Kinetics in a Double Antibody Radioimmunoassay (RIA): Diffussion Control

C. Olivas Arroyo¹, J. L. Moreno Frigols^{2,3,*}

¹Servicio de Medicina Nuclear, Hospital La Fe, Valencia, Spain ²Departamento de Química Física, Facultad de Farmacia, Universidad de Valencia, Valencia, 46100, Spain ³Servicio de Medicina Nuclear, Hospital Clínico Universitario, Valencia, 46010, Spain

jose.l.moreno@uv.es

Abstract Competitive protein binding radioimmunoassay (CPB-RIA) is a principal method for quantifying serum C Peptide concentration. The accuracy of this method is critically dependent on factors that influence the reaction between anti-C Peptide antibody (P) with 125I-C Peptide (M). We studied the influence of initial concentration of M, ionic strength, and viscosity on the reaction between M and P. A kinetic model for the the reaction between. Such model adjusts satisfactorily to the results. Bi-exponential and irreversible kinetics is determined. The results of the viscosity analysis show clear negative influence on the direct reaction rate. The ionic strength shows scarce influence on equilibrium and negligible influence upon the rate constant, which suggests that the variation resulting from the effect of the glycerol addition is not due to the influence of the dielectric constant of the solutions used. The effect of temperature shows activation parameters similar to the viscous flow energy of water, which suggests that the reaction is diffusion-controlled. The value of ΔH° for the immucomplex formation is positive, as is the case with endothermic processes.

Keywords C Peptide, Antibody, Kinetics, Temperature, Viscosity, Ionic Strength, Diffusive Control

1. Introduction

C peptide is a polypeptide (31 amino acid residues) with a relative molecular mass (RMM) of 3018 Dalton. It is part of the proinsulin molecule and has the following structure: B chain - Arg - Arg - C-peptide - Lys - Arg - A chain.

In the pancreatic β -cells, proinsulin is enzymatically cleaved into insulin (A chain and B chain) and the C-peptide molecule. Both are simultaneously secreted in equimolar concentrations into blood. Insulin has a rather short half-life -5 minutes- while the half-life of C peptide is 30 minutes. Therefore, the molar ratio between C peptide and insulin in peripheral blood ranges between 3:1 and 5:1. The main degradation site for C peptide is the kidney. Consequently, patients with renal dysfunction have a longer half-life and higher basal values. Among other reasons, its determination is indicated in the study of pancreatic reserves in individuals with diabetes and pancreatectomy patients, and in insulinoma diagnosis.

Radioimmunoassay (RIA) is used in C Peptide assessment. It is a competitive technique in which the antigen molecule to be determined (Ag) competes with a radioactive tracer (labelled antigen: Ag*) in order to bind to a specific antibody

* Corresponding author:

jose.l.moreno@uv.es (J. L. Moreno Frigols)

Published online at http://journal.sapub.org/chemistry

(Ab) that binds to both antigens until equilibrium is reached, in which circumstance both immunocomplexes -the radioactive one and the non-radioactive or "cold" one- can coexist :

 $Ag + Ab + Ag^* \leftrightarrow (Ag - Ab) + (Ag - Ab)^*$

By keeping tracer (Ag*) and antibody (Ab) quantities constant, the higher or lower proportion in the immunocomplexes formed will solely depend on the amount of cold antigen (Ag) in the sample to be analysed.

If the tracer behaves similarly when bound or in solution, then the separation of the bound and free fractions is essential. In our case, separation is accomplished by fixation on a second antibody coated on a plastic bead.

Kinetics and equilibrium in antigen-antibody reactions are determining factors of the rapidity, analytical range, and reliability of immunoanalytical techniques. Likewise, the search for more reliable faster immunoassays is one of the main development areas in this field. This has caused the overall process to be progressively automated, from sample handling to statistical assessment of results. Yet, despite the large number of immunoanalytical systems developed in recent years, very few of them include kinetic analysis.

A diffusion-controlled process must meet some typical requirements such as a considerable reaction rate decrease when medium viscosity is greater, and scarce temperature influence with a reduced energy demand with regards activation, this causing activation enthalpy values to be the same order as the solvent's viscous flow energy (5000 cal/mol for

Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

water). The influence of diffusion on the speed of the antigen-antibody reaction has been treated by several authors [1-7]. This paper focuses on the kinetics of the reactions between C Peptide and its specific antibodies. The target is to characterise radioimmunoanalytical reactions and in particular those used in C Peptide measurement, based on the following steps:

1- Obtaining integrated rate equations for the overall process.

