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Abstract  Modern DNA sequencing instruments are able to generate huge amounts of genomic data. Those huge 

volumes of data require effective storage, fast transmission, provision of quick access to any record, and superior 

functionality. Data storage costs have an appreciable proportion of total cost in the creation and analysis of DNA sequences. 

In particular, the increase in the DNA sequences is highly manageable due to a tremendous increase in the disk storage 

capacity. Standard compression techniques failed to compress these sequences. Recently, new algorithms have been 

introduced specifically for this purpose. In this paper, we comparatively survey the main ideas and results of lossless 

compression algorithms that have been developed for DNA sequences. 
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1. Introduction 

DNA strings are composed of an alphabet of four 

characters: A, T, G, and C. Each three letter sub-strings 

within the DNA sequences are called codons (e.g. AGC and 

GCT). There are 64 recognized codons. These produce 20 

different amino acids because different codons can produce 

the same amino acid[1]. An organism has in each one of its 

cells the same DNA sequences making up the individual’s 

genome, which for higher life forms are organized in many 

chromosomes[2]. In a human DNA structure there are so 

many unknown nucleotides. These unknown nucleotides are 

represented by N (space) so, the human genome structure 

consists of five characters A, C, G, T, and N[3].  

Some characteristics of DNA sequences show that they 

are not random sequences. If these sequences were totally 

random, the most efficient and logical way to store them 

would be using two bits per base. However, DNA is used for 

the expression of proteins in living organisms, and thus must 

contain some logical organization[4]. There are many 

repeats within a given DNA sequence (e.g. AAACGT), 

which may occur more than once in a given DNA sequence. 

However, there may exist an approximate repeat of 

AAACGT in this DNA sequence (e.g. AAACGG and 

ACGCGT). In DNA A and T are complements of each other. 

So do G and C. The complement of the DNA sequence 

AAACGT would be TTTGCA. If we then reversed 

TTTGCA we would get ACGTTT. ACGTTT is defined as 

being the reverse complement or "palindrome" of AAACGT.  
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DNA sequences within the same species are both large 

and highly repetitive. Consider that only approximately   

0.1% of the 3GB human genome is specific; the rest is 

common to all humans[5]. 

The development of new DNA sequencing technologies, 

such as next-generation sequencing (NGS) and single 

molecule sequencing, has enabled the research of genomics 

and functional genomics to advance to new levels[6, 7]. Due 

to the dramatic reduction of sequencing cost and increase of 

sequencing efficiency, these new high-throughput 

sequencing technologies have led to a large number of whole 

genome DNA sequencing projects. Some of these projects, 

such as the Genome 10K project, take advantage of the 

improved sequencing speeds and costs to obtain genomes of 

species that are nowadays un-sequenced. Still other projects 

focus on re-sequencing, where individual genomes from a 

given species are sequenced to understand variation between 

individuals. Examples are the 1000 Genomes project for 

humans and the 1001 Genomes project for the plant 

Arabidopsis thaliana[8]. The size of the genomes varies 

wildly in range; viruses may have only few thousand 

symbols, bacteria millions of symbols, humans about 3 

billion and some amphibian species have even 120 billion 

bases[2]. 

Sequencing labs submit their data to big archival databases 

such as GenBank at the National Center for Biotechnology 

Information (NCBI)[9], the European Bioinformatics 

Institute EMBL database[10], the DNA Data Bank of Japan 

(DDBJ)[11], the Short Read Archive (SRA)[12], the Gene 

Expression Omnibus (GEO)[13], and the microarray 

database Array Express[14]. These databases maintain, 

organize, and distribute the sequencing data. The three 

partners (GenBank, DDBJ, and EMBL Bank) of the 

International Nucleotide Sequence Database Collaboration 
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(INSDC) set out to capture, preserve, and present the 

permanent scientific record for nucleic acid sequencing and 

associated information[15, 16]. Records in these databases 

are synchronized according to guidelines from the INSDC 

[17], which assures that each database contains a copy of the 

others. 

Collecting and understanding genomic data for all 

organisms and their species has become the corner stone of 

modern life science research. In basic research, genomics 

data leads to better understanding of the cellular functions 

and organism evolution[18]. In biomedical applications, it is 

used for studying the molecular and genetic basis of diseases 

and their variations, for discovering and designing modern 

therapeutics as well as for developing modern diagnostic and 

prognostic tools[19]. In agriculture and food studies, it is 

used to help breed better species of plants and livestock as 

well as for studying pathogen interactions[20, 21]. 

The assembled sequences from the sequencing projects 

can range from terabytes to petabytes in size[8]. 

