
American Journal of Bioinformatics Research 2013, 3(3): 72-81

DOI: 10.5923/j.bioinformatics.20130303.04

DNA Lossless Compression Algorithms: Review

Nour S. Bakr
1,*

, Amr A. Sharawi
2

1Department of Biomedical Engineering, Higher Technological Institute, 10th of Ramadan City, Egypt
2Department of Systems and Biomedical Engineering, Cairo University, Cairo, Egypt

Abstract Modern DNA sequencing instruments are able to generate huge amounts of genomic data. Those huge

volumes of data require effective storage, fast transmission, provision of quick access to any record, and superior

functionality. Data storage costs have an appreciable proportion of total cost in the creation and analysis of DNA sequences.

In particular, the increase in the DNA sequences is highly manageable due to a tremendous increase in the disk storage

capacity. Standard compression techniques failed to compress these sequences. Recently, new algorithms have been

introduced specifically for this purpose. In this paper, we comparatively survey the main ideas and results of lossless

compression algorithms that have been developed for DNA sequences.

Keywords DNA, Codon, High Throughput Sequencing, Re-sequencing, Horizontal Compression, Vertical

Compression

1. Introduction

DNA strings are composed of an alphabet of four

characters: A, T, G, and C. Each three letter sub-strings

within the DNA sequences are called codons (e.g. AGC and

GCT). There are 64 recognized codons. These produce 20

different amino acids because different codons can produce

the same amino acid[1]. An organism has in each one of its

cells the same DNA sequences making up the individual’s

genome, which for higher life forms are organized in many

chromosomes[2]. In a human DNA structure there are so

many unknown nucleotides. These unknown nucleotides are

represented by N (space) so, the human genome structure

consists of five characters A, C, G, T, and N[3].

Some characteristics of DNA sequences show that they

are not random sequences. If these sequences were totally

random, the most efficient and logical way to store them

would be using two bits per base. However, DNA is used for

the expression of proteins in living organisms, and thus must

contain some logical organization[4]. There are many

repeats within a given DNA sequence (e.g. AAACGT),

which may occur more than once in a given DNA sequence.

However, there may exist an approximate repeat of

AAACGT in this DNA sequence (e.g. AAACGG and

ACGCGT). In DNA A and T are complements of each other.

So do G and C. The complement of the DNA sequence

AAACGT would be TTTGCA. If we then reversed

TTTGCA we would get ACGTTT. ACGTTT is defined as

being the reverse complement or "palindrome" of AAACGT.

* Corresponding author:

bioeng_nour@ieee.org (Nour S. Bakr)

Published online at http://journal.sapub.org/bioinformatics

Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

DNA sequences within the same species are both large

and highly repetitive. Consider that only approximately

0.1% of the 3GB human genome is specific; the rest is

common to all humans[5].

The development of new DNA sequencing technologies,

such as next-generation sequencing (NGS) and single

molecule sequencing, has enabled the research of genomics

and functional genomics to advance to new levels[6, 7]. Due

to the dramatic reduction of sequencing cost and increase of

sequencing efficiency, these new high-throughput

sequencing technologies have led to a large number of whole

genome DNA sequencing projects. Some of these projects,

such as the Genome 10K project, take advantage of the

improved sequencing speeds and costs to obtain genomes of

species that are nowadays un-sequenced. Still other projects

focus on re-sequencing, where individual genomes from a

given species are sequenced to understand variation between

individuals. Examples are the 1000 Genomes project for

humans and the 1001 Genomes project for the plant

Arabidopsis thaliana[8]. The size of the genomes varies

wildly in range; viruses may have only few thousand

symbols, bacteria millions of symbols, humans about 3

billion and some amphibian species have even 120 billion

bases[2].

Sequencing labs submit their data to big archival databases

such as GenBank at the National Center for Biotechnology

Information (NCBI)[9], the European Bioinformatics

Institute EMBL database[10], the DNA Data Bank of Japan

(DDBJ)[11], the Short Read Archive (SRA)[12], the Gene

Expression Omnibus (GEO)[13], and the microarray

database Array Express[14]. These databases maintain,

organize, and distribute the sequencing data. The three

partners (GenBank, DDBJ, and EMBL Bank) of the

International Nucleotide Sequence Database Collaboration

 American Journal of Bioinformatics Research 2013, 3(3): 72-81 73

(INSDC) set out to capture, preserve, and present the

permanent scientific record for nucleic acid sequencing and

associated information[15, 16]. Records in these databases

are synchronized according to guidelines from the INSDC

[17], which assures that each database contains a copy of the

others.

Collecting and understanding genomic data for all

organisms and their species has become the corner stone of

modern life science research. In basic research, genomics

data leads to better understanding of the cellular functions

and organism evolution[18]. In biomedical applications, it is

used for studying the molecular and genetic basis of diseases

and their variations, for discovering and designing modern

therapeutics as well as for developing modern diagnostic and

prognostic tools[19]. In agriculture and food studies, it is

used to help breed better species of plants and livestock as

well as for studying pathogen interactions[20, 21].

The assembled sequences from the sequencing projects

can range from terabytes to petabytes in size[8].

Approximately 154,192,921,011 bases (154.2 billion) from

167,295,840 (167.3 million) reported sequences were there

in the GenBank database in August 2013[22], the database

size getting two or three times bigger annually. Therefore

efficient lossless compression techniques and data structures

to efficiently store, access, communicate, and search these

large datasets are necessary.

The standard compression techniques cannot compress the

biological sequences well. These algorithms do not use

special structures of biological sequences. Recently, several

algorithms have been proposed for the compression of DNA

sequences based on DNA sequence special structures.

Grümbach and Tahi in[23] propose two modes for the

compression of DNA sequences:

● Horizontal mode: one is given a biological sequence,

which is compressed by making use of information

contained only in the sequence, typically by making

reference only to its substrings. Evaluation of compression

methods is usually performed in this mode.

● Vertical mode: One is given a set of biological

sequences, and each sequence is compressed by making use

of information contained in the entire set, typically the

substrings of the set. It may lead to an organization of the

data related similarities between the species.

In the following sections we will discuss the algorithms

for compression of DNA sequences in the two modes.