2- Setting up the possible diffusion control through the study of temperature influence upon reaction kinetics

3- As a complementary factor, the influence of viscosity on such process is analysed, which requires it to be studied in media with different compositions.

4- The media have different dielectric constants which -should the reaction occur between charged species- would give way to an effect that would overlap with that of viscosity. In order to indirectly estimate this potential influence, reactions are studied in media with different ionic strength.

This study allows us to ascertain the following:

- The reversibility or irreversibility of the reaction.

- The presence of one or more types of binding sites[8-10]. In this case, it is not always possible to determine whether such binding sites are found together in the same antibody molecule or in different molecules.

2. General Model

Symbols: P = antibody in solution, M = ¹²⁵Iodine-labelled antigen (C Peptide), J = second antibody coated on plastic beads, P₀, M₀= initial concentrations in arbitrary units, PM, PMJ = radioactive immunocomplexes, (P), (M), (PM), (PMJ) = concentrations in mol / L, (J) = concentration of vacant biding sites in antibody J, Z = cpm activity in each tube after reaction (Z=Z_{sp}+Z₀) The tables include a sub-index indicating the experience number. Z_{sp} = cpm activity from the radioactive immunocomplex, corresponds to specific binding. Z_0 = value of Z at t=0, corresponds to non-specific binding, Z_{∞} = value of Z obtained at t infinity, Z_e = value of Z at equilibrium ($Z_e=Z_{\infty}$ - Z_0), t = time in minutes, k = rate constant, K = equilibrium constant, r = correlation coefficient

It can be assumed that the global reaction is:

$$\begin{array}{c} k_{\rm D} \\ P + M + J \leftrightarrow PM \\ k_{\rm r} \end{array}$$

which can be explained by the following reaction mechanism:

$$P + M \leftrightarrow P \cdots M (Slow)$$

$$k_{.1}$$

$$k_{2}$$

$$P \cdots M \leftrightarrow PM (Quick)$$

$$k_{.2}$$

$$k_{3}$$

$$PM + J \leftrightarrow PMJ (Quick)$$

$$k_{3}$$

where the first stage consists of the diffusion approxima-

tion of the reacting molecules until the encounter complex (P····M) is formed. It is deemed reversible, since the encounter complex can be dissociated, but this is not very likely due to the cell effect. At the second stage, the intermediate immunocomplex (PM) is formed, and the third stage sees the binding of the immunocomplex to the second antibody immobilised on a bead.

The rate equation previously deducted for the overall process[11], and applied to a system that does not contain unlabeled antigen ($Q_0 = 0$) is:

$$Z = \frac{P_{01}M_0}{M_0 K_1} [1 - \exp - tk_{D1} M_0 K_1] + \frac{P_{02}M_0}{M_0 K_2} [1 - \exp - tk_{D2} M_0 K_2] Z_0$$
(1)

Parameters K_1 and K_2 represent equilibrium constants. Likewise, k_{D1} and k_{D2} are rate constants.

In the equations that appear in results, the term Z_0 is taken as proportional to M_0 .

Equilibrium equations are obtained from rate equations by making time tend to infinity. By doing this, exponential terms containing such a variable disappear, and by sub-tracting the unspecific activity ($Z_e=Z_{\infty}-Z_0$).

3. Matherial and Methods

3.1. Reagents

The reagents used belong to the RIA-coat[®] C-Peptid kit, manufactured by Byk-Sangtec Diagnostica GMBH & Co.KG. The kit includes:

- A polyclonal antiserum obtained by immunising goats with synthetic human C-peptide

- A second monoclonal antibody (mouse anti goat) coated on a plastic bead

- ¹²⁵I-C-peptide: a vial with lyophilised labelled C peptide

3.2. Instrumentation

LKB Gammamaster Automatic Gamma Counter, fitted with a computer with a Riacalc programme.