Approximately 154,192,921,011 bases (154.2 billion) from 

167,295,840 (167.3 million) reported sequences were there 

in the GenBank database in August 2013[22], the database 

size getting two or three times bigger annually. Therefore 

efficient lossless compression techniques and data structures 

to efficiently store, access, communicate, and search these 

large datasets are necessary. 

The standard compression techniques cannot compress the 

biological sequences well. These algorithms do not use 

special structures of biological sequences. Recently, several 

algorithms have been proposed for the compression of DNA 

sequences based on DNA sequence special structures.  

Grümbach and Tahi in[23] propose two modes for the 

compression of DNA sequences: 

● Horizontal mode: one is given a biological sequence, 

which is compressed by making use of information 

contained only in the sequence, typically by making 

reference only to its substrings. Evaluation of compression 

methods is usually performed in this mode. 

● Vertical mode: One is given a set of biological 

sequences, and each sequence is compressed by making use 

of information contained in the entire set, typically the 

substrings of the set. It may lead to an organization of the 

data related similarities between the species. 

In the following sections we will discuss the algorithms 

for compression of DNA sequences in the two modes. 

There have been recent publications by Giancarlo et al.[24] 

and Nalbantoglu et al.[25], which also examine some of the 

literature reviewed here. However, the papers take somewhat 

different approaches to the literature. Giancarlo et al. 

examine the various problems of bioinformatics and describe 

compression tools that have been used to address these 

problems. Nalbantoglu et al. examine the different concepts 

in compression and look at how these concepts can be used 

to understand and resolve issues in computational biology 

and bioinformatics.  

In this paper we survey the main issues and results of 

lossless compression algorithms developed for DNA 

sequences with a somewhat comparative view. The current 

paper would be beneficial to individuals interested in DNA 

compression tools for keeping up on their field and may be 

most useful for those who are not experts in this field. 

The content of the paper is organized as follows: In section 

2 we report the general compression algorithms and its 

performance with DNA sequences. In section 3 we present 

the horizontal mode of special algorithms for DNA 

compression and its performance, while the vertical mode is 

presented in section 4. Finally, in section 5, we conclude 

several research ideas to be explored further relating to DNA 

sequences compression. 

2. Standard Algorithms for DNA 
Compression 

The compression of a DNA sequence is a difficult task for 

general compression algorithms because these algorithms 

are designed mainly for English text compression, while the 

regularities in DNA sequences are very small. 

DNA sequences contain only four bases {A, C, T, G}. 

Thus, each base (symbol) can be represented by two bits. 

However, the standard text compression tools, such as 

compress (Lempel–Ziv–Welch "LZW"), gzip (Lempel–Ziv 

"LZ" + Huffman) and bzip2 (Burrows–Wheeler transform 

"BWT" + Move-to-Front "MTF" + Huffman), cannot 

compress these DNA sequences[4]. Using standard 

benchmark data1, the average compression ratio is 2.185 bpb 

"bits per base" for compress, 2.271 bpb for gzip, and 2.138 

bpb for bzip2 except the sequence "HUMGHCSA", where 

the average compression ratio is 1.729 bpb[26]. 

Huffman’s code also fails badly on DNA sequences both 

in the static and adaptive model, because the probabilities of 

occurrence of the four symbols are not very different[27]. 

Prediction with Partial Match (PPM) cannot compress DNA 

sequences having less than two bits per symbol either[27]. 

On the other hand, arithmetic coding and Context Tree 

Weighting (CTW) are known to compress the DNA data 

well[27]. In spite of the good compression ratio, arithmetic 

coding and CTW have disadvantages, such as low 

decompression speed[28]. 

3. Algorithms for DNA Compression in 
Horizontal Mode 

This mode uses the information contained only in the 

sequence, typically by making reference only to its 

substrings. 

                                                             
1
 Most DNA compression algorithms use the standard benchmark data in[23]. 

These standard sequences, come from a variety of sources and include the 

complete genomes of two mitochondria (MPOMTCG, PANMTPACGA "also 

called MIPACGA"), two chloroplasts (CHNTXX and CHMPXX "also called 

MPOCPCG"), five sequences from humans (HUMDYSTROP, HUMGHCSA, 

HUMHBB, HUMHDABCD and HUMHPRTB), and finally the complete 

genome from two viruses (VACCG and HEHCMVCG "also called 

HS5HCMVCG"). 
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Most of the compression methods used today including 

DNA compression falls into the following categories:  

3.1. Substitutional Based Methods 

This algorithm compresses data by replacing long 

sequences by short pointer information to the same 

sequences in a dictionary. 

The first special purpose DNA compression algorithm is 

BioCompress developed by Grumbach and Tahi[23] in 1993. 