There have been recent publications by Giancarlo et al.[24]

and Nalbantoglu et al.[25], which also examine some of the

literature reviewed here. However, the papers take somewhat

different approaches to the literature. Giancarlo et al.

examine the various problems of bioinformatics and describe

compression tools that have been used to address these

problems. Nalbantoglu et al. examine the different concepts

in compression and look at how these concepts can be used

to understand and resolve issues in computational biology

and bioinformatics.

In this paper we survey the main issues and results of

lossless compression algorithms developed for DNA

sequences with a somewhat comparative view. The current

paper would be beneficial to individuals interested in DNA

compression tools for keeping up on their field and may be

most useful for those who are not experts in this field.

The content of the paper is organized as follows: In section

2 we report the general compression algorithms and its

performance with DNA sequences. In section 3 we present

the horizontal mode of special algorithms for DNA

compression and its performance, while the vertical mode is

presented in section 4. Finally, in section 5, we conclude

several research ideas to be explored further relating to DNA

sequences compression.

2. Standard Algorithms for DNA
Compression

The compression of a DNA sequence is a difficult task for

general compression algorithms because these algorithms

are designed mainly for English text compression, while the

regularities in DNA sequences are very small.

DNA sequences contain only four bases {A, C, T, G}.

Thus, each base (symbol) can be represented by two bits.

However, the standard text compression tools, such as

compress (Lempel–Ziv–Welch "LZW"), gzip (Lempel–Ziv

"LZ" + Huffman) and bzip2 (Burrows–Wheeler transform

"BWT" + Move-to-Front "MTF" + Huffman), cannot

compress these DNA sequences[4]. Using standard

benchmark data1, the average compression ratio is 2.185 bpb

"bits per base" for compress, 2.271 bpb for gzip, and 2.138

bpb for bzip2 except the sequence "HUMGHCSA", where

the average compression ratio is 1.729 bpb[26].

Huffman’s code also fails badly on DNA sequences both

in the static and adaptive model, because the probabilities of

occurrence of the four symbols are not very different[27].

Prediction with Partial Match (PPM) cannot compress DNA

sequences having less than two bits per symbol either[27].

On the other hand, arithmetic coding and Context Tree

Weighting (CTW) are known to compress the DNA data

well[27]. In spite of the good compression ratio, arithmetic

coding and CTW have disadvantages, such as low

decompression speed[28].

3. Algorithms for DNA Compression in
Horizontal Mode

This mode uses the information contained only in the

sequence, typically by making reference only to its

substrings.

1
 Most DNA compression algorithms use the standard benchmark data in[23].

These standard sequences, come from a variety of sources and include the

complete genomes of two mitochondria (MPOMTCG, PANMTPACGA "also

called MIPACGA"), two chloroplasts (CHNTXX and CHMPXX "also called

MPOCPCG"), five sequences from humans (HUMDYSTROP, HUMGHCSA,

HUMHBB, HUMHDABCD and HUMHPRTB), and finally the complete

genome from two viruses (VACCG and HEHCMVCG "also called

HS5HCMVCG").

74 Nour S. Bakr et al.: DNA Lossless Compression Algorithms: Review

Most of the compression methods used today including

DNA compression falls into the following categories:

3.1. Substitutional Based Methods

This algorithm compresses data by replacing long

sequences by short pointer information to the same

sequences in a dictionary.

The first special purpose DNA compression algorithm is

BioCompress developed by Grumbach and Tahi[23] in 1993.

This technique is based on the sliding window algorithm LZ.

First, it detects exact and reverse complement repeats in the

DNA and stores it using 4-ary tree, and then it encodes them

by the repeat length and the position of a previous repeat

occurrence. For non-repeat regions, it is encoded by 2 bpb.

The improved version, BioCompress 2[29] is similar to

BioCompress, but uses order-2 arithmetic coding to encode

non-repeat regions. The results showed that both algorithms

compressed the standard benchmark data with an average

compression ratio of 1.850 bpb for Biocompress and 1.783

bpb for Biocompress 2, compared to the general-purpose

algorithms compact and compress, which used more than 2

bpb.

The Cfact[30] is similar to Biocompress and uses a

two-pass algorithm to search for the longest exact and

reverse complement repeats. For this purpose, it builds the

suffix tree of the sequence in the first pass and does the actual

encoding using LZ in the second pass. Non-repeat regions

are also encoded by 2 bpb. There are no compression results

about this algorithm; therefore it is difficult to compare. The

results may be similar to Biocompress, but they take more

compression time, since Cfact uses two passes, and

constructs a suffix tree.

A similar substitution approach by Chen et al. is used in

GenCompress[31], except the use of approximate repetitions.

An inexact repeat subsequence is encoded by a pair of

integers, as for BioCompress-2, and a list of edit operations

for mutations. It exists in two variants: GenCompress-1,

which uses the Hamming distance (only substitutions) for the

repeats and GenCompress-2, which uses the edition distance

(deletion, insertion and substitution) for the encoding of the

repeats. While GenCompress obtains better compression

ratios (with average 1.742 bpb - standard benchmark data)

than BioCompress-2 and Cfact, it is not suitable for

compressing large sequences.

Chen et al. made further a modification of GenCompress

that led to a two-pass algorithm DNACompress[32]. During

the first pass, GenCompress finds all approximate repeats

including complementary palindromes, using specific

software called PatternHunter[33]. Then the approximate

repeats and the non-repeat regions are encoded using the LZ

compression scheme. DNACompress produces a slightly

better compression ratio (with average 1.725 bpb - standard

benchmark data) with faster compression than GenCompress

and CTW + LZ algorithms. DNACompress was able to deal

with large sequences (e.g. E. coli with about 4.6 Megabases)

in about a minute, where GenCompress required nearly

about half an hour.

Searching for approximate repeats takes a long time and

requires a large amount of memory. For this reason Manzini

and Rastero in DNA-X algorithm[34] found it natural to

investigate how much compression they can achieve

working only with exact and reverse complement repeats. It

is a single-pass algorithm and operates in a so called LZ77

manner. The algorithm only encodes exact repeats, but in

designing the code words that represent exact repeats they

use the knowledge that some of these exact repeats are

“fragments” of larger approximate repeats. Like most of the

other methods, this technique also uses fall back mechanisms

for the regions where matching fails, in this case

finite-context arithmetic coding of order-2 (DNA2) or

order-3 (DNA3)[35]. This algorithm is faster than any other

algorithm and achieves a compression ratio very close to the

best DNA compressors. The algorithm is memory efficient

and occupies small space, which leads to the compression of

hundreds of megabytes.