3.3. Computer Programme

Statistica (Copyright© StatSoft, Inc.1993). It allows the fitting of experimental data using specific non-linear regression equations, and the production of the corresponding tables. As a statistical criterion for equation selection in the different models, AIC (Akaike's Information Criterion) was observed; it can be expressed as follows: AIC = $N \cdot lnS + 2 \cdot P$, where N is the number of points, S the addition of the squares of the residuals, and P the number of parameters in the equation. The equation with the lowest AIC in the fitting must be chosen. That equation only is indicated in Results.

3.4. Experimental Procedure

Tube series were prepared with 100 μ L of each of the different labelled antigen solutions, together with 100 μ L of antibody solution and a bead. They were left to react in agi-

tation for different time periods, after which they were washed, eliminating the liquid and leaving the bead in order to measure its radioactivity on the counter. One tube from each series was left to react for 24 hours, this being considered infinite time and therefore corresponding to the value at equilibrium. The added total radioactivity was measured as an indirect measurement of the initial concentration of the labelled antigen. 48 experiences were performed, arranged as follows:

Experiences 1-16: Study of the influence of temperature upon reaction kinetics and equilibrium. In this case, four series were configured (one for each temperature) where 100 μ L 125I-C Peptide was left to react until the corresponding time was reached.

Experiences 17-32: Study of the influence of viscosity; this required each tube to be added 100 μ L of the different 125I-C Peptide solutions prepared with glycerol.

Experiences 33-48: The procedure followed in the viscosity study was also observed in the ionic strength influence analysis, but labelled C Peptide solutions were prepared with sodium chloride.

4. Results and Discussion

4.1. Influence of Temperature (T) and Labeled C Peptide Initial Concentration (M₀) on Reaction Kinetics and Equilibrium

This was studied in experiments 1-16; their results can be seen in Table 1.

Table 1 shows that, for a given M value, if T increases, the amount of radioactive immunocomplex also increases for all times, except for values of $t = \infty$. The data in Table 1 have been fitted to Eq 2. This equation is obtained from Eq 1 by expressing K_1 and K^2 parameters trhoug the van t'Hoff' equation, and the k_{01} and k_{02} trhoug Eyring's. Parameters c and f include the ratios of enthalpy and the constant R.

$$z = \frac{P_{01}M_0}{M_0C_1 \exp{\frac{-c_1}{T}}} [1 - \exp{-tF_1T} \exp{\frac{-f_1}{T}} [M_0 \ C_1 \exp{\frac{-c_1}{T}}]]$$

$$\frac{P_{02}M_0}{M_0C_2 \exp{\frac{-c_2}{T}}} [1 - \exp{-tF_2T} \exp{\frac{-f_2}{T}} [M_0 \ C_2 \exp{\frac{-c_2}{T}}]]$$
(2)

 pM_0

These are its parameters and coefficient:

$$\begin{split} P &= 30170 \quad C_1 = 18145 \quad c_1 = -712 \quad F_1 \cdot 10^4 = 1915 \quad f_1 = 1915 \\ P_{02} = 185580 \quad C_2 = 126335 \quad c_2 = -192,6 \quad F_2 \cdot 10^6 = 0,012 \quad f_2 = 2114 \\ p &= 0,000598 \quad r = 0,997 \quad AIC = 1788 \end{split}$$

Eq 2 shows that, by increasing the temperature, the apparent rate constants and the dissociation equilibrium constants are increased. From parameters c_1 , c_2 , f_1 and f_2 in the equation, values can be obtained for the dissociation reaction enthalpies: ΔH^0_1 = -1424 cal·mol⁻¹ and ΔH^0_2 =-385.2 cal·mol⁻¹, and for the activation enthalpies: ΔH^{\ddagger}_1 = 3830 cal·mol⁻¹ and ΔH^{\ddagger}_2 = 4228 cal·mol⁻¹ respectively. Since dissociation en-

thalpies are negative, formation ones will be positive, as is the case with endothermic processes. Activation enthalpies have the same magnitude order as the viscous flow energy of water, this being a feature of diffusion-controlled processes.

The consistency between the observed values (Table 1) and those calculated by Eq. 2 is shown in figure 1.