This technique is based on the sliding window algorithm LZ. 

First, it detects exact and reverse complement repeats in the 

DNA and stores it using 4-ary tree, and then it encodes them 

by the repeat length and the position of a previous repeat 

occurrence. For non-repeat regions, it is encoded by 2 bpb. 

The improved version, BioCompress 2[29] is similar to 

BioCompress, but uses order-2 arithmetic coding to encode 

non-repeat regions. The results showed that both algorithms 

compressed the standard benchmark data with an average 

compression ratio of 1.850 bpb for Biocompress and 1.783 

bpb for Biocompress 2, compared to the general-purpose 

algorithms compact and compress, which used more than 2 

bpb. 

The Cfact[30] is similar to Biocompress and uses a 

two-pass algorithm to search for the longest exact and 

reverse complement repeats. For this purpose, it builds the 

suffix tree of the sequence in the first pass and does the actual 

encoding using LZ in the second pass. Non-repeat regions 

are also encoded by 2 bpb. There are no compression results 

about this algorithm; therefore it is difficult to compare. The 

results may be similar to Biocompress, but they take more 

compression time, since Cfact uses two passes, and 

constructs a suffix tree. 

A similar substitution approach by Chen et al. is used in 

GenCompress[31], except the use of approximate repetitions. 

An inexact repeat subsequence is encoded by a pair of 

integers, as for BioCompress-2, and a list of edit operations 

for mutations. It exists in two variants: GenCompress-1, 

which uses the Hamming distance (only substitutions) for the 

repeats and GenCompress-2, which uses the edition distance 

(deletion, insertion and substitution) for the encoding of the 

repeats. While GenCompress obtains better compression 

ratios (with average 1.742 bpb - standard benchmark data) 

than BioCompress-2 and Cfact, it is not suitable for 

compressing large sequences. 

Chen et al. made further a modification of GenCompress 

that led to a two-pass algorithm DNACompress[32]. During 

the first pass, GenCompress finds all approximate repeats 

including complementary palindromes, using specific 

software called PatternHunter[33]. Then the approximate 

repeats and the non-repeat regions are encoded using the LZ 

compression scheme. DNACompress produces a slightly 

better compression ratio (with average 1.725 bpb - standard 

benchmark data) with faster compression than GenCompress 

and CTW + LZ algorithms. DNACompress was able to deal 

with large sequences (e.g. E. coli with about 4.6 Megabases) 

in about a minute, where GenCompress required nearly 

about half an hour.  

Searching for approximate repeats takes a long time and 

requires a large amount of memory. For this reason Manzini 

and Rastero in DNA-X algorithm[34] found it natural to 

investigate how much compression they can achieve 

working only with exact and reverse complement repeats. It 

is a single-pass algorithm and operates in a so called LZ77 

manner. The algorithm only encodes exact repeats, but in 

designing the code words that represent exact repeats they 

use the knowledge that some of these exact repeats are 

“fragments” of larger approximate repeats. Like most of the 

other methods, this technique also uses fall back mechanisms 

for the regions where matching fails, in this case 

finite-context arithmetic coding of order-2 (DNA2) or 

order-3 (DNA3)[35]. This algorithm is faster than any other 

algorithm and achieves a compression ratio very close to the 

best DNA compressors. The algorithm is memory efficient 

and occupies small space, which leads to the compression of 

hundreds of megabytes.  

Lee et al. introduced a DNAC algorithm in 2004[36] as an 

update of the Cfact algorithm, but it works in four phases: 

During the first phase, it builds a suffix tree to locate exact 

repeats. During the second phase, all exact repeats are 

extended into approximate repeats by dynamic programming. 

In the third phase, it extracts the optimal non-overlapping 

repeats from the overlapping ones, and in the last phase, it 

uses the Fibonacci encoding method to encode the repeats in 

a self-delimited way. The authors compared experimental 

results with the GenCompress algorithm, since the 

GenCompress outperforms the Cfact algorithm and shows 

that the DNAC algorithm outperforms the GenCompress 

algorithm by several orders of magnitude. Moreover, it can 

be used to compress long sequences with millions bases or 

more. 

Behzadi and Le Fessant in DNAPack[4] found a better set 

of repeats than those found by GenCompress and 

DNACompress by using dynamic programming instead of 

greedy approaches as others do. It uses the Hamming 

distance (only substitutions) for the repeats and inverted 

repeats. Non-repeat regions are encoded by the best choice 

from an order-2 arithmetic coding, context tree weighting, 

and naive 2 bits per symbol methods. DNAPack consistently 

performed better than the Biocompress-2, GenCompress, 

CTW+LZ and DNA Compress in terms of average 

compression ratio (1.714 bpb - standard benchmark data). It 

is expected that the algorithm will be slow due to the 

expensive calculation, and will not be suitable for long 

sequences. 