Lee et al. introduced a DNAC algorithm in 2004[36] as an

update of the Cfact algorithm, but it works in four phases:

During the first phase, it builds a suffix tree to locate exact

repeats. During the second phase, all exact repeats are

extended into approximate repeats by dynamic programming.

In the third phase, it extracts the optimal non-overlapping

repeats from the overlapping ones, and in the last phase, it

uses the Fibonacci encoding method to encode the repeats in

a self-delimited way. The authors compared experimental

results with the GenCompress algorithm, since the

GenCompress outperforms the Cfact algorithm and shows

that the DNAC algorithm outperforms the GenCompress

algorithm by several orders of magnitude. Moreover, it can

be used to compress long sequences with millions bases or

more.

Behzadi and Le Fessant in DNAPack[4] found a better set

of repeats than those found by GenCompress and

DNACompress by using dynamic programming instead of

greedy approaches as others do. It uses the Hamming

distance (only substitutions) for the repeats and inverted

repeats. Non-repeat regions are encoded by the best choice

from an order-2 arithmetic coding, context tree weighting,

and naive 2 bits per symbol methods. DNAPack consistently

performed better than the Biocompress-2, GenCompress,

CTW+LZ and DNA Compress in terms of average

compression ratio (1.714 bpb - standard benchmark data). It

is expected that the algorithm will be slow due to the

expensive calculation, and will not be suitable for long

sequences.

3.2. Statistical Based Methods

There are many statistical methods for DNA compression,

such as CDNA, Approximate Repeats Model (ARM),

expert-Model (XM), and the finite-context model algorithm

by replacing a more popular symbol by a shorter code.

Loewenstern and Yianilos introduced the first algorithm

to combine statistical compression with approximate repeat

 American Journal of Bioinformatics Research 2013, 3(3): 72-81 75

for DNA compression called CDNA algorithm[37].

It is based on the probability distribution of each symbol

that is obtained by approximate partial matches from history.

Each approximate match is applied to a previous

subsequence having a small Hamming distance to the

context preceding the symbol to be encoded. Predictions are

combined using a set of weights, which are learnt adaptively.

The ARM algorithm is also a pure statistical DNA

compressor proposed by Allison et al. in 1998[38] that forms

the probability of a subsequence by summing the

probabilities over all explanations of how the subsequence is

generated. The ARM and CDNA algorithms yield

significantly better compression ratios than those in the

substitutional classes and can also produce information

content sequences.

The last pure statistical DNA compressor is the XM

algorithm introduced by Cao et al. in 2007[39], which relies

on a mixture of experts for providing symbol by symbol

probability estimates which are then used for driving an

arithmetic encoder. The algorithm comprises three types of

decision-support systems: (1) order-2 Markov models; (2)

order-1 context Markov models, i.e., Markov models that use

statistical information only of a recent past (typically, the

512 previous symbols); (3) the copy expert that considers the

next symbol as part of a copied region from a particular

offset. The probability estimates provided by the set of

experts are then combined using Bayesian averaging and

sent to the arithmetic encoder. The compression results of

XM are excellent (average compression ratio 1.714 bpb -

standard benchmark data).

All these algorithms are computationally intensive, which

makes them practical only for compressing small sequences.

Armando et al. in[35] provide a finite-context model2 for

DNA compression, which is based on two finite-context

models of different orders that compete for encoding the

sequence. In this model several aspects have been addressed,

such as the inclusion of mechanisms for handling inverted

repeats and the use of multiple finite-context models that

compete for encoding the data. This algorithm provides

significant results, although not as expressive as those

provided by methods such as NML-1[2] or XM[39].

Nevertheless, the experimental results show that this

approach can outperform methods of similar computational

complexity, such as the DNA3 coding method[34]. No doubt,

this algorithm has proved to give good returns in terms of

compression gains, but normally at the cost of long

compression times.

3.3. Substitutional and Statistical Based Methods

Several DNA compression algorithms combine

substitution and statistical styles. An inexact repeat is

encoded using a pointer to a previous occurrence, and the

probabilities of symbols are copied, changed, inserted or

deleted.

2
 The finite-context model takes a few immediately preceding symbols into

account to make a prediction.

The Off-line algorithm introduced by Apostolico and

Lonardi in 2000[40-41], uses repeated regions for

compression. Only exact repeats are considered during each

iteration, and the algorithm selects a substring that leads to

the largest contraction suffix tree used to find the substring

with the maximum possible number of non-overlapping

occurrences. The relatively poor compression achieved by

Off-line (average compression ratio 1.938 bpb - standard

benchmark data) is attributed to its consideration of exact

repeats only. Indeed, we can say that Off-line is not a

DNA-specific compressor but rather a general purpose

compressor which works reasonably well also for DNA

sequences[34]. Off-line is a time consuming algorithm

because of its need for building the suffix tree.

Matsumoto et al. produced a new algorithm called CTW +

LZ[27] that is based on the context tree weighting method,

which uses a weighting of multiple models to determine the

next symbol probabilities. The algorithm detects

approximate repeats using dynamic programming then

encodes long exact and approximate repeats using an

LZ77-type encoding. Short repeats and non-repeats are

encoded using a CTW. The algorithm performs better than

Biocompress-2 and GenCompress (average compression

ratio 1.738 bpb - standard benchmark data). Although they

obtained good compression ratios, its execution time is too

high to be used for long sequences. Chen et al.[32] show that

a sequence of just 229 K bases required many hours to

compress.

Tabus et al. in[42] proposed a sophisticated DNA

sequence compression method based on normalized

maximum likelihood (NML) discrete regression for

approximate block matching. NML algorithm separates the

input into fixed-size blocks. To encode a block, the

algorithm finds a "regressor", which is a substring that

occurred earlier in the input that has the minimum Hamming

distance from the current block, and encodes the block as a

reference to the earlier occurrence and uses a bit mask to

represent the differences between the current block and the

regressor. The bit mask is encoded using an order-0 NML

model between the current block and the regressor.

This work was later improved in[43] to produce GeNML

2005, which encodes fixed-size blocks (equal to 24, 32, 40,

or 48)[3] by referencing a previously encoded sub-sequence

(size equal to 218)[3] with a minimum Hamming distance.

