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Abstract  Identification of antigen-antibody interacting sites is an important task for vaccine design, and hence reliable 
computer based prediction methods are highly desirable. The prediction performances of the current existing methods to 
predict the conformational B-cell ep itope residues are still not satisfying and remain far from ideal. This is a  new approach 
in the area of vaccine development to predict the antigenic surface patches that hold the majority number of epitope resi-
dues in the surface of the antigen protein structure. The proposed method is a support vector machine based model to pre-
dict the epitope patches in the antigen structures by combining the accessible surface area and B-factor structural features. 
The Predictions are made for the known structures of benchmark dataset after removing antigens sequence redundancy 
where no two antigen sequences have more than 40% sequence identity. The predictions are successful for 70% of the an-
tigen structure chains of the benchmark dataset. We compared the predict ion performance of our model with a protein – 
protein interaction predict ion server “Sharp2” using the same antigen structures of the benchmark dataset and observed that 
our model outperforms on Sharp2 by more than 40% accuracy. Th is paper demonstrates that the identification of the anti-
genic determinant sites in  the protein surface using the antigen structural information outperforms the tradit ional pro-
tein-protein interaction algorithms to predict  the interacting  sites in the antigen protein  surface. It p rovides a new approach 
for the scientists to only use the predicted antigenic epitope surface patch from the target antigen structure in vaccine de-
velopment rather than using the predicted epitope residues. A web server “PatchTope” has been developed for predicting 
antigenic epitope surface patches on an antigen protein structure surface and is available at 
http://www.fci.cu.edu.eg:8080/PatchTope/. 

Keywords  Surface Patch, Conformational B-cell Epitopes, Support Vector Machine, B-Facto r, Relative So lvent Ac-
cessibility 

1. Introduction 

Vaccine design is the process of creating d rug (vaccine) 
to stimulate adaptive immunity to a disease. Vaccine can 
either be live attenuated (weakened) fo rms of pathogens 
(bacteria or v iruses), killed or inactivated forms of these 
pathogens, or a refiner material such as proteins. Evolution 
of weakened pathogens can be one of the potential safety 
problems raised from such vaccines [1]. In order to over-
come on such safety problems, the subunit vaccine is intro-
duced. Subunit vaccine is produced from a specific portion 
of the protein antigen or virus separated from the patho-
genic organism called ep itope. 
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B-cell epitopes are segments of the antigen molecules 
recognized by antibodies or B-cells. They are classified into 
two groups: continuous and discontinuous. A continuous 
(linear) epitopes are short segment of continuous amino 
acid sequence fragment of a protein [2] while a d iscontinu-
ous (conformational) ep itopes are composed of a bundle of 
amino acid residues of a protein antigen that are far away 
from each other in the primary sequence of the antigen but 
are brought to close proximity within the folded protein 
structure [3]. The large majority of B-cell epitopes although 
they are composed of short linear peptides, are conforma-
tional. 

Identificat ion of B-cell epitope is considered the main  
challenging task in the epitope-driven vaccine design [4]. 
Manual identification of B-cell epitopes by actual experi-
mentations and testing done by scientists is very expensive 
and has a lot of limitat ions. Such limitations are (t ime scale, 
some experiments can’t be done by scientists and ethical 
concerns). Wherefore, computer based systems can play an 
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important role in this task by developing computational 
methods in predicting B-cell epitopes for scientists. 

Computational methods for conformational B-cell epi-
topes identificat ion require a complete analysis in the con-
text o f the native antigen structure however; the linear epi-
topes only require the sequence of the antigen to be avail-
able [5]. Several computational methods have been devel-
oped for predicting B-cell ep itopes of the both types: linear 
and conformational ep itopes. 

There are two major approaches for predicting linear 
B-cell epitopes; these approaches are propensity scale and 
mach ine learning methods. The existing methods which rely 
on propensity scale approach are Parker et al. [5], Karp lus 
et al. [7], Emin i et al. [8], PREDITOP [9], PEOPLE [10], 
BEPITOPE [11] and BcePred [12]; while the recent existing 
methods which rely on machine learn ing approach are 
BepiPred [13], ABCPred [14], Söllner and Mayer [15], 
Chen et al. [16], Söllner et al. [17], BCPred [18], FBCPred 
[19], El-Manzalawy et al. [20] and COBEpro [21]. 

