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Abstract  Successful Prediction for MHC Class II epitopes is an essential step in designing Genetic Vaccines[1]. MHC 
Class II epitopes are short peptides with length between 9 and 25 amino acids which are bound by MHC. These epitopes 
are recognized by T-Cell Receptors and leads to activation of cellular and humoral immune system and, ultimately, to ef-
fective destruction of pathogenic organism. Successful prediction of MHC class II epitopes is more difficult than MHC 
class I epitopes due to open binding groove at both ends in class II molecules, this structure leads to variable length for 
MHC II epitopes and complicating the task for detecting the core binding 9-mer. Large efforts have been exerted in devel-
oping algorithms to predict which peptides will bind to a given MHC class II molecules. In this paper we presented a novel 
classification algorithm for predicting MHC Class II epitopes using Multiple Instance Learning technique. Separated Con-
structive Clustering Ensemble (SCCE) is our new version for Constructive Clustering Ensemble (CCE)[27]. This method 
was used for converting multiple instance learning problem into normal Single Instance Problem. Most of the processing in 
this method lies mainly in vector preparation step before using classifier; Support Vector Machine (SVM) has been used as 
a method with proven performance in a wide range of practical applications[38]. SCCE integrated many algorithms like 
Genetic Algorithm, K medoid clustering, Ensemble learning and Support vector machine in an orchestration to predict the 
MHC II epitopes. SCCE was tested over three benchmark data sets and proved to be very competitive with the state of art 
regression methods. SCCE achieved these results using only binder and non binder flags; without need for regression data. 
An implementation of MHCII-SCCE as an online web server for predicting MHC-II Epitopes is freely accessible at 
http://www.fci.cu.edu.eg:8080/MHCII_Server/MHCII SCCE Server 1.0.htm. 

Keywords  Major Histocompatibility Complex (MHC), Multiple Instance Learning (MIL), Genetic Algorithm (GA), 
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1. Introduction 
Epitopes or antigenic peptides are set of amino acids from 

the pathogenic organism DNA which bound with MHC to be 
presented by Antigen Presenting Cells (APCs)[2] for in-
spection by T cells. Humans’ MHC is often called Human 
Leukocyte Antigen (HLA). The binding and presentation 
operations are considered the central recognition process 
occurring in the immune system as without them the immune 
system would be almost ineffective. These operations lead to 
activation of the T cell, which then signals to the wider 
immune system that a pathogen has been encountered. 

The proteins of the MHC are grouped into two classes[3]. 
Class I molecules present endogenous peptides, Class II 
molecules generally present exogenous peptides. MHC class 
I ligands are of 8 to 11 amino acids long while MHC class II 
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ligands are of 9 to 25 amino acids. Class I molecules have a 
binding cleft which is closed at both ends while MHC class II 
molecules have groove which is opened at both ends this 
allows much larger peptides to bind and also allows the 
bound peptide to have significant “dangling ends”, thus the 
prediction of which peptides will bind a specific MHC class 
II complex constitutes an important step in identifying po-
tential T cell epitopes. These epitopes are suitable as vaccine 
candidate. Figure 1 displays MHC II tertiary structure 
bounded with MHC II epitope. 

The currently available methods for identifying MHC II 
binding peptides are split into main categories: 

(1) Qualitative methods: These methods try to identify 
binder and non binder peptides despite its binding affinity, 
like methods use a position weight matrix to model un-
gapped multiple sequence alignment of MHC binding pep-
tides[4-7], other methods use Artificial Neural Networks 
(ANN)[10,11] and support vector machines (SVM) 
like[12,13]. 

(2) Quantitative methods: these methods try to predict 
binding affinity for peptide like PLS-ISC[15], MHCPred[16], 
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SVRMHC[17], ARB[18], NetMHCII[19], MHCMIR[20] 
and NN-align[14]. 

 
Figure 1.  Example of tertiary structure of peptide binding to MHC class II. 
It can be seen that the binding groove is open in the ends in contrast to MHC 
class I 

Several prediction methods depend on detecting the 
binding 9-mer core peptide like Gibbs sampling[22], 
RankPEP[5], Gibbs[7], NetMHCII[4], MHCMIR[20] and 
NN-align[14]. Chang et al.[23] showed the value of using 
potentially useful predictive information that may be avail-
able outside the 9-mer core peptide by incorporating peptide 
length as one of the inputs to improve the performance of the 
predictor in compare with one that uses only the features 
derived from the 9-mer core. Nielsen et al.[4] have demon-
strated that including peptide flanking residues among inputs 
improves the performance of their SMM-align method on 11 
out of 14 MHC-II allele specific data sets. 

EL-Manzalawy et al.[20] has introduced using Multiple 
Instance regression (MHCMIR) by representing flexible 
length peptides by a bag of 9-mer subsequences. The label 
associated with each bag could be either binary label (binder 
– not binder) or continuous binding affinity of the peptide. 
This method like[14] does not require the 9-mer cores in 
each binding peptide to be identified prior to training the 
predictor. The learning algorithm also detected the 9-mers 
core peptides. 