Only replacement operations are allowed for editing the

reference sub-sequence, which therefore always has the

same size as the block, although it may be located in an

arbitrary position inside the already encoded sequence. Fall

back modes of operation are also considered, namely a

finite-context arithmetic encoder of order-1 and a transparent

model in which the block passes uncompressed. The

algorithm performs better than Biocompress-2,

GenCompress, CTW + LZ, and DNAPack (average

compression ratio 1.69 bpb - standard benchmark data,

except HUMHBB" because the authors were unable to find

the correct version"). Also, GeNML improves genome size

compression and speed. For example, for the Gbase H.

76 Nour S. Bakr et al.: DNA Lossless Compression Algorithms: Review

sapiens genome, a compression ratio of 1.535 bpb with a

compression time of 3.5 hours.

Further improvements to GeNML[2] include using an

order-1 NML model to encode the bitmask, where the

current bit is encoded based on the previous bit, and finding

the best regressor block by means of first-order dependencies

(these dependencies were not considered in the previous

approach). With these improvements this algorithm

produced better compression results for the human genome.

Mishra et al. presented a DNA Sequence Compressor

(DNASC) in 2010[3]. This algorithm compresses the DNA

sequence horizontally first by using extended Lempel-Ziv

style representation for the 5 basic symbols A, C, G, T, and N.

Then the sequence is vertically compressed by taking a block

size equals to 6 and a window size equals to 128. To

compress every 2 digits of a block they used 7 bits. Therefore,

each block is compressed by using only 21 bits, because each

block has 6 digits and each 2 digits are represented by 7 bits.

The DNASC algorithm gives better compression results in

comparison to Biocompress2, Gencompress, CTW+LZ,

DNA compress, and GeNML 2005. By comparing the results

of DNASC algorithm with GeNML 2005, the former

algorithm has an average compression ratio equals 1.54 bpb -

for standard benchmark data, except "HUMHBB sequence".

The DNASC algorithm also compressed the human genome.

3.4. Transformational Based Methods

Any sequence is subject to transformations before the

actual compression takes place to achieve a better

compression ratio, such as Burrows–Wheeler Transform

(BWT). Based on the transformation from a DNA sequence

to a codon sequence there are three methods that specialize in

the compression of biological sequences.

Bao et al. introduced a new algorithm based on fixed

length LUT and LZ77[44]. First, they created a fixed size

look up table which contains a combination of three

characters (without 'N', 'space' or unknown nucleotide)

forming 64 combinations (codons), resulting in a fixed size

of the table. Also they encountered a series of successive N's,

between two actual DNA strings in the destination file. Later

these combinations were replaced by the symbols which are

assigned in the lookup table, hence resulting in encoding

using LZ77 algorithm. Applying LZ77 to the pre-coded file

only improves very slightly the compression ratio.

Compared with Chen’s algorithm[32], the compression ratio

of this algorithm is 0.2 bpb, higher in general. But the cost of

the tiny 0.2 bpb, improvement was very high. Nonetheless,

this algorithm runs almost 103 times faster than

DNAcompress[32].

The Differential Direct Coding algorithm (2D) by Vey

in[45] proposes that compression strategies must

accommodate large data sets and consist of multiple

sequences and auxiliary data. The set of expected symbols

for the 2D model are (A, T, G, C, and U), which removes the

burden of explicit declaration of sequence type like DNA or

RNA. The 2D model accommodates a total of 125 different

triplets according to any of the nucleotide bases at any of the

three triplet positions, such that the set of codons {AAA,

AAC, . . . , UUT, UUU}. These instances are accommodated

in order to provide simplified arithmetic translation. Also,

128 different ASCII symbols are supported as extra symbols

and a single unknown flag is included to denote a symbol

that belongs to neither set. By using several bacterial

genomes, the results show that gzip provided the best

compression ratios while 2D had the fastest execution times.

If 2D were applied and followed immediately with gzip, this

would provide the best compression ratios and at the same

time execution times that are still faster than gzip alone. 2D

is suitable for any type of sequence data, including very large

data sets, such as meta-genomes.

In 2011 Bharti and Singh[46] proposed a two phase

compression algorithm based on a Look up Table (LUT)

using a complementary palindrome of fixed size. During the

first phase of the algorithm the algorithm searches for all

palindromes in a specific length (3 Base Character). This is

carried out by checking all the possible places in the

sequence. Then the algorithm finds a palindrome that

correlates with its demands and prints it to the output. In

second phase they apply the LUT base variable length

compression algorithm. This proposed algorithm has a high

compression ratio compared to other existing Biological

Sequence Compression algorithms, such as GenCompress

[31], DNACompress[32], 2D[45], and Fixed LUT[44]. Also

it uses less memory compared to the other existing

algorithms and is easy to implement.

Later in 2012 Roy et al. proposed a finite LUT[47] in two

algorithms with a four-step coding rule. The first step is

based on the LUT, which comprises a combination of three

characters among 'A', 'T', 'C, 'G' or 'N' (algorithm-1) and a

combination of four characters ('A', 'T', 'C' and 'G')

(algorithm-2). The second step is based on ASCII characters

(in the form of algorithm-1 which is based on 125 chosen

ASCII character 8 bits each and algorithm-2 which

includes 256 ASCII characters 8 bit each. The third step is

based on tandem repeats only for algorithm-1. The fourth

step is based on a segment which consists of 1 or 2 characters.

The authors used different data sets, three homo sapiens

mRNAs, five funguses, Rhizopus oryzae, glucoamylase A

precursor gene, partial cds, and four Zea mays mRNA were

used to test the algorithms. Results suggest that these

proposed compression algorithms perform better than most

general compression. This technique also requires less

memory and less coding effort compare to the other

algorithms. By taking a block size of three/four characters

and using tandem repeats in the sequence line, it is easier to

make sequence alignment and sequence analysis between

compressed sequences.

3.5. Grammar Based Method

These algorithms infer context-free grammars to represent

the input data. The grammar is then transformed into a

symbol stream and finally encoded in binary.

 American Journal of Bioinformatics Research 2013, 3(3): 72-81 77

DNASequitur[48] is a grammar-based compression

algorithm explored by Cherniavsky and Ladner for DNA

sequences, which infers a context-free grammar to represent

the input sequence. The novelty of DNASequitur is its ability

to recognize reverse complements when creating rules and

during substitutions beside the exact repeats. Results show

that other methods achieve better compression ratios.