The conformational B-cell ep itope prediction methods 
are also composed of two major approaches; these ap-
proaches are sequence and structure based approaches. Se-
quence based prediction methods try to predict the confor-
mat ional B-cell epitopes from the antigen primary  sequence 
while in  the structure based prediction methods; the antigen 
3D structure must be available. The sequence based predic-
tion approach for predicting conformational B-cell epitopes 
has the advantage that there is no need for the antigen 3D 
structure to be available fo r predict ion but only the antigen 
sequence is enough. CBTOPE [22] is a prediction method 
relies on the sequence based approach to predict conforma-
tional B-cell epitopes from the antigen primary sequence. 
On the other hand, there are some few methods for predict-
ing conformat ional B-cell epitopes from the antigen struc-
ture; these methods are CEP [23], DiscoTope [3], PEPITO 
[24], Ellipro [25], EPCES [26], EPSVR [27], EPMeta [27], 
and Liu R et al. [28]. Unfortunately, the prediction per-
formances of these methods are still not satisfying and re-
main far from ideal. 

In this paper, we present a different vision for identifica-
tion of the antigenic ep itope sites in the antigen structure 
chain by predicting the antigen overlapping surface patches 
that hold the majority of epitope residues in the antigen 
structure; and thus the scientists can use in vaccine devel-
opment. From a given antigen structure, the overlapping 
surface patches are generated, and the surface patch that 
holds maximum number of epitope residues is considered 
the epitope patch which is used for vaccination by the sci-
entists. The method is a support vector machine model 
trained on epitope and non-epitope surface patches gener-
ated from antigen structure chains of Pernille  et al.’s dataset 
[3]. The method always choses three top scored paths and 
treats them as predicted paths. Then the prediction is con-
sidered as correct if any of these paths predicts at least 70% 
of interacting residues. To evaluate the performance of our 
model, p redictions are made for known structures of an 
independent test set of antigen chains generated by Po-

nomarenko, Ju lia et  al. [29]. Additionally, we evaluated our 
model in terms  of the area under receiver operator charac-
teristics curve (AUC) by conducting fivefold cross valida-
tion technique on the representative training set collected by 
Pernille et al. [3]. We compared our model with Sharp2 [30]: 
a server for the prediction of protein-protein interaction 
sites on the surface of the protein structure. We compared 
the prediction accuracy of Sharp2 in the benchmark dataset 
with our model, and it is observed that the identification of 
the antigenic determinant sites in the protein surfaces using 
the antigen structural informat ion outperforms the pro-
tein-protein interaction method “Sharp2” to predict the an-
tibody interacting sites in the antigen protein surfaces. 

2. Methods 
2.1. Datasets 

2.1.1.Train ing Dataset 

We obtain 75 (Ag-Ab) complexes prepared by Pernille  et 
al. [3] from Discotope supplementary materials. These 
complexes were selected using X-ray crystallography with 
resolution less than 3 Å. The corresponding antigen PDB 
file is obtained from Protein Data Bank [31]. Pernille  et al. 
[3] had d ivided the 75 antigens into 25 heterogeneous 
groups. The 25 heterogeneous groups of antigens were di-
vided into five data sets for cross validation and testing. In 
this dataset, a residue in  the antigens is determined as epi-
tope residue if the distance between any of its atoms and 
any atom of antibodies is less than 4Å. This dataset contains 
1202 antibody interacting and 13242 non-antibody inter-
acting residues. 

2.1.2.Independent Testset 

We evaluated our model on a Benchmark dataset gener-
ated by Ponomarenko et al. [29]. Th is dataset contains 161 
protein chains obtained from 144 (Ag-Ab) complex struc-
tures. The antigen residue is considered an epitope residue 
if the d istance between any of its atoms and any atom of 
antibodies is less than 4Å. We removed sequence redun-
dancy from the 161 antigen chain  sequences using CDHIT 
[32] at 40% cutoff, obtaining only 50 antigen chains where 
no two antigen sequences have more than 40% sequence 
identity. In order ensure the low sequence identity between 
training and testing datasets; we removed the chains that 
already exist in the Ponomarenko et al.’s dataset (our train-
ing dataset) and the representative remaining proteins have 
been selected as testing dataset. Finally we got non redun-
dant test set of 30 antigen chains: 1BGX:T, 1DEE:H, 
1E6J:P, 1IGC:A, 1KEN:A, 1NL0:G, 1NSN:S, 1ORQ:C, 
1PKQ:E, 1S78:B, 1SY6:A, 1TZI:V, 1W EJ:F, 1YJD:C, 
1YNT:F, 1ZA3:R, 1ZTX:E, 2ADF:A, 1NMB:N, 2B4C:G, 
1T03:B, 1R3K:C, 1V7M:V, 1IAI:I, 1IAI:M, 1KB5:A, 
1KB5:B, 1QFW:A, 1QFW:B, 1OB1:C. Th is independent 
test set contains 467 antibody interacting and 6171 
non-antibody interacting residues. 
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2.2. Surface Patch Generation Algorithm 