Table 1. Influence of T and M₀

	t (min)							M ₀	Т
	0	10	30	60	90	120	8	(cpnA)	(K)
Z_1	129	688	1740	2817	4264	5601	13018	16274	278
Z ₂ 22	0	453	1217	129	688	4339	9544	12590	278
Z ₃ 33	33	340	856	0	453	2400	6310	8305	278
Z ₄ 44	0	121	416	73	929	1231	2983	3739	278
Z ₅ 55	129	759	1859	3802	5524	7382	14445	16274	286
Z ₆ 66	0	489	1526	2956	4237	5704	10399	12590	286
Z ₇ 77	33	376	1003	1793	2630	3551	6928	8305	286
Z ₈ 88	0	104	518	870	1326	1573	3108	3739	286
Z ₉ 99	129	840	2504	3810	6304	8089	14055	16274	291
Z ₁₀ 100	0	652	1944	3274	4822	6055	10602	12590	291
Z ₁₁ 1111	33	479	1370	1949	2806	3714	7333	8305	291
Z ₁₂ 1212	0	175	629	974	1349	1692	3233	3739	291
Z ₁₃ 1313	129	1079	3041	5242	6997	8352	13687	16274	301
Z ₁₄ 1414	0	771	2220	4228	5266	6346	10625	12590	301
Z ₁₅ 1515	33	506	1216	2440	3408	4126	6998	8305	301
Z ₁₆ 616	0	189	675	1183	1666	2007	3332	3739	301
16000 12000 8000 P 200 4000 0 0 0 0 0 0 0 0 0 0 0 0									

Predicted values **Figure 1.** Observed values (Table 1) vs. Predicted values (Eq 2). Observed values = -44.09 + 1.0054 · Predicted values, r = 0.997

6000

2000

-2000

$$Z_{\bullet} = \frac{30170 \text{ M}_{0}}{\text{M}_{0} \text{ 18145 exp} \frac{712}{\text{T}}} \frac{185580 \text{ M}_{0}}{\text{M}_{0} \text{ 126335 exp} \frac{192.6}{\text{T}}} (r = 0.995)$$
(3)

10000

14000

Equilibrium results at infinite time are fitted to Eq. 5b,

obtained by making t tend to infinity in Eq 3

4.2. Influence of Viscosity (η) and Labeled C Peptide Initial Concentration (M₀) on Reaction Kinetics and Equilibrium

This was studied in experiments 17-32; their results can be seen in Table 2.

			M_0	η					
	0	20	40	80	120	x	(cpm)	(mPa·s)	
Z17	393	680	1054	2095	2850	6378	8078	1,37	
Z18	214	385	1399	2258	2315	5090	6550	1,37	
Z19	174	350	773	1293	1414	3050	4726	1,37	
Z20	506	642	622	968	975	1904	2613	1,37	
Z21	247	457	769	1706	2882	6346	8078	1,41	
Z22	305	480	776	1429	3093	4937	6550	1,41	
Z23	127	243	927	1457	1535	3174	4726	1,41	
Z24	173	257	469	795	902	1902	2613	1,41	
Z25	592	748	9330	1590	2042	6065	8078	1,51	
Z26	241	390	651	1229	2157	5378	6550	1,51	
Z27	299	404	498	991	1393	3561	4726	1,51	
Z28	120	195	753	999	965	2164	2613	1,51	
Z29	200	341	757	1568	1884	6009	8078	1,62	
Z30	570	663	705	1233	1589	4410	6550	1,62	
Z31	235	336	411	845	1599	3719	4726	1,62	
Z32	292	356	319	609	840	2082	2613	1,62	

Table 2. Influence of η and M0

Table 2 shows that, for a given M value, if viscosity increases, the amount of radioactive immunocomplex decreases for all times. This could be put down to a lag in the approximation stage of the reacting species. The data in the table are fitted to Eq 4.

$$Z = a M_0 [1 - exp - tk'_{D_1}] f M_0 [1 - exp - t - \frac{k_{D_2}}{e'}] p' M_0$$
(4)

Equation 4 is obtained from Eq 1 by expressing k_{01} and k_{02} parameters trhoug the Kramers equation[12] and simplifying.

Its parameters and coefficients are as follows:

 $a=0,425 \quad k'_{\rm Dl}{=}\;0,00388 \quad f=0,306 \quad k'_{\rm D2}{=}\;0,00062$

In the equation, viscosity reduces the direct reaction rate, initially determined by the equation 5:

$$v_{D0} = \frac{dZ}{dt} = aM_0 k_{D1} - \frac{f M_0 k_{D_2}}{e'}$$
 (5)

The decrease only affects one of the binding site. The consistency between the observed values (Table 2)

and those calculated by Eq 4 is shown in Figure 2.