Grammar-based compression is ideal for detecting repeats

that occur across multiple sequences in a collection. Another

advantage is the ability to support random access and search

in the compressed collection. Therefore, grammar-based

DNA compression should not be ruled out.

3.6. Two bits Based Methods

These algorithms make first bit-preprocessing by

assigning 4 unique two bits (A = 00, G = 01, C = 10, and T =

11) to different four DNA bases before the encoding process.

A DNA sequence is represented in smaller segments before

the encoding process to compress both repetitive and

non-repetitive DNA sequences. The input sequence is

divided into fragments, where each fragment is four 8

bit-characters long. The following algorithms are similar in

the bit-preprocessing stage but different in the coding stage.

Rajeswari and Apparao proposed the GENBIT Compress

tool[49] for DNA sequences based on a novel concept of

assigning binary bits. After the bit-preprocessing stage in

this coding scheme, 256 combinations can be represented.

Hence every DNA segment containing four bases is replaced

by an 8 bit binary number “XXXXXXXX”. If the

consecutive fragments are the same, then a specific bit “1” is

introduced as a 9th bit. If the consecutive fragments are

different, then a specific bit “0” is introduced as a 9th bit to

the 8 bit unique number. It takes an n-fragment long input of

a DNA sequence, and divides into n/4 fragments. The left out

individual bases (fragment length < 4) are assigned 4 unique

"2" bits. The authors assume DNA sequences with a length

of 64 bases to test this algorithm, not real biological

sequences. They got a compression ratio for the best case

(maximum repetitive fragments) of 1.125 bpb, while it was

1.727 bpb for the average case (random input which is not

given by either the worst-case or the best-case efficiency),

and 2.238 bpb for the worst case (there are no repetitive

fragments), even for larger genomes (nearly 2,000,000

characters). Also, the GENBIT Compress tool program

significantly improves the running time of all previous DNA

compressors but expand the DNA sequence (with average =

2.23 bpb - standard benchmark data, except MPOMTCG,

HEHCMVCG, HUMGHCSA and HUMHDABCD).

Rajeswari et al. introduced HUFFBIT compress[60] for

DNA sequences. In this algorithm a bit-preprocessing stage

to the sequence takes place. Then the extended binary tree

principle is applied to derive a special class of variable length

codes that satisfies the prefix property (Huffman Codes).

The authors assume DNA sequences with length 1000 bases

to test this algorithm, not real biological sequence. They got

a better compression ratio than GENBIT. For the best case

they got 1.006 bpb, for the average case they got 1.611 bpb,

and for the worst case they got 2.109 bpb.

Rajeswari and Apparao presented the DNABIT Compress

tool (DBC)[51] that assigns binary bits "in the

bit-preprocessing stage" to exact and reverse repeats

fragments of DNA sequences. This a unique concept

introduced in this algorithm for the first time in DNA

compression. DNABIT achieves the best compression ratio

for DNA sequences for larger genomes. It significantly

improves the running time and achieves better compression

(with an average of 1.58 bpb - standard benchmark data,

except MIPACGA and HUMGHCSA). Results show that

DBC is the best among the remaining compression

algorithms (Biocompress[29], CTW+LZ[27], GenCompress

[31], DNA Compress[32], and DNAPack[4]).

GenCodex[52] introduced by Satyanvesh et al. yields a

better compression ratio at a high throughput by using

graphical processing units (GPUs) and multi-cores in two

phases. In the first phase, bit-preprocessing occurs. In the

next phase, the fragments are represented using either one or

two bytes. If a fragment does not appear consecutively, then

a single byte is allocated using its 8-bit unique representation.

If a fragment is repeating two or more times, then the simple

8-bit representation is put in the first byte and the number of

repetitions is represented in the second byte. For every eight

bytes of the compressed data, an extra byte is used as a code

byte in which we set the corresponding bit to 1 if there is a

repetition. The compression ratio of GenCodex is better than

GENBIT[49] and DNABIT[51] algorithms for the best and

average cases. Results show that this method achieves a good

compression ratio along with a better throughput compared

to other existing methods such as GENBIT[49],

GenCompress[31], and DNA Compress[32].

Prasad and Kumar in the DNACRAMP tool[53] took a

sequence of DNA for bit-preprocessing. Then they used

basic procedural language to perform the encoding and

decoding process with the help of a two-stage index bounded

linear array data structure. This technique is applicable on

repetitive and non-repetitive sequences of DNA.

DNACRAMP obtains better compression ratios (with an

average of 1.143 bpb - standard benchmark data) than

DNABIT[51], DNAPack[4], CTW + LZ[27], and DNASC

[3].

Prasad then introduced PGBC "Partitioned group binary

compression"[54] that improves the worst-case scenario of

the previous algorithms. After bit-preprocessing the

encoding process starts. Every six fragments can be grouped

as a partition, which contains two sub- partitions. Afterwards,

the algorithm substitutes the fragment by its equivalent bits,

before making sub partitions, and later the fragment is

grouped into a single main partition set. These algorithms are

far better than existing ones (e.g., HUFFBIT[60], GENBIT

[49]) and suitable for non-repetitive DNA sequences of

genomes (they encode every base by 1.33 bits in the

worst-case scenarios). In addition to that, existing techniques

use dynamic programming to compress the sequence which

is complex in implementation and time consuming, but these

algorithms are simple and fast.

78 Nour S. Bakr et al.: DNA Lossless Compression Algorithms: Review

4. Algorithms for DNA Compression in
Vertical Mode

This mode uses the information between two sequences

typically by making one of them a reference sequences. We

can say that vertical mode compression nowadays is growing

faster because of the development of new DNA sequencing

technologies, such as next-generation sequencing (NGS).

These new high-throughput sequencing technologies have

led to a large number of whole genome DNA sequencing

projects. Vertical mode compression is more suitable for

sequences with large size.

There has been considerable work on compression of

sequencing data with some research in vertical mode DNA

compression in many data formats e.g. FASTQ[55] and

SAM/BAM[56] formats.

Christley et al. present a DNAzip package[57], which is a

series of techniques that in combination reduces a single

genome to a size small enough to be sent as an email

attachment.

Tembe et al. in[58] presented a Huffman coding-based

sequencing which reads specific representation schemes that

compress data without altering the relative order.

Daily et al. in[59] developed data structures and

compression algorithms for high-throughput sequencing data.