The identification of the protein  surface is not an easy 
task even when the antigen 3-d structure is known. The rel-
ative solvent accessibility of a residue in  the protein struc-
ture is considered a measure of how large the amino acid 
residue is exposed to the solvent surrounding the protein 
[33]. NACCESS [34] is a computer program used to com-
pute the atomic accessible surface area o f a given 
3-dimensional co-ordinate sets (PDB files). For each anti-
gen, the relative accessible surface area is computed and the 
residues with a relat ive surface area ≥  5% are considered 
the protein surface accessible residues [35]. Each surface 
accessible residue is used to define a surface patch. A sur-
face patch is composed of the central accessible surface 
residue followed by N nearest surface accessible neighbour 
residues [35], (N + 1) is the patch size. The nearest surface 
accessible neighbour residues from the patch central ac-
cessible surface residue are determined by the Euclidean 
distance [36] between all surface residues and the patch 
central residue. Using this procedure, overlapping patches 
of surface accessible residues are generated from each anti-
gen structure. Figure 1 shows a flow chart o f the surface 
patch generation algorithm. 

 
Figure 1.  Surface Patch Generation Algorithm 

2.3. Data Preparation 

For each antigen  structure in the Pernille et  al.’s dataset 
[3], the overlapping surface patches are generated. Ep itope 
patch is the antigen surface patch that holds the maximum 
number of epitope surface accessible residues, while 
non-epitope surface patch is the antigen surface patch that 
holds the min imum number of epitope surface accessible 
residues in the antigen structure. Following this rule, the 
training dataset is composed of 75 and 75 epitope and 
non-epitope surface patches, respectively. In order to in-
crease the training dataset, we increased the number of 
non-epitope surface patches for each antigen structure by 
selecting 6 surface patches holding minimum number of 
epitope residues, while only one epitope surface patch is 
generated. For each surface patch, 1 label is assigned to an 
epitope surface patch and 0 label is assigned to non-epitope 
surface patch. This train ing dataset contains a total of 75 

epitope surface patches and 450 non-epitope surface 
patches. 

2.4. Normalized Relative Solvent Accessibility 

For each surface residue in the antigen structure, the rela-
tive solvent accessibility is measured using the program 
NACCESS [34], and normalized using the following equa-
tion: 

RSAnorm ,r =  𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟–min ⁡(𝑅𝑅𝑅𝑅𝑅𝑅)
𝑚𝑚𝑚𝑚𝑚𝑚 (𝑅𝑅𝑅𝑅𝑅𝑅)−min(𝑅𝑅𝑅𝑅𝑅𝑅)      (1) 

whereRSAr  is the relative solvent accessibility of residue 
r; max(RSA)  and min(RSA) are the maximum and min-
imum relat ive solvent accessibility values of all residues in 
the antigen chain, respectively. 

2.5. Normalized B-Factor 

Also called  “temperature factor”, it reflects the flexibility 
of residues in  the protein structure resulting from protein 
crystallography [37]. For each surface residue in the antigen 
structure, the B-Factor value is ext racted from the antigen 
3-dimensional co-ordinate file (PDB file), and normalized 
using the following equation: 

BFactornorm ,r =  BFactor r−<BFactor r >
∂(BFactor r )

 (2) 

Where BFactorr  is the B-Factor of residue r, <BFactorr > 
and ∂(BFactorr ) are the mean value and the standard dev-
iation of the B-Factor values of all residues in the antigen 
chain, respectively. 