3.2. Statistical Based Methods 

There are many statistical methods for DNA compression, 

such as CDNA, Approximate Repeats Model (ARM), 

expert-Model (XM), and the finite-context model algorithm 

by replacing a more popular symbol by a shorter code. 

Loewenstern and Yianilos introduced the first algorithm 

to combine statistical compression with approximate repeat 
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for DNA compression called CDNA algorithm[37].  

It is based on the probability distribution of each symbol 

that is obtained by approximate partial matches from history. 

Each approximate match is applied to a previous 

subsequence having a small Hamming distance to the 

context preceding the symbol to be encoded. Predictions are 

combined using a set of weights, which are learnt adaptively. 

The ARM algorithm is also a pure statistical DNA 

compressor proposed by Allison et al. in 1998[38] that forms 

the probability of a subsequence by summing the 

probabilities over all explanations of how the subsequence is 

generated. The ARM and CDNA algorithms yield 

significantly better compression ratios than those in the 

substitutional classes and can also produce information 

content sequences. 

The last pure statistical DNA compressor is the XM 

algorithm introduced by Cao et al. in 2007[39], which relies 

on a mixture of experts for providing symbol by symbol 

probability estimates which are then used for driving an 

arithmetic encoder. The algorithm comprises three types of 

decision-support systems: (1) order-2 Markov models; (2) 

order-1 context Markov models, i.e., Markov models that use 

statistical information only of a recent past (typically, the 

512 previous symbols); (3) the copy expert that considers the 

next symbol as part of a copied region from a particular 

offset. The probability estimates provided by the set of 

experts are then combined using Bayesian averaging and 

sent to the arithmetic encoder. The compression results of 

XM are excellent (average compression ratio 1.714 bpb - 

standard benchmark data).  

All these algorithms are computationally intensive, which 

makes them practical only for compressing small sequences. 

Armando et al. in[35] provide a finite-context model2 for 

DNA compression, which is based on two finite-context 

models of different orders that compete for encoding the 

sequence. In this model several aspects have been addressed, 

such as the inclusion of mechanisms for handling inverted 

repeats and the use of multiple finite-context models that 

compete for encoding the data. This algorithm provides 

significant results, although not as expressive as those 

provided by methods such as NML-1[2] or XM[39]. 

Nevertheless, the experimental results show that this 

approach can outperform methods of similar computational 

complexity, such as the DNA3 coding method[34]. No doubt, 

this algorithm has proved to give good returns in terms of 

compression gains, but normally at the cost of long 

compression times. 

3.3. Substitutional and Statistical Based Methods 

Several DNA compression algorithms combine 

substitution and statistical styles. An inexact repeat is 

encoded using a pointer to a previous occurrence, and the 

probabilities of symbols are copied, changed, inserted or 

deleted.  

                                                             
2
 The finite-context model takes a few immediately preceding symbols into 

account to make a prediction. 

The Off-line algorithm introduced by Apostolico and 

Lonardi in 2000[40-41], uses repeated regions for 

compression. Only exact repeats are considered during each 

iteration, and the algorithm selects a substring that leads to 

the largest contraction suffix tree used to find the substring 

with the maximum possible number of non-overlapping 

occurrences. The relatively poor compression achieved by 

Off-line (average compression ratio 1.938 bpb - standard 

benchmark data) is attributed to its consideration of exact 

repeats only. Indeed, we can say that Off-line is not a 

DNA-specific compressor but rather a general purpose 

compressor which works reasonably well also for DNA 

sequences[34]. Off-line is a time consuming algorithm 

because of its need for building the suffix tree. 

Matsumoto et al. produced a new algorithm called CTW + 

LZ[27] that is based on the context tree weighting method, 

which uses a weighting of multiple models to determine the 

next symbol probabilities. The algorithm detects 

approximate repeats using dynamic programming then 

encodes long exact and approximate repeats using an 

LZ77-type encoding. Short repeats and non-repeats are 

encoded using a CTW. The algorithm performs better than 

Biocompress-2 and GenCompress (average compression 

ratio 1.738 bpb - standard benchmark data). Although they 

obtained good compression ratios, its execution time is too 

high to be used for long sequences. Chen et al.[32] show that 

a sequence of just 229 K bases required many hours to 

compress. 