Figure 2. Observed values (Table 2) vs. Predicted values (Eq 4). Observed values = 48.605 + 0.98391 · Predicted values, r = 0.990

Equilibrium results at infinite time are fitted to Eq 6 otained by making t tend to infinity in Eq 5

$$Ze = 0,731 \cdot M_0$$
 (r = 0,986) (6)

The defective fitting obtained could be caused by the reaction not reaching equilibrium under the experimental conditions, due to the greater slowness at which it is produced as a consequence of the increased viscosity.

4.3. Influence of Ionic Strength (I) and Labeled C Peptide Initial Concentration (M₀) on Reaction Kinetics and Equilibrium

This was studied in experiments 33-48; their results can be seen in Table 3.

			M_0	Ι					
	0	20	40	80	120	8	(cpm)	(mol/L)	
Z33	555	2205	3138	4858	5996	7610	8911	0,053	
Z34	347	1612	3020	4133	4764	6107	6689	0,053	
Z35	264	1232	2143	2863	3333	3935	4625	0,053	
Z36	198	733	1527	2046	1912	2661	2919	0,053	
Z37	535	2022	3253	4747	5578	8213	8911	0,105	
Z38	561	1695	2647	3847	4768	6018	6689	0,105	
Z39	158	1146	2033	2697	3473	4668	4625	0,105	
Z40	256	833	1335	1789	2026	2523	2919	0,105	
Z41	444	2194	3615	5270	5715	7655	8911	0,158	
Z42	382	1768	2495	3615	4351	6397	6689	0,158	
Z43	409	1364	1855	2664	3262	4406	4625	0,158	
Z44	203	637	868	1238	1577	2122	2919	0,158	
Z45	539	1924	3116	4507	5456	7571	8911	0,211	
Z46	376	1477	2635	3569	4048	6075	6689	0,211	
Z47	374	1121	1602	2483	2967	4243	4625	0,211	
Z48	317	858	1001	1685	1892	2833	2919	0,211	

Table 3. Influence of I and M0

As can be seen in Table 3, the influence of the ionic

strength is little relevant, since –at increased values- the immunocomplex amount does not display a definite trend. The table data are fitted to Eq 7.

$$Z = \frac{a M_0}{\exp - u' I^{0.5}} [1 - \exp - tk'_{D1}] \frac{f M_0}{\exp - w' I^{0.5}} [1 - \exp - tk'_{D2}] p' M_0$$
(7)

Equation 7 is obtained from Eq 1 by expressing k01 and k02 parameters trhoug the Debye-Hückel equation[13].

Its parameters and coefficients are:

a= 0.801 u = -0.544
$$k'_{D1}$$
 = 0.01590 f = 0.0967
w= 2.04 k'D2=0.00173 P = 0.0597 R = 0.995
AIC = 1469

The effect of the ionic strength suggests that the reacting species are electrically charged, even though such influence is negligible and only seen in equilibrium parameters. The product of the charges obtained from u' annd w' parameters is -0.232 for one of the binding sites and 0.870 for the other, which indicates that the reacting species are of a different sign for the first one and of the same sign for the second one.

The consistency between the observed values (Table 3) and those calculated by Eq 7 is shown in Figure 3.

Figure 3. Observed values (Table 3) vs. Predicted values (Eq 7). Observed values = 63.034 + 0.98493 · Predicted values, r = 0.995

The results at infinite time, corresponding to the equilibrium, fits to the Eq 8, obtained by making t tend to infinity in Eq 7.

$$Z_{e} = \frac{0.801 M_{0}}{\exp 0.544 I^{0.5}} \frac{0.0967 M_{0}}{\exp - 2.04 I^{0.5}} r = 0.990$$
(8)

5. Conclusions

1. An apparently irreversible biexponential behaviour is found, corresponding to the binding with two binding site types.