2.6. Support Vector Machine Model  

Support vector machine [38] is a classification algorithm 
aims to find a deterministic mapping function between the 
input features. Given a set of labeled training patterns (xi, 
yi), where xi∈  Rp, yi ∈  {+1, −1}, t rain ing a SVM clas-
sifiers involves finding a maximum-margin hyper plane that 
divides positive and negative training data samples. The 
hyper plane can be written as f(x) = w . x + b, where “.” 
denotes the dot products, w is a normal vector and b is a 
bias term. In case of the train ing data are not linearly se-
parable, a kernel function is used to map the non-linearly 
separable data into a higher-dimensional space and thus the 
data are assumed to be linearly separable. Given any two 
sample observation in the input space (xi, xj), the kernel 
function can be written as a dot product of two feature vec-
tors into high dimensional feature space K(xi, xj) = Φ(xi)T 
Φ(xj). In this paper, we used Gaussian Rad ial-Basis Func-
tion (RBF) as a kernel function for our support vector ma-
chine classifier: 

𝐾𝐾�𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗 � = exp(−
∥𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗 ∥2

2  𝜕𝜕2 )         (3) 

where ∂ is a parameter. 
The support vector machine models had been used in a 

number of bio logical applications [39]. We have developed 
a SVM models using Weka [40] a machine learn ing work-
bench.  
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2.7. Epitope Surface Patches Prediction Algorithm 

Given the antigen structure, all of its surface residues are 
generated, and hence all its corresponding surface patches 
are obtained. The normalized relative solvent accessibility 
and B-Factor features are calculated for each residue in the 
surface patch, and hence each surface patch is represented 
by a vector of dimensions Nx2 where (N is the patch size). 
A prediction score is associated with each surface patch 
based on the support vector machine scores for the feature 
vectors. The top three non-overlapping surface patches with 
highest prediction scores are generated where no two sur-
face patches have more than 50% residues overlap Figure 
2.Figure 3 shows the flow chart of the prediction algorithm. 

 
Figure 2.  Overlapping/ non overlapping surface patches. (a) Overlapping 
surface patches. (b) Non overlapping surface patches 

 
Figure 3.  PatchTope Prediction Algorithm 

2.8. Accuracy Measures Using the Independent Testset 

For each antigen structure chain in the independent test 
set, all the surface patches are obtained. For each surface 
patch, the number of ep itope residues is calculated. The 
surface patch which holds the maximum number of ep itope 
residues over all surface patches generated from the antigen 
structure is defined as the epitope real surface patch. Figure 
4 shows the process of determining the real surface patch. 

The top three predicted surface patches are generated us-
ing the prediction algorithm. For each predicted surface 
patch, the relative overlap with the real epitope surface 
patch is calculated using the following equation: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑁𝑁𝑁𝑁𝑅𝑅 ∩ 𝑁𝑁𝑁𝑁𝑃𝑃
𝑁𝑁𝑁𝑁𝑅𝑅

𝑋𝑋 100      (4) 

whereNeR  is the number of epitope residues in the real 

surface patch, and NeP is the number of epitope residues in 
the predicted surface patch. If the relative overlap for any of 
the top three predicted surface patches of the antigen struc-
ture exceeds 70%, then the prediction is defined to be cor-
rect. The prediction accuracy is defined as the ratio of the 
number of correct ly predicted surface patches from the an-
tigen structures to the number of all antigen structures in the 
independent test set. 

 

Figure 4.  Determining the real surface patch 

3. Results 
3.1. Analysis of Antibody Interacting Sites 

In order to understand whether the B-cell ep itope resi-
dues are located on the surface of the protein structure, we 
analyzed the Pernille et al.’s dataset to find distributions of 
the amino acid preference of epitope and non-epitope resi-
dues. As shown in Figure 5, most of epitope amino acid 
residues like Asparagine, Glycine, Arg inine, Lysine, Aspar-
tic, and Threonine are polar (Hydrophilic in nature) while 
most of the non-epitope amino acid residues like Cysteine, 
Phenylalanine, Methionine, Alan ine, and Tryptophan are 
hydrophobic (non-polar). It is known that the hydrophobic 
amino acid  residues are not accessible to the solvent while 
the polar and charged amino acid residues are accessible to 
the surface of the molecule and are in contact with the sol-
vent [6]. 