Tabus et al. in[42] proposed a sophisticated DNA 

sequence compression method based on normalized 

maximum likelihood (NML) discrete regression for 

approximate block matching. NML algorithm separates the 

input into fixed-size blocks. To encode a block, the 

algorithm finds a "regressor", which is a substring that 

occurred earlier in the input that has the minimum Hamming 

distance from the current block, and encodes the block as a 

reference to the earlier occurrence and uses a bit mask to 

represent the differences between the current block and the 

regressor. The bit mask is encoded using an order-0 NML 

model between the current block and the regressor.  

This work was later improved in[43] to produce GeNML 

2005, which encodes fixed-size blocks (equal to 24, 32, 40, 

or 48)[3] by referencing a previously encoded sub-sequence 

(size equal to 218)[3] with a minimum Hamming distance. 

Only replacement operations are allowed for editing the 

reference sub-sequence, which therefore always has the 

same size as the block, although it may be located in an 

arbitrary position inside the already encoded sequence. Fall 

back modes of operation are also considered, namely a 

finite-context arithmetic encoder of order-1 and a transparent 

model in which the block passes uncompressed. The 

algorithm performs better than Biocompress-2, 

GenCompress, CTW + LZ, and DNAPack (average 

compression ratio 1.69 bpb - standard benchmark data, 

except HUMHBB" because the authors were unable to find 

the correct version"). Also, GeNML improves genome size 

compression and speed. For example, for the Gbase H. 



76 Nour S. Bakr et al.:  DNA Lossless Compression Algorithms: Review   

 

 

sapiens genome, a compression ratio of 1.535 bpb with a 

compression time of 3.5 hours.  

Further improvements to GeNML[2] include using an 

order-1 NML model to encode the bitmask, where the 

current bit is encoded based on the previous bit, and finding 

the best regressor block by means of first-order dependencies 

(these dependencies were not considered in the previous 

approach). With these improvements this algorithm 

produced better compression results for the human genome. 

Mishra et al. presented a DNA Sequence Compressor 

(DNASC) in 2010[3]. This algorithm compresses the DNA 

sequence horizontally first by using extended Lempel-Ziv 

style representation for the 5 basic symbols A, C, G, T, and N. 

Then the sequence is vertically compressed by taking a block 

size equals to 6 and a window size equals to 128. To 

compress every 2 digits of a block they used 7 bits. Therefore, 

each block is compressed by using only 21 bits, because each 

block has 6 digits and each 2 digits are represented by 7 bits. 

The DNASC algorithm gives better compression results in 

comparison to Biocompress2, Gencompress, CTW+LZ, 

DNA compress, and GeNML 2005. By comparing the results 

of DNASC algorithm with GeNML 2005, the former 

algorithm has an average compression ratio equals 1.54 bpb - 

for standard benchmark data, except "HUMHBB sequence". 

The DNASC algorithm also compressed the human genome.   

3.4. Transformational Based Methods 

Any sequence is subject to transformations before the 

actual compression takes place to achieve a better 

compression ratio, such as Burrows–Wheeler Transform 

(BWT). Based on the transformation from a DNA sequence 

to a codon sequence there are three methods that specialize in 

the compression of biological sequences. 

Bao et al. introduced a new algorithm based on fixed 

length LUT and LZ77[44]. First, they created a fixed size 

look up table which contains a combination of three 

characters (without 'N', 'space' or unknown nucleotide) 

forming 64 combinations (codons), resulting in a fixed size 

of the table. Also they encountered a series of successive N's, 

between two actual DNA strings in the destination file. Later 

these combinations were replaced by the symbols which are 

assigned in the lookup table, hence resulting in encoding 

using LZ77 algorithm. Applying LZ77 to the pre-coded file 

only improves very slightly the compression ratio. 

Compared with Chen’s algorithm[32], the compression ratio 

of this algorithm is 0.2 bpb, higher in general. But the cost of 

the tiny 0.2 bpb, improvement was very high. Nonetheless, 

this algorithm runs almost 103 times faster than 

DNAcompress[32].  

The Differential Direct Coding algorithm (2D) by Vey 

in[45] proposes that compression strategies must 

accommodate large data sets and consist of multiple 

sequences and auxiliary data. The set of expected symbols 

for the 2D model are (A, T, G, C, and U), which removes the 

burden of explicit declaration of sequence type like DNA or 

RNA. The 2D model accommodates a total of 125 different 

triplets according to any of the nucleotide bases at any of the 

three triplet positions, such that the set of codons {AAA, 

AAC, . . . , UUT, UUU}. These instances are accommodated 

in order to provide simplified arithmetic translation. Also, 

128 different ASCII symbols are supported as extra symbols 

and a single unknown flag is included to denote a symbol 

that belongs to neither set. By using several bacterial 

genomes, the results show that gzip provided the best 

compression ratios while 2D had the fastest execution times. 