EL-Manzalawy et al.[20] adapted MILES (multiple in-
stance learning via embedded selection)[24] to fit with the 
MHC II epitopes prediction by using BLOSUM62 matrix 
instead of Euclidean distance for calculating distance be-
tween peptides; and replacing the 1-norm SVM classifier by 
a support vector regression (SVR) model[26]. According to 
the evaluation results, both Multiple Instance Learning and 
Multiple Instance regression are provided to be promising in 
predicting MHC II binding affinity. 

Both[14, 21] have used ensemble learning whether be-
tween different MHC II classifiers like[21] or between clas-
sifiers use the same method but with different parameters 
like[14]. NN-align[14] made ensemble for number of Neural 
Network classifiers with different number of nodes in the 

hidden layer. Both[14, 21] succeeded in achieving much 
better results than using single classifier. 

In this paper we used multiple instance learning for pre-
dicting the MHC II binding epitopes. We followed the same 
methodology like[20] for representing MHC II flexible 
length peptides by a bag of 9-mer subsequences and assign a 
binary label indicating whether the corresponding peptide is 
an MHC-II binder or not. 

The main contributions in this paper to the current 
state-of-the-art methods are the following: 

1. New enhanced version for Constructive Clustering 
Ensemble method[27] has been developed for resolving the 
multi-instance learning problem, the new enhancement has 
been proved to achieve better results than the original algo-
rithm. Constructive clustering ensemble method focused 
mainly on converting flexible length bags into a fixed vector 
to be able to convert multi-instance learning problem to a 
normal classification problem. 

2. Replacing K-means clustering algorithm used in the 
constructive clustering[27] with k-medoid algorithm to fit 
with MHC II epitopes prediction besides changing distance 
function. 

3. Using Genetic algorithm for selecting ensemble classi-
fiers parameters. All parameters are selected using training 
data only and tested with unseen test data. 

We showed how enhanced version for constructive clus-
tering ensemble has a competitive performance with state of 
art methods. 

In this paper, we first defined all used benchmark datasets, 
then how to calculate the performance, introduction to con-
structive clustering ensemble and enhancements added to 
this method, calculating performance comparison between 
original CCE method and enhanced version SCCE. Genetic 
algorithms were used to specify ensemble learning parame-
ters; finally, performance comparison and conclusion. 

2. Data 
The first one is currently the largest data set which pub-

lished by Wang et al.[39] for human HLA DR, DP and DQ 
molecules binding affinities. The data set comprises 26 
HLA-DR, DP and DQ alleles. Alleles included in this data 
set were selected for their high frequency in the human 
population so it reached to 99% from the human coverage. 

Peptides with measured IC50 < 1000 nM are considered 
binders and others are non binders. Wang et al. also parti-
tioned the data into five folds used for training and testing at 
the following URL http://tools.immuneepitope.org/analyze/ 
html/download_MHC_II.html. Wang et al.[39] published 
comparison between set of methods by cross validation using 
this five folds data set. In this paper we compared the results 
published in Wang et al.[39] with results collected from 
SCCE using the same folds. 

The second one is IEDB HLA-DR restricted pep-
tide-binding data set which published by Nielsen et al.[28]. 
As SCCE depends on qualitative input so we converted this 
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data set from quantitative to qualitative, The peptide binding 
affinity IC50 has been converted to either 1 or 0 by con-
verting all peptides with binding affinity greater than 0.426 
to binder (1) and all peptides less than or equal to 0.426 to 
non binder. The data set comprises 13 HLA-DR alleles each 
characterized by at least 420 and up to 5166 peptide binding 
data points, only one allele data has been removed as we 
retrieved only allele data which have more than 100 in-
stances in both binder and non binder class. NN-align[14] 
published the five folds used for training and testing on 
http://www.cbs.dtu.dk/suppl/immunology/NetMHCII-2.0.p
hp. NN-align[14] also published results on this data set for 
set of methods using five folds cross validation. We com-
pared SCCE using five folded cross validation with the 
methods presented in NN-align[14]. 

The third data set is El-Manzalawy benchmark data 
set[29]. El-Manzalawy et al. has introduced four degrees of 
similarity reduction for the data sets extracted from 
MHCPEP[40] and MHCBN[41] besides the original UPDS 
data set extracted from the source. El-Manzalawy et al.[29] 
published the results for three methods using this data set by 
five folds cross validation. 

The first degree is MHCPEP-SRDS1 and MHCBN- 
SRDS1 which derived from the corresponding UPDS data-
sets. The new data set don’t have two peptides share a 9-mer 
subsequence. 

The second degree is MHCPEP-SRDS2 and MHCBN- 
SRDS2 which derived from the corresponding SRDS1 
datasets. The new data set ensured that the sequence identity 
between any pair of peptides is less than 80%. 

The third degree is MHCPEP-SRDS3 and MHCBN- 
SRDS3 which derived from the corresponding UPDS data-
sets using similarity reduction introduced by Raghava[42]. 