 

Figure 5.  Amino acid preference of epitope and non-epitope residues 

The same Pernille  et al.’s dataset is analyzed with respect 
to the antigen surface residues identificat ion, fo llowing the 
role that the antigen residue with relat ive solvent accessibil-
ity ≥  5% is considered a protein surface accessible resi-
due. The total number of epitope residues in the protein 
surface and protein body is 1164 and 38 residues, respec-
tively. These findings confirm that most of antigenic epi-
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tope residues are located in the surface of the antigen pro-
tein structure. 

3.2. Prediction Results of Fivefold Cross Validation 

Support vector mach ine model based on Gaussian Ra-
dial-Basis Function (RBF) kernel has been developed using 
the combination of the two antigen structural features (rela-
tive solvent accessibility and B-factor). The features are 
represented by a vector of dimension Nx2 (N is the patch size 
and equals to 20 residues). The surface patches were gener-
ated for each antigen structure in the 75 antigen chains of 
Pernille et al.’s dataset. Fivefold cross validations were 
conducted on the five antigen groups of Pernille et al.’s 
dataset [41]. For each run, one group was left out for testing, 
while the remaining four groups were used for training. The 

average area under receiver operator characteristics curve for 
the 5 antigen groups reached a maximum of 0.894. 

3.3. Prediction of Antigenic Patches in Benchmark  
Dataset 

The benchmark dataset is used to independently evaluate 
our model for predicting the antigenic surface patches from 
the protein antigens. The 75 antigen chains of the Pernille  et 
al.’s dataset are used to train our SVM model, while we 
predict the antigenic surface patches of the 30 antigen chains 
generated from the Ponomarenko et al.’s dataset after re-
moving sequence identity. After applying our prediction 
algorithm it is observed that 70% of the antigen chains were 
correctly predicted Tab le 1. We obtained an area under re-
ceiver operator characteristics curve (AUC) of 0.809. 

Table 1.  Results of the prediction algorithm for Benchmark dataset 

PDB Code No. Patchesa Patch 
Sizeb 

No.  
Epitope Residuesc 

% Relative O verlap 
Of top three Patchesd Prediction Accuracye 

Real 1st 2nd 3rd 1st 2nd 3rd 
1BGX:T 637 20 15 0 3 8 0 0 0 Not Correctly Predicted 
1DEE:H 48 20 11 11 6 7 100 45 55 Correctly Predicted 
1E6J:P 179 20 12 10 9 0 83 75 0 Correctly Predicted 
1IAI:I 185 20 10 10 0 1 100 0 10 Correctly Predicted 

1IAI:M 180 20 6 0 5 0 0 83 0 Correctly Predicted 
1IGC:A 50 20 12 11 3 5 83 25 33 Correctly Predicted 
1KB5:A 90 20 8 7 0 5 88 0 63 Correctly Predicted 
1KB5:B 92 20 8 7 8 2 38 100 25 Correctly Predicted 
1KEN:A 245 20 10 0 10 0 0 100 0 Correctly Predicted 
1NL0:G 32 20 5 5 0 2 100 0 40 Correctly Predicted 
1NMB:N 243 20 15 0 0 0 0 0 0 Not Correctly Predicted 
1NSN:S 112 20 10 8 9 5 50 50 10 Not Correctly Predicted 
1OB1:C 89 20 10 8 7 3 80 40 0 Correctly Predicted 
1ORQ:C 205 20 10 0 0 10 0 0 100 Correctly Predicted 
1PKQ:E 95 20 14 8 12 3 50 86 7 Correctly Predicted 
1QFW:A 87 20 8 8 3 0 100 0 0 Correctly Predicted 
1QFW:B 108 20 12 0 0 12 0 0 100 Correctly Predicted 
1R3K:C 88 20 13 5 7 6 38 46 46 Not Correctly Predicted 
1S78:B 431 20 9 0 0 0 0 0 0 Not Correctly Predicted 
1SY6:A 140 20 10 8 0 0 80 0 0 Correctly Predicted 
1T03:B 341 20 9 0 0 0 0 0 0 Not Correctly Predicted 
1TZI:V 90 20 3 0 0 3 0 0 100 Correctly Predicted 