If 2D were applied and followed immediately with gzip, this 

would provide the best compression ratios and at the same 

time execution times that are still faster than gzip alone. 2D 

is suitable for any type of sequence data, including very large 

data sets, such as meta-genomes. 

In 2011 Bharti and Singh[46] proposed a two phase 

compression algorithm based on a Look up Table (LUT) 

using a complementary palindrome of fixed size. During the 

first phase of the algorithm the algorithm searches for all 

palindromes in a specific length (3 Base Character). This is 

carried out by checking all the possible places in the 

sequence. Then the algorithm finds a palindrome that 

correlates with its demands and prints it to the output. In 

second phase they apply the LUT base variable length 

compression algorithm. This proposed algorithm has a high 

compression ratio compared to other existing Biological 

Sequence Compression algorithms, such as GenCompress 

[31], DNACompress[32], 2D[45], and Fixed LUT[44]. Also 

it uses less memory compared to the other existing 

algorithms and is easy to implement. 

Later in 2012 Roy et al. proposed a finite LUT[47] in two 

algorithms with a four-step coding rule. The first step is 

based on the LUT, which comprises a combination of three 

characters among 'A', 'T', 'C, 'G' or 'N' (algorithm-1) and a 

combination of four characters ('A', 'T', 'C' and 'G') 

(algorithm-2). The second step is based on ASCII characters 

(in the form of algorithm-1 which is based on 125 chosen 

ASCII character 8 bits each and algorithm-2  which 

includes 256 ASCII characters 8 bit each. The third step is 

based on tandem repeats only for algorithm-1. The fourth 

step is based on a segment which consists of 1 or 2 characters. 

The authors used different data sets, three homo sapiens 

mRNAs, five funguses, Rhizopus oryzae, glucoamylase A 

precursor gene, partial cds, and four Zea mays mRNA were 

used to test the algorithms. Results suggest that these 

proposed compression algorithms perform better than most 

general compression. This technique also requires less 

memory and less coding effort compare to the other 

algorithms. By taking a block size of three/four characters 

and using tandem repeats in the sequence line, it is easier to 

make sequence alignment and sequence analysis between 

compressed sequences. 

3.5. Grammar Based Method 

These algorithms infer context-free grammars to represent 

the input data. The grammar is then transformed into a 

symbol stream and finally encoded in binary. 
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DNASequitur[48] is a grammar-based compression 

algorithm explored by Cherniavsky and Ladner for DNA 

sequences, which infers a context-free grammar to represent 

the input sequence. The novelty of DNASequitur is its ability 

to recognize reverse complements when creating rules and 

during substitutions beside the exact repeats. Results show 

that other methods achieve better compression ratios. 

Grammar-based compression is ideal for detecting repeats 

that occur across multiple sequences in a collection. Another 

advantage is the ability to support random access and search 

in the compressed collection. Therefore, grammar-based 

DNA compression should not be ruled out. 

3.6. Two bits Based Methods 

These algorithms make first bit-preprocessing by 

assigning 4 unique two bits (A = 00, G = 01, C = 10, and T = 

11) to different four DNA bases before the encoding process. 

A DNA sequence is represented in smaller segments before 

the encoding process to compress both repetitive and 

non-repetitive DNA sequences. The input sequence is 

divided into fragments, where each fragment is four 8 

bit-characters long. The following algorithms are similar in 

the bit-preprocessing stage but different in the coding stage. 

Rajeswari and Apparao proposed the GENBIT Compress 

tool[49] for DNA sequences based on a novel concept of 

assigning binary bits. After the bit-preprocessing stage in 

this coding scheme, 256 combinations can be represented. 

Hence every DNA segment containing four bases is replaced 

by an 8 bit binary number “XXXXXXXX”. If the 

consecutive fragments are the same, then a specific bit “1” is 

introduced as a 9th bit. If the consecutive fragments are 

different, then a specific bit “0” is introduced as a 9th bit to 

the 8 bit unique number. It takes an n-fragment long input of 

a DNA sequence, and divides into n/4 fragments. The left out 

individual bases (fragment length < 4) are assigned 4 unique 

"2" bits. The authors assume DNA sequences with a length 

of 64 bases to test this algorithm, not real biological 

sequences. They got a compression ratio for the best case 

(maximum repetitive fragments) of 1.125 bpb, while it was 

1.727 bpb for the average case (random input which is not 

given by either the worst-case or the best-case efficiency), 

and 2.238 bpb for the worst case (there are no repetitive 

fragments), even for larger genomes (nearly 2,000,000 

characters). Also, the GENBIT Compress tool program 

significantly improves the running time of all previous DNA 

compressors but expand the DNA sequence (with average = 

2.23 bpb - standard benchmark data, except MPOMTCG, 

HEHCMVCG, HUMGHCSA and HUMHDABCD). 