A processing stage maps short sequences to a reference

genome or a large table of sequences. Then the integers

representing the short sequence's absolute or relative

addresses, their length, and the substitutions they may

contain, are compressed and stored using various entropy

coding algorithms.

Afify et al. in[60] exploited a differential compression

model based on the alignment of two similarity sequences or

more, which compress one sequence by comparing it with

another sequence and using renewal entropy estimation.

Grabowski and Deorowicz in[5] present an LZ77-style

compression scheme for relative compression of multiple

genomes of the same species to improve runtime and

compression performance.

Kuruppu et al. proposed the RLZ algorithm in[61] and the

improved RLZ in[62], which are algorithms that provide

effective compression in a single pass over the collection,

and the final compressed representation allows rapid random

access to arbitrary substrings using a simple greedy

technique, akin to LZ77 parsing.

The main difficulty of relative compression is in selecting

an appropriate reference sequence. Kuruppu et al. in[8],

explore using the dictionary of repeats generated by Comrad

[63], Re-pair[64] and Dna-x[34] algorithms as applied to

reference sequences for relative compression.

Deorowicz and Grabowski present DSRC[65], which is a

specialized compression algorithm for genomic data in

FASTQ format and which dominates its competitor, G-SQZ.

In CRAM[66], Fritz et al. present a new reference-based

compression method that efficiently compresses DNA

sequences for storage. This approach works for

re-sequencing experiments that target well-studied genomes.

They align new sequences to a reference genome and then

encode the differences between the new sequence and the

reference genome for storage.

Sakib et al. present SAMZIP[67], a specialized encoding

scheme, for sequence alignment data in SAM format, which

improves the compression ratio of existing compression

tools available.

Wang and Zhang present a novel compression tool for

storing and analyzing genome re-sequencing data, named

GRS[68]. GRS is able to process the genome sequence data

without the use of the reference single-nucleotide

polymorphism (SNPs) and other sequence variation

information and automatically rebuilds the individual

genome sequence data using the reference genome sequence.

As biologists move their analyses to high-performance

systems with greater I/O bandwidth, low-throughput

compression becomes a limiting factor. Mark Howison

addresses this gap by a new storage model called SeqDB[69],

which offers high-throughput compression of sequence data

with minimal sacrifice in compression ratio.

Pinho et al. describe GReEn[70] (Genome Re-sequencing

Encoding), a tool for compressing genome re-sequencing

data using a reference genome sequence. It overcomes some

drawbacks of the proposed tool GRS,

Jones et al. present Quip[71], a lossless compression

algorithm for next-generation sequencing data in the FASTQ

and SAM/BAM formats using reference-based compression.

Popitsch and Haeseler present NGC[72], a tool for the

compression of mapped short read data stored in the

wide-spread SAM format. NGC introduces two novel ideas:

first, a way to reduce the number of required code words by

exploiting common features of reads mapped to the same

genomic positions; second, a highly configurable way for the

quantization of per-base quality values, which takes their

influence on downstream analyses into account.

5. Conclusions

Research in bioinformatics largely depends on storage and

manipulation of huge amounts of data. We believe that

efficient DNA "the code of life" compression remains a

challenging problem and a rather difficult task.

In substitution algorithms searching for some kinds of

repeats such as exact, reverse repeats, complemented repeats,

and complemented palindromes, then encode using an

appreciable algorithm, take more compression time. The

Lempel-Ziv compression algorithm has become a reasonable

default choice for compression of DNA.

Most of statistical algorithms are effective for DNA

sequence compression and computationally intensive in

practice. Compression algorithms with combined

substitution and statistical modules provide better results

over substitution algorithms only.

Combining a lookup table pre-coding transformation

making use of three or four bases with other compression

algorithms improve its performance. Also it is easy to make

 American Journal of Bioinformatics Research 2013, 3(3): 72-81 79

sequence alignment and sequence analysis between

compressed sequences.

Grammar-based compression is ideal for detecting repeats

and has the ability to support random access and search in the

compressed collection but with poor compression ratio. In

the future, we may explore the use of edit grammars for DNA

sequences such as insert, delete, or replace a character with

another to improve the compression ratio.

Bit-based compression is compressing both repetitive and

non-repetitive DNA sequences. It is implemented without

dynamic programming, so it is simple and fast.

Finally, vertical mode compression provides an efficient

storage model for the data produced by new DNA

sequencing technologies, such as next-generation

sequencing. Combining vertical mode compression and

statistical compression may improve the compression ratio

by determining other factors to choose a reference sequence.

ACKNOWLEDGEMENTS

I would like to send special thanks to all whom were

supported me throughout this work.

REFERENCES

[1] Pinho, A. J., Neves, A. J. R., Afreixo, V., et al., 2006, A
Three-State Model for DNA Protein-Coding Regions, IEEE
Trans. Biomed Eng., 53(11), 2148 –2155.

[2] Korodi, G., Tabus, I., Rissanen, J., et al., 2007, DNA
Sequence Compression Based on the normalized maximum
likelihood model, Signal Processing Magazine, IEEE, 24(1),
47-53.

[3] Mishra, K. N., Aaggarwal, A., Abdelhadi, E., et al., 2010, An
Efficient Horizontal and Vertical Method for Online DNA
Sequence Compression, International Journal of Computer
Applications, 3(1), 39-46.

[4] A. Postolico, et al., Eds., DNA Compression Challenge
Revisited: A Dynamic Programming Approach, Lecture
Notes in Computer Science, Island, Korea: Springer, 2005,
vol. 3537, 190–200.

[5] Deorowicz, S., and Grabowski, S., 2011, Robust relative
compression of genomes with random access, Bioinformatics,
27(21), 2979–2986.

[6] Horner, D. S., Pavesi, G., Castrignanò, T., et al. , 2010,
Bioinformatics approaches for genomics and post genomics
applications of next-generation sequencing, Briefings in
Bioinformatics, 11(2), 181–197.

[7] Pushkarev, D., Neff, N. F., and Quake, S. R., 2009,
Single-molecule sequencing of an individual human genome,
Nature Biotechnology, vol. 27, 847–852.

[8] R. Grossi et al., Eds., Reference Sequence Construction for
Relative Compression of Genomes, Lecture Notes in
Computer Science, Pisa, Italy: Springer, 2011, vol. 7024,
420-425.

[9] Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., et al., 2005,
GenBank, Nucleic Acids Research, vol. 33, 34-38.