1V7M:V 113 20 14 11 12 6 79 64 36 Correctly Predicted 
1WEJ:F 93 20 10 8 8 0 80 80 0 Correctly Predicted 
1YJD:C 97 20 9 0 0 8 0 0 44 Not Correctly Predicted 
1YNT:F 192 20 13 0 4 12 0 15 62 Not Correctly Predicted 
1ZA3:R 85 20 11 0 9 8 0 73 64 Correctly Predicted 
1ZTX:E 81 20 11 11 10 0 91 73 0 Correctly Predicted 
2ADF:A 430 20 8 0 2 0 0 13 0 Not Correctly Predicted 
2B4C:G 275 20 11 10 4 6 82 36 45 Correctly Predicted 

aTotal number of surface pat ches of each antigen chain. 
b Number of residues in the surface patch.  
c Number of epitope residues in the real epitope patch and the top three non-overlapping surface pat ches generated from our predi ction algorithm. 
d Relative overlap between the top three surface pat ches and the real surface pat ch. 
e The prediction accuracy, if the relative overlap for any of the top three predicted surface patches of the antigen structure exceeds 70%, then the prediction is defined 
to be correct.
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3.4. Comparisons with a Protein-Protein Interaction 
Server 

Sharp2 [30] is a  web  server fo r pred icting protein-protein  
interaction sites on the surface of the 3D structure of a pro-
tein. The protein interacting sites may be an  identical protein, 
a different protein that is larger, a different protein that is 
smaller, or an antibody. The user friendly web server enables 
the scientists to choose the protein interacting sites, and 
hence the algorithm parameters for predict ing pro-
tein-protein interaction sites are changed accordingly[35]. 
For each antigen chain in the benchmark dataset, the protein 
interacting surface patches have been downloaded using 
Sharp2 web server with parameters: (protein type = Type D; 
Interacting partner is an antibody; and patch size = 20). The 
surface patches predicted from the antigen chain are ranked 

based on the patches with h ighest combined scores. The top 
three non-overlapping surface patches with highest com-
bined scores are generated where no two surface patches 
have more than 50% residues overlap. For each antigen chain 
in the benchmark dataset, the relative overlap of each surface 
patch in the top three non-overlapping surface patches with 
the real epitope surface patch is calculated. We observed that 
only 28% of the antigen chains were correctly predicted 
(Table 2). Comparing this prediction accuracy in the Pono-
marenko et al.’s dataset with our model reveals that identi-
fying the antigenic determinant sites in the protein surfaces 
using the antigen structural info rmation outperforms the 
traditional protein-protein interaction algorithms to predict 
the interacting sites in the protein surfaces.

Table 2.  Results of the prediction of protein-protein interaction sites using Sharp2 on the Benchmark dataset 

PDB Code No. 
Patchesa 

Patch 
Sizeb 

No.  
Epitope Residuesc 

% Relative O verlap 
Of top three Patchesd Prediction Accuracye 

Real 1st 2nd 3rd 1st 2nd 3rd 
1BGX:T 637 20 15 0 7 4 0 0 0 Not Correctly Predicted 
1DEE:H 48 20 11 2 5 7 18 45 55 Not Correctly Predicted 
1E6J:P 179 20 12 0 0 2 0 0 17 Not Correctly Predicted 
1IAI:I 185 20 10 0 0 0 0 0 0 Not Correctly Predicted 

1IAI:M 180 20 6 0 0 0 0 0 0 Not Correctly Predicted 
1IGC:A 50 20 12 10 3 11 83 17 92 Correctly Predicted 
1KB5:A 90 20 8 5 1 8 50 13 100 Correctly Predicted 
1KB5:B 92 20 8 1 2 7 0 25 25 Not Correctly Predicted 
1KEN:A 245 20 10 2 0 0 0 0 0 Not Correctly Predicted 
1NL0:G 32 20 5 5 2 5 100 40 100 Correctly Predicted 
1NMB:N 243 20 15 0 0 0 0 0 0 Not Correctly Predicted 
1NSN:S 112 20 10 5 3 6 20 20 50 Not Correctly Predicted 
1OB1:C 89 20 10 0 0 8 0 0 40 Not Correctly Predicted 
1ORQ:C 205 20 10 0 0 0 0 0 0 Not Correctly Predicted 
1PKQ:E 95 20 14 7 2 14 50 14 100 Correctly Predicted 
1QFW:A 87 20 8 3 3 1 0 0 0 Not Correctly Predicted 
1QFW:B 108 20 12 0 0 12 0 0 100 Correctly Predicted 
1R3K:C 88 20 13 11 0 0 77 0 0 Correctly Predicted 
1S78:B 431 20 9 0 0 9 0 0 56 Not Correctly Predicted 
1SY6:A 140 20 10 2 0 10 10 0 100 Correctly Predicted 
1T03:B 341 20 9 6 0 0 56 0 0 Not Correctly Predicted 
1TZI:V 90 20 3 0 0 2 0 0 33 Not Correctly Predicted 