Rajeswari et al. introduced HUFFBIT compress[60] for 

DNA sequences. In this algorithm a bit-preprocessing stage 

to the sequence takes place. Then the extended binary tree 

principle is applied to derive a special class of variable length 

codes that satisfies the prefix property (Huffman Codes). 

The authors assume DNA sequences with length 1000 bases 

to test this algorithm, not real biological sequence. They got 

a better compression ratio than GENBIT. For the best case 

they got 1.006 bpb, for the average case they got 1.611 bpb, 

and for the worst case they got 2.109 bpb. 

Rajeswari and Apparao presented the DNABIT Compress 

tool (DBC)[51] that assigns binary bits "in the 

bit-preprocessing stage" to exact and reverse repeats 

fragments of DNA sequences. This a unique concept 

introduced in this algorithm for the first time in DNA 

compression. DNABIT achieves the best compression ratio 

for DNA sequences for larger genomes. It significantly 

improves the running time and achieves better compression 

(with an average of 1.58 bpb - standard benchmark data, 

except MIPACGA and HUMGHCSA). Results show that 

DBC is the best among the remaining compression 

algorithms (Biocompress[29], CTW+LZ[27], GenCompress 

[31], DNA Compress[32], and DNAPack[4]). 

GenCodex[52] introduced by Satyanvesh et al. yields a 

better compression ratio at a high throughput by using 

graphical processing units (GPUs) and multi-cores in two 

phases. In the first phase, bit-preprocessing occurs. In the 

next phase, the fragments are represented using either one or 

two bytes. If a fragment does not appear consecutively, then 

a single byte is allocated using its 8-bit unique representation. 

If a fragment is repeating two or more times, then the simple 

8-bit representation is put in the first byte and the number of 

repetitions is represented in the second byte. For every eight 

bytes of the compressed data, an extra byte is used as a code 

byte in which we set the corresponding bit to 1 if there is a 

repetition. The compression ratio of GenCodex is better than 

GENBIT[49] and DNABIT[51] algorithms for the best and 

average cases. Results show that this method achieves a good 

compression ratio along with a better throughput compared 

to other existing methods such as GENBIT[49], 

GenCompress[31], and DNA Compress[32].  

Prasad and Kumar in the DNACRAMP tool[53] took a 

sequence of DNA for bit-preprocessing. Then they used 

basic procedural language to perform the encoding and 

decoding process with the help of a two-stage index bounded 

linear array data structure. This technique is applicable on 

repetitive and non-repetitive sequences of DNA. 

DNACRAMP obtains better compression ratios (with an 

average of 1.143 bpb - standard benchmark data) than 

DNABIT[51], DNAPack[4], CTW + LZ[27], and DNASC 

[3].  

Prasad then introduced PGBC "Partitioned group binary 

compression"[54] that improves the worst-case scenario of 

the previous algorithms. After bit-preprocessing the 

encoding process starts. Every six fragments can be grouped 

as a partition, which contains two sub- partitions. Afterwards, 

the algorithm substitutes the fragment by its equivalent bits, 

before making sub partitions, and later the fragment is 

grouped into a single main partition set. These algorithms are 

far better than existing ones (e.g., HUFFBIT[60], GENBIT 

[49]) and suitable for non-repetitive DNA sequences of 

genomes (they encode every base by 1.33 bits in the 

worst-case scenarios). In addition to that, existing techniques 

use dynamic programming to compress the sequence which 

is complex in implementation and time consuming, but these 

algorithms are simple and fast. 
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4. Algorithms for DNA Compression in 
Vertical Mode 

This mode uses the information between two sequences 

typically by making one of them a reference sequences. We 

can say that vertical mode compression nowadays is growing 

faster because of the development of new DNA sequencing 

technologies, such as next-generation sequencing (NGS). 

These new high-throughput sequencing technologies have 

led to a large number of whole genome DNA sequencing 

projects. Vertical mode compression is more suitable for 

sequences with large size. 

There has been considerable work on compression of 

sequencing data with some research in vertical mode DNA 

compression in many data formats e.g. FASTQ[55] and 

SAM/BAM[56] formats.  

Christley et al. present a DNAzip package[57], which is a 

series of techniques that in combination reduces a single 

genome to a size small enough to be sent as an email 

attachment. 

Tembe et al. in[58] presented a Huffman coding-based 

sequencing which reads specific representation schemes that 

compress data without altering the relative order. 

Daily et al. in[59] developed data structures and 

compression algorithms for high-throughput sequencing data. 

