjan et al.: A Model Software Reuse Repository with an Intelligent Classification and Retrieval Technique

teristics.
Searching for a component will be performed by exam-

ining the user preferences against the classifiers rather than
the actual components this will result in a faster searching of
components. The graph in figure 5 shows the search time of
components in the proposed system. The graph showing the
intelligent classification and retrieval scheme search time
performs well for the threshold values of 50% and 60% with
successful outcome.

Figure 6. Search Time of Components.

8. Conclusion and Future Work
An effective software reuse repository software tool is

designed and successfully implemented with the proposed
intelligent classification and retrieval scheme. Our Classifi-
cation is based on small set of classifiers which are evolved
using the genetic algorithm. Each classifier evolved by the
genetic algorithm attempts to classify the large number of
software components according to the common characteris-
tics. Retrieval of the relevant components is performed by
comparing the user requirements with those of the classifiers.
Thus, comparing a component’s specification with only
those of the classifiers instead of the entire set of available
components in the repository will significantly save the
search time of the components. A threshold is also used
when evolving the classifiers, which determines the degree
(percentage) of similarity with a classifier that is required to
classify a component in a certain class. The threshold value
has been found to have a profound influence in both the
classifier’s design phase (with the GA) and the retrieval
phase.

Future work involved with this proposed intelligent
scheme is the multimedia presentation of the components.
Ranking of components that are returned by the system can
also be included as an enhancement to future work.

REFERENCES
[1] William.B. Frakes and Kyo Kang, “Software Reuse Research

Status and Future” IEEE transactions on Software Engineer-
ing, Vol. 31, No.7, July 2005.

[2] Ruben Prietzo-Diaz, “Implementing Faceted Classification
for Software Reuse”, Communication of the ACM, vol.34,
no.5 May 1991.

[3] Title: “Reuse Repository” Ewa stemposz, Alina stasiecka,
Kazimierz subieta Polish- Japanese Institute of Information
Technology, Wersaw.

[4] William B. Frakes and Thomas. P.Pole, “An Empirical Study
of Representation Methods for Reusable Software Compo-
nents”, IEEE Transactions on Software Engineering vol.20,
no.8, Aug. 1994, pp.617-630.

[5] D. E. Goldberg, “ Genetic Algorithms”, Addison- Wesley,
1989.

[6] Jeffrey S. Poulin and Kathryn P.Yglesias “Experiences with a
faceted Classification Scheme in a Large Reusable Software
Library (RSL)”, In The Seventh Annual International Com-
puter Software and Applications Conference (COMP-
SAC’93), 1993,pp.90-99.

[7] Specification, Design and Implementation of a Reuse Repo-
sitory, 31st annual international COMPSAC 2007, IEEE
Transactions on Software Engineering, 2007.

[8] Ruben Prieto-Diaz, “Implementing Faceted Classification for
Software Reuse” © 1990 IEEE, pp.300-304.

[9] P. Niranjan, C V Guru Rao“A Mock up tool for software
component Reuse Repository” IJSE, vol 1 , no 2, April
2010.

[10] Chao- Tsun Chang, William c. chu, Chung-shyan Liu, Hongji
Yang “A Formal Approach to Software Components Classi-
fication and Retrieval.

[11] Jain- Yun Nie, Francois Paradis, Jean Vaucher “ Using In-
formation Retrieval for Software”.

[12] R. Prieto-Diaz and P.Freeman, “Classifying Software for
Reuse”, IEEE Software 1987, Vol.4, No.1, pp.6-16.

[13] Juan Llorens, Antonio Amescua, Manuel Velasco “Software
Thesaurus: A Tool for Reusing Software objects”, 1996 IEEE
Transactions Proceedings of SAST.

[14] Aarthi Prasad, “AI- based Classification and Retrieval of
Reusable Software Components” 1993 IEEE Transactions on
Software Engineering.

[15] Achala Sharma, Daman Deep Kaur “Component Classifica-
tion and Retrieval using Data Mining Techniques”, Pro-
ceedings of National Conference on challenges & opportuni-
ties in Information Technology (COIT 2007).

[16] Gerald Jones and Ruben Prieto-Diaz, “Building and Manag-
ing Software Libraries”, © 1998 IEEE, pp.228-236.

[17] Prieto-Diaz, Freeman, “Classifying Software for Reuse”,
IEEE Software, vol.4, mo.1, pp.6-16, 1997.

[18] Jung-eun cha, Young-jung yang, Mun-sub sung a,d Hang-gon
kim, “ Design and implementation of component repository
for supporting the component based development process
“ IEEE 2001 paper.

 Computer Science and Engineering. 2011; 1(1): 15-21 21

[19] Mang Youuxin, Mong Xianghai, Yang Weimin “Component
based Software Reuse Key Technology Research and De-
sign”, International Forum on Information Technology and
Applications, 2009.

[20] B.Jalender, Dr.A.Govardhan, Dr.P.Preamchand “Breaking

the Boundaries for Software Component Reuse Technology
“,International Journal of Computer Applications, Vol 13,
No.6, January 2011.

[21] Sarbijeet Singh, Sukhvinder Singh, Gurpreet Singh, “Reusa-
bility of the Software “ International Journal of Computer
Applications, Vol 7 , No.14, October 2010.

[22] Dr.C.V.Guru Rao, P.Niranjan “A Multilevel Representation
of Repository for Software Reuse “ , International Journal of
Computer Science and Information Security, Vol 9 , No 9 ,
September 2011.