1V7M:V 113 20 14 2 0 2 14 0 14 Not Correctly Predicted 
1WEJ:F 93 20 10 1 1 0 10 10 0 Not Correctly Predicted 
1YJD:C 97 20 9 2 5 0 0 56 0 Not Correctly Predicted 
1YNT:F 192 20 13 0 0 0 0 0 0 Not Correctly Predicted 
1ZA3:R 85 20 11 0 0 0 0 0 0 Not Correctly Predicted 
1ZTX:E 81 20 11 10 11 7 82 82 55 Correctly Predicted 
2ADF:A 430 20 8 0 0 0 0 0 0 Not Correctly Predicted 
1BGX:T 637 20 15 0 7 4 0 0 0 Not Correctly Predicted 

aTotal number of surface pat ches of each antigen chain. 
b Number of residues in the surface patch.  
c Number of epitope residues in the real epitope patch and the top three non-overlapping surface pat ches generated from our predi ction algorithm. 
d Relative overlap between the top three surface pat ches and the real surface pat ch. 
e The prediction accuracy, i f the relative overlap for any of the top three predi cted surface patches of the antigen structure exceeds 70%, then the predi ction is 
defined to be correct.
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Figure 6.  Visualization of prediction results from complex (PDB ID: 
1ZTX, Chain ID: E)(a) Actual epitope residues determined in the bench-
mark epitope dataset. (b) Predicted epitope surface patch 

3.5. Visualization of Predicted Patches for an Example 

To illustrate the effectiveness of our method, we choose a 
chain complex (PDB ID: 1ZTX, Chain ID: E) from the 
benchmark dataset as an example to visualize the predicted 
surface patch which holds the maximum number of ep itope 
residues in the chain complex. We compare the residues of 
the predicted epitope surface patch with the actual epitope 
residues determined in the benchmark epitope dataset. 
(Figure 6) shows that the predicted surface patch identified 
by our classifier holds most of the epitope residues in the 
protein complex structure (11 out of 16 ep itope residues). 
The predicted surface patch can then be used in vaccine 
development. 

3.6. Patch Tope Implementation 

PatchTope is a user friendly web-based bioinformatics 
tool for the prediction  of the antigenic epitope surface 
patches which hold the most epitope residues in the given 
antigen protein structure. The server is developed using Java 
Servlet and HTML. The user may submit the antigen struc-
ture by entering its PDB-Id or uploading a structure file  in  a 
PDB format. Moreover, the user may enter the chain Id for 
the protein chain of interest and then click on submit button. 
For the given antigen structure, the surface accessible resi-
dues are extracted, and each one defines a surface patch. For 
each surface patch, the feature vector is generated by com-
puting the relative solvent accessibility of each residue using 
NACCESS [34] program, and ext racting the B-Factor fea-
ture from the PDB file. The generated surface patches are 
then passed as input to the trained support vector machine 
model (one by one). The top three non-overlapping surface 
patches with highest prediction scores are generated where 
no two surface patches have more than 50% residues overlap. 
3D view of the antigen structure is generated using JMOL 
[42] and the predicted surface patch residues are marked as 
yellow color for each predicted surface patch according to 
the user selection. PatchTope requires Netscape v6.0 or 
Internet Explorer v6.0 or higher and Java script enabled. The 
web-server is freely availab le at 
http://www.fci.cu.edu.eg:8080/PatchTope/.   

4. Conclusions 

In this paper we p ropose a new computational method for 
predicting antigenic surface patches that interact with B-cell. 
Computing the relative overlapping of predicted patches 
with the real epitope patch in known structures of indepen-
dent test set showed that structural information of the antigen 
chains can be used in predicting the p rotein interacting sites 
on the surface of the protein structure. Compared with pop-
ular p rediction methods for p redicting protein -protein inte-
raction using patch analysis, our approach showed better 
performance in terms of predict ion accuracy. 
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