A processing stage maps short sequences to a reference 

genome or a large table of sequences. Then the integers 

representing the short sequence's absolute or relative 

addresses, their length, and the substitutions they may 

contain, are compressed and stored using various entropy 

coding algorithms. 

Afify et al. in[60] exploited a differential compression 

model based on the alignment of two similarity sequences or 

more, which compress one sequence by comparing it with 

another sequence and using renewal entropy estimation. 

Grabowski and Deorowicz in[5] present an LZ77-style 

compression scheme for relative compression of multiple 

genomes of the same species to improve runtime and 

compression performance. 

Kuruppu et al. proposed the RLZ algorithm in[61] and the 

improved RLZ in[62], which are algorithms that provide 

effective compression in a single pass over the collection, 

and the final compressed representation allows rapid random 

access to arbitrary substrings using a simple greedy 

technique, akin to LZ77 parsing. 

The main difficulty of relative compression is in selecting 

an appropriate reference sequence. Kuruppu et al. in[8], 

explore using the dictionary of repeats generated by Comrad 

[63], Re-pair[64] and Dna-x[34] algorithms as applied to 

reference sequences for relative compression. 

Deorowicz and Grabowski present DSRC[65], which is a 

specialized compression algorithm for genomic data in 

FASTQ format and which dominates its competitor, G-SQZ.  

In CRAM[66], Fritz et al. present a new reference-based 

compression method that efficiently compresses DNA 

sequences for storage. This approach works for 

re-sequencing experiments that target well-studied genomes. 

They align new sequences to a reference genome and then 

encode the differences between the new sequence and the 

reference genome for storage. 

Sakib et al. present SAMZIP[67], a specialized encoding 

scheme, for sequence alignment data in SAM format, which 

improves the compression ratio of existing compression 

tools available.  

Wang and Zhang present a novel compression tool for 

storing and analyzing genome re-sequencing data, named 

GRS[68]. GRS is able to process the genome sequence data 

without the use of the reference single-nucleotide 

polymorphism (SNPs) and other sequence variation 

information and automatically rebuilds the individual 

genome sequence data using the reference genome sequence. 

As biologists move their analyses to high-performance 

systems with greater I/O bandwidth, low-throughput 

compression becomes a limiting factor. Mark Howison 

addresses this gap by a new storage model called SeqDB[69], 

which offers high-throughput compression of sequence data 

with minimal sacrifice in compression ratio. 

Pinho et al. describe GReEn[70] (Genome Re-sequencing 

Encoding), a tool for compressing genome re-sequencing 

data using a reference genome sequence. It overcomes some 

drawbacks of the proposed tool GRS, 

Jones et al. present Quip[71], a lossless compression 

algorithm for next-generation sequencing data in the FASTQ 

and SAM/BAM formats using reference-based compression. 

Popitsch and Haeseler present NGC[72], a tool for the 

compression of mapped short read data stored in the 

wide-spread SAM format. NGC introduces two novel ideas: 

first, a way to reduce the number of required code words by 

exploiting common features of reads mapped to the same 

genomic positions; second, a highly configurable way for the 

quantization of per-base quality values, which takes their 

influence on downstream analyses into account. 

5. Conclusions 

Research in bioinformatics largely depends on storage and 

manipulation of huge amounts of data. We believe that 

efficient DNA "the code of life" compression remains a 

challenging problem and a rather difficult task. 

In substitution algorithms searching for some kinds of 

repeats such as exact, reverse repeats, complemented repeats, 

and complemented palindromes, then encode using an 

appreciable algorithm, take more compression time. The 

Lempel-Ziv compression algorithm has become a reasonable 

default choice for compression of DNA. 

Most of statistical algorithms are effective for DNA 

sequence compression and computationally intensive in 

practice. Compression algorithms with combined 

substitution and statistical modules provide better results 

over substitution algorithms only. 

Combining a lookup table pre-coding transformation 

making use of three or four bases with other compression 

algorithms improve its performance. Also it is easy to make 
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sequence alignment and sequence analysis between 

compressed sequences. 

Grammar-based compression is ideal for detecting repeats 

and has the ability to support random access and search in the 

compressed collection but with poor compression ratio. In 

the future, we may explore the use of edit grammars for DNA 

sequences such as insert, delete, or replace a character with 

another to improve the compression ratio.  

Bit-based compression is compressing both repetitive and 

non-repetitive DNA sequences. It is implemented without 

dynamic programming, so it is simple and fast. 

Finally, vertical mode compression provides an efficient 

storage model for the data produced by new DNA 

sequencing technologies, such as next-generation 

sequencing. Combining vertical mode compression and 

statistical compression may improve the compression ratio 

by determining other factors to choose a reference sequence. 
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