[10] Brooksbank, C., Cameron, G., and Thornton, J., 2010, The
European Bioinformatics Institute’s data resources, Nucleic
Acids Research, vol. 38, 17-25.

[11] Sugawara, H., Ogasawara, O., Okubo, K., et al., 2008, DDBJ
with new system and face, Nucleic Acids Research, vol. 36,
22-24.

[12] Shumway, M., Cochrane, G., and Sugawara, H., 2010,
Archiving next generation sequencing data, Nucleic Acids
Research, vol. 38, 870-871.

[13] Barrett, T., Troup, D. B., Wilhite, S. E., et al. , 2009, NCBI
GEO: archive for high-throughput functional genomic data,
Nucleic Acids Research, vol. 37, 885-890.

[14] Kapushesky, M., Emam, I., Holloway, E., et al. , 2010, Gene
expression atlas at the European bioinformatics institute,
Nucleic Acids Research, 38(1), 690-698.

[15] Ahmed A., Hisham G., Moustafa G., et al., 2010, EGEPT:
Monitoring Middle East Genomic Data, Proc., 5th Cairo
International Biomedical Engineering Conf., Egypt, 133-137.

[16] Karsch-Mizrachi, I., Nakamura, Y., and Cochrane, G., 2012,
The International Nucleotide Sequence Database
Collaboration, Nucleic Acids Research, 40(1), 33–37.

[17] International nucleotide sequence database collaboration,
(2013),[Online]. Available: http://www.insdc.org.

[18] Celniker, S. E., Dillon, L. A. L., Gerstein, M. B., et al. , 2009,
Unlocking the secrets of the genome, Nature, 459(7249),
927–930.

[19] Guttmacher, A. E., and Collins, F. S., 2005, Realizing the
promise of genomics in biomedical research, JAMA: Journal
of the American Medical Association, 294(11), 1399–1402.

[20] Joosen, R. V., Ligterink, W., Hilhorst, H. W., et al., 2009,
Advances in genetical genomics of plants, Current Genomics,
10(8), 540–549.

[21] Womack, J. E., 2005, Advances in livestock genomics:
opening the barn door, Genome Research, 15(12),
1699–1705.

[22] Genbank size, (2013),[Online]. Available: http://ftp.ncbi.nih.
gov/genbank/gbrel.txt

[23] S. Grumbach and F. Tahi, "Compression of DNA Sequences,"
in Proc. of the Data Compression Conf., (DCC '93), 1993,
340–350.

[24] Giancarlo, R., Scaturro, D., and Utro, F., 2009, Textual data
compression in computational biology: a synopsis,
Bioinformatics, 25(13), 1575–1586.

[25] Nalbantog̃lu, Ö. U., Russell, D.J., and Sayood, K., 2010, Data
Compression Concepts and Algorithms and their
Applications to Bioinformatics, Entropy, 12(1), 34-52.

[26] Matsumoto, T., Sadakane, K., Imai, H., et al., 2000, Can
General-Purpose Compression Schemes Really Compress
DNA Sequences?, Computational Molecular Biology,
Universal Academy Press, 76–77.

[27] Matsumoto, T., Sadakane, K., and Imai, H., 2000, Biological
Sequence Compression Algorithms, Genome Informatics, vol.
11, 43–52.

80 Nour S. Bakr et al.: DNA Lossless Compression Algorithms: Review

[28] Sato, H., Yoshioka, T., Konagaya, A., et al., 2001, DNA Data
Compression in the Post Genome Era, Genome Informatics,
vol. 12, 512–514.

[29] Grumbach, S., and Tahi, F., 1994, A new challenge for
compression algorithms: genetic sequences, Information
Processing & Management, 30(6), 875–886.

[30] E. Rivals, M. Dauchet, J-P. Delahaye, et al., "Fast Discerning
Repeats in DNA Sequences with a Compression Algorithm,"
The 8th Workshop on Genome and Informatics, (GIW97),
1997, vol. 8, 215-26.

[31] X. Chen, S. Kwong and M. Li, "A Compression Algorithm
for DNA Sequences and It's Applications in Genome
Comparison," The 10th Workshop on Genome and
Informatics, (GIW99), 1999, vol. 10, 51-61.

[32] Chen, X., Li, M., Ma, B., et al., 2002, DNACompress: fast
and effective DNA sequence Compression, Bioinformatics,
18(12), 1696–1698.

[33] Ma, B., Tromp, J. and Li, M., 2002, Pattern Hunter: faster and
more sensitive homology search, Bioinformatics, 18(3),
440–445.

[34] Manzini, G., and Rastero, M., 2004, A Simple and Fast DNA
Compressor, Software: Practice and Experience, 34(14),
1397–1411.

[35] A. J. Pinho, A. J. R. Neves, D. A. Martins, et al.,
Finite-Context Models for DNA Coding, Signal Processing
Lab, DETI/IEETA, S. Miron , Ed., University of Aveiro,
Portugal, Chapter 6, 117-130, 2010.

[36] A. J. T. Lee, C. Chang and C. Chen, "DNAC: An Efficient
Compression Algorithm for DNA Sequences," National
Taiwan University, Taipei, Taiwan 10617, R.O.C., 2004.

[37] D. Loewenstern, and P. N. Yianilos, "Significantly lower
entropy estimates for natural DNA sequences," in Proc. of the
Data Compression Conf., (DCC '97), 1997, 151–160.

[38] Allison, L., Edgoose, T., and Dix, T. I., 1998, Compression of
strings with approximate repeats, Proc. ISMB, 8–16.

[39] M. D. Cao, T. I. Dix, L. Allison, et al., "A Simple Statistical
Algorithm for Biological Sequence Compression," in Proc. of
the Data Compression Conf., (DCC '07), 2007, 43–52.

[40] A. Apostolico, and S. Lonardi, Compression of biological
sequences by Greedy Off-Line Textual Substitution, in Proc.
of the Data Compression Conf., (DCC '00), 2000, P. 143.

[41] Apostolico, A., and Lonardi, S., 2000, Off-Line Compression
by Greedy Textual Substitution, Proc. IEEE, 88(11),
1733–1744.

[42] I. Tabus, G. Korodi, and J. Rissanen, "DNA sequence
compression using the normalized maximum likelihood
model for discrete regression," in Proc. of the Data
Compression Conf. (DCC2003), 2003, 253–262.