2. Temperature influence is in line with the behaviour foreseen by Eyring and van t'Hoff equations. Activation enthalpies: $\Delta H_1^{\ddagger} = 3830 \text{ cal} \cdot \text{mol}^{-1} \text{ and } \Delta H_2^{\ddagger} = 4228 \text{ cal} \cdot \text{mol}^{-1}$, and disociation enthalpies: $\Delta H_1^{\ 0} = -1424 \text{ cal} \cdot \text{mol}^{-1}$ and $\Delta H_2^{\ 0} = -385.2 \text{ cal} \cdot \text{mol}^{-1}$. Since dissociation enthalpies are negative, formation ones will be positive, as is the case with endothermic processes.

3. As to viscosity influence, viscosity causes the immunocomplex amount to decrease for all times. This is explained by the lag in the approximation stage of the reacting species. Equilibrium is not affected.

4. Ionic strength influence is in line with the behaviour determined by the Debye-Hückel equation. The effects of the increased ionic strength on the apparent rate constants are negligible, while the effects on the dissociation equilibrium constants lead to an increase in the first one and a decrease in the second one. The value of the product of the charges ($z_1 \cdot z_2$) for the first binding site is -0.232 and 0.870 for the second one.

5. Since the effect of the ionic strength is negligible, kinetic variations due to the different glycerol concentrations used do not seem to result from the influence of the dielectric constants of such solutions, and so they could be due to viscosity only.

6. The above conclusions, together with the fact that the activation enthalpies obtained are of the same magnitude order as the viscous flow energy of water (\approx 5000 cal mol⁻¹) point to diffusion control for these processes.

7. Equilibrium data do not allow us to discriminate between one and two binding site models. However, discrimination between both models is possible using kinetic data.

REFERENCES

- Nygren, H., Werthen, M. and Stenberg, 1988, Kinetics of antibody binding to solid-phase-immobilised antigen. Effect of diffusion rate limitation and steric interaction. Journal of Immunological Methods., 101, 63-71.
- [2] Nygren, H. and Stenberg, M., 1989, Immunochemistry at interfaces. Immunology, 66, 321-327.
- [3] Stenberg, M. and Stiblert, L., 1986, External diffusion in Solid-Phase Immunoassays. J. Theor. Biol., 120, 129-140.
- [4] Stenberg, M. and Nygren, H., 1988, Kinetics of antigen-antibody reactions at solid-liquid interfaces. J. Inmunol. Methods., 113, 3-15.
- [5] Stenberg, M., Werthen, .M, Theander, S. and Nygren, H., A diffusion limited reaction theory for a microtiter plate assay Journal of Immunological Methods, 112, 23-29.
- [6] Raman, C.S. et al, 1992, Diffusion-limited rates for monoclonal antibody binding to cytochrome c, Biochemistry 31(42), 10370-9.
- [7] Xavier, K. and Willson, R. C., 1998, Association and Dissociation Kinetics of Anti-Hen Egg Lysozime Monoclonal Antibodies HyHEL-5 and HyHEL-10, Biophysical Journal, 74, 2036 – 2045.
- [8] Weber, G., The binding of small molecules to proteines, in: Molecular Biophysics, eds. B. Pullman and M.Weissblut (Academic Press, New York) p. 369
- [9] Motulsky, H.J.and Mahan, L., 1984, The kinetics of competitive radioligand binding predicted by the law of mass action. Mol.Pharmacol., 25,1.
- [10] Karlsson, M. Neil A., 1988, Estimation of binding parameters by kinetic data analysis: Differentiation between one and two binding sites. Eur. J. of Pharm., 148, 115-125.

- [11] Kusnezow, W., Syagailo, Y.V., Rüffer, S., Klenin, K., Sebald, W., Hoheisell, J.D. et al, 2006, Kinetics of anti gen binding to antibody microspots: Strong limitation by mass transport to the surface. Proteomics, 6, 794- 803
- [12] McCammon JA, 2009, Darwinian biophysics: Electrostatics and evolution in the kinetics of molecular binding. Proc Natl Acad Sci USA, 106:7683-7684.
- [13] McCammon, J.A., 2011, Gated Diffusion-controlled Reactions, BMC Biophysics, 4 (4)
- [14] Olivas, C., Duart, M.J..Moreno, J.L., 2002, J Immunoassay & Immunochemistry, 23 (4), 407- 428.
- [15] Kramers, H.A., 1940, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 284-304).
- [16] Atkins, P.W. "Physical Chemistry".Oxford University Press (1983).