[43] Korodi, G., and Tabus, I., 2005, An Efficient Normalized
Maximum Likelihood Algorithm for DNA Sequence
Compression, ACM Trans. on Information Systems, 23(1),
3–34.

[44] Bao, S., Chen, S., Jing, Z., et al., 2005, A DNA Sequence
Compression Algorithm Based on LUT and LZ77, Signal
Processing and Information Technology, Proc., 50th IEEE
International Symposium, 23–28.

[45] Vey, G., 2009, Differential direct coding: a compression
algorithm for nucleotide sequence data, Database, Oxford
University Press, vol. 2009, ID bap013.

[46] Bharti, R. K., and Singh, R. K., 2011, A Biological Sequence
Compression based on Look up Table (LUT) using
Complementary Palindrome of Fixed Size, International
Journal of Computer Applications, 35(11), 55-58.

[47] Roy, S., Khatua, S., Roy, S., et al., 2012, An Efficient
Biological Sequence Compression Technique Using LUT and
Repeat in the Sequence, IOSR Journal of Computer
Engineering (IOSRJCE), 6(1), 42-50.

[48] N. Cherniavsky and R. Ladner, "Grammar-based
Compression of DNA Sequences," UW CSE Technical
Report (TR2007-05-02), presented at the DIMACS Working
Group, 2004.

[49] Rajeswari, P. R., and Apparao, A., 2010, Genbit Compress
Tool (GBC): A Java-Based Tool To Compress DNA
Sequences and Compute Compression Ratio (BITS/BASE)
Of Genomes, International Journal of Computer Science and
Information Technology, 2(3), 181-191.

[50] Rajeswari, P. R., Apparao, A., and Kumar, R. K., 2010,
HUFFBIT COMPRESS – Algorithm to compress DNA
sequences using extended binary tree, Journal of Theoretical
and Applied Information Technology, 13(2), 101-106.

[51] Rajeswari, P. R., and Apparao, A., 2011, DNABIT Compress
– Genome compression algorithm, Bioinformation, 5(8),
350-360.

[52] Satyanvesh, D., Balleda, K., Padyana, A., et al., 2012,
GenCodex - A Novel Algorithm for Compressing DNA
sequences on Multi-cores and GPUs, Proc. IEEE, 19th
International Conf. on High Performance Computing (HiPC),
Pune, India, No 37.

[53] Prasad, V. H., and Kumar, P. V., 2012, A New Revised DNA
Cramp Tool Based Approach of Chopping DNA Repetitive
and Non-Repetitive Genome Sequences, International Journal
of Computer Science Issues (IJCSI), 9(6), 448-454.

[54] Prasad, V. H., 2013, A new revisited compression technique
through innovation partition group binary compression: a
novel approach, International Journal of Computer
Engineering & Technology (IJCET), 4(2), 94-101.

[55] Cock, P. J. A., Fields, C. J., Goto, N., et al., 2010, The sanger
FASTQ format for sequences with quality scores, and the
Solexa/fillumina FASTQ variants, Nucleic Acids Research,
38(6), 1767–1771.

[56] Li, H., Handsaker, B., Wysoker, A., Fennell, T., et al., 2009,
The Sequence Alignment/Map format and SAMtools,
Bioinformatics, 25 (16), 2078-2079.

[57] Christley, S., Lu, Y., Li, C., et al., 2009, Human genomes as
email attachments, Bioinformatics, 25(2), 274-275.

[58] Tembe, W., Lowey, J., and Suh, E., 2010, G-SQZ: compact
encoding of genomic sequence and quality data,
Bioinformatics, 26(17), 2192-2194.

[59] Daily, K., Rigor, P., Christley, S., et al., 2010, Data structures
and compression algorithms for high-throughput sequencing
technologies, BMC Bioinformatics, vol. 11.

 American Journal of Bioinformatics Research 2013, 3(3): 72-81 81

[60] Afify, H., Islam, M., Abdel-Wahed, M., et al., 2010, Genomic
Sequences Differential Compression Model, Proc., 27th
National Radio Science Conf., Egypt.

[61] E. Chavez and S. Lonardi, Eds., Relative Lempel-Ziv
Compression of Genomes for Large-Scale Storage and
Retrieval: Springer 2010, vol. 6393, 201–206.

[62] S. Kuruppu, S. J. Puglisi, and J. Zobel, "Optimized Relative
Lempel-Ziv Compression of Genomes," in Proc. Australasian
Computer Science Conf. (ACSC'11), 2011, vol. 113, 91-98.

[63] Kuruppu, S., Smith, B. B., Conway, T., et al., 2012, Iterative
dictionary construction for compression of large DNA
datasets, Computational Biology and Bioinformatics,
IEEE/ACM, 9(1), 137–149.

[64] N. J. Larsson, and A. Moffat, "Offline dictionary-based
compression," in Proc. Data Compression Conf. (DCC'99),
1999, 296-305.

[65] Deorowicz, S., and Grabowski, S., 2011, Compression of
genomic sequences in FASTQ format, Bioinformatics, 27(6),
860-862.

[66] Fritz, M. H., Leinonen, R., Cochrane, G., et al., 2011,
Efficient storage of high throughput DNA sequencing data
using reference-based compression, Genome Research, vol.
21, 734-740.

[67] Sakib, M. N., Tang, J., Zheng, W. J., et al., 2011, Improving
Transmission Efficiency of Large Sequence Alignment/Map
(SAM) Files, PLOS ONE, 6(12), e28251.

[68] Wang, C., and Zhang, D., 2011, A novel compression tool for
efficient storage of genome resequencing data, Nucleic Acids
Research, 39(7), e45.

[69] Howison, M., 2013, High-Throughput Compression of
FASTQ Data with SeqDB, Computational Biology and
Bioinformatics, IEEE/ACM, 10(1), 213 – 218.

[70] Pinho, A. J., Pratas, D., and Garcia, S. P., 2012, GReEn: a tool
for efficient compression of genome resequencing data,
Nucleic Acids Research, 40(4), e27.

[71] Jones, D. C., Ruzzo, W. L., Peng, X., et al., 2012,
Compression of next-generation sequencing reads aided by
highly efficient de novo assembly, Nucleic Acids Research,
40(22), e17.

[72] Popitsch, N. and Haeseler, A., 2013, NGC: lossless and lossy
compression of aligned high-throughput sequencing data,
Nucleic Acids Research, 41(1), e27.