The forth degree is MHCPEP-WUPDS and MHCBN- 
WUPDS which derived from the corresponding UPDS 
datasets, the new data set assigned weight to a peptide, this 
weight is inversely proportional to the number of peptides 
that are similar to it. 

The forth database is The Wang et al.[21] benchmark data 
set; consists of quantitative and qualitative binding data to 14 
HLA-DR alleles plus IAB data set. We used this data set for 
comparing between the original version for CCE and our 
enhanced version SCCE using 10 folds cross validation. 

For all data sets evaluation, training data was used as an 
input for genetic search to find the best parameters for the 
training data then built ensemble classifier using these pa-
rameters and test the classifier against unseen test data. 

3. Methods 
3.1. Multi-Instance Learning Using Constructive Clus-

tering Ensemble (CCE) 

The term multi-instance learning was defined by Diet-
terich et al.[33] when they were investigating the problem of 
drug activity prediction. The activity prediction objective is 
to predict whether a candidate drug molecule will bind 

strongly to a target protein or not. Not all drug molecules can 
bind well to all proteins. Drug molecule shape is the most 
important factor in determining whether a drug molecule will 
bind the target protein or not. However, drug molecules are 
flexible, so they can adopt a wide range of shapes. A binder 
molecule can take many shapes but at least one of them can 
bind to the target protein while the non binder molecule does 
not adapt to any shape that can bind to the protein. 

Multiple instance learning formulates this problem[30] by 
representing each candidate molecule by a bag of instances, 
each instance in the bag representing a unique shape adapted 
by the molecule. The bag is positive if and only if at least one 
of the instances in the bag can bind to the protein and nega-
tive if none of the instances in the bag can bind to the protein. 
Not like supervised learning[27] where all training instances 
have known labels, in multi-instance learning the labels of 
the training instances are unknown; and in contrast to un-
supervised learning where all training instances are without 
known labels, in multi-instance learning the labels of the 
training bags are known. In multi-instance learning each 
instance in the bag has its own features vectors while the 
label is for the whole bag not for each instance. 

[30, 31, 32, 33] proposed a solution to the MIL problem by 
adapting single supervised learning algorithms to 
multi-instance learning as long as their focuses are shifted 
from the discrimination between instances to the discrimi-
nation between bags. Constructive Clustering based En-
semble (CCE) method[27] for resolving the multi-instance 
learning problems takes opposite direction. CCE adapted the 
multi-instance representation to fit with the single supervised 
learning algorithms, so each bag is represented in a single 
features vector instead of vector for each instance and this 
vector takes bag label. 

For building one vector for the whole bag instances, CCE 
collected all instances from all bags despite its label and 
placed them all in a one list, then cluster these instances into 
d groups. CCE represented each bag by a vector of d features 
(one for each cluster), the vector values are either 1 or 0; 1 if 
there is an instance in the bag related to this cluster and 0 if 
not. Now each bag is represented by only one vector con-
taining d-dimensional binary feature vector so we could use 
normal single instance supervised classifiers to distinguish 
the bags. CCE proposed using support vector machines for 
classification and K-means for clustering. 

As there is no method for specifying the best number of 
clusters, CCE[27] created many classifiers using different 
cluster count and combined their prediction so the method 
utilized the power of ensemble learning to achieve strong 
generalization capability[34]. 

CCE doesn’t need to store any of the training data as only 
clusters centroids are stored to be used for building training 
and testing vectors. Calculating distance between only 
clusters centroids and test bags instances minimizes the 
number of comparisons as we compare with a limited num-
ber of points not with the whole training data like Cita-
tion-kNN and Bayesian-kNN[35]. 

CCE results were very competitive[27] whether in the 

http://www.cbs.dtu.dk/suppl/immunology/NetMHCII-2.0.php
http://www.cbs.dtu.dk/suppl/immunology/NetMHCII-2.0.php
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MUSK data sets[33] or Generalized MI Data Sets[36] but 
there are some major problems in the CCE which are the 
following: 

1. There is no methodology for selecting the best number 
of clusters or even upper and lower boundaries. 

2. In case that there are shared instances between positive 
and negative bags which is a common case in MIL, some of 
the resultant clusters will be shared between positive and 
negative bags. These clusters will not help in distinguishing 
between positive and negative bags as its features have value 
1 in both cases.  

3. Depending on binary features vector prevented any 
variation in the distance between bag instances and clusters 
centroids. 

SCCE method for predicting MHC II epitopes addressed 
all these issues plus adapting it to fit with MHC II epitopes 
prediction. 

Comparisons between SCCE and original version for CCE 
are displayed to show the effect of these enhancements. 

3.2. Separated Constructive Clustering Ensemble Me-
thod (SCCE) 

SCCE is an enhanced version for CCE to solve 
multi-instance learning problem. SCCE converted bag of 
Multiple Instances vectors into a single vector and uses 
Support vector Machines (SVM) to distinguish between 
binder and non binder bag. 

First each peptide was represented by bag of 9-mer sub-
sequences (Figure 2), then assigned a binary label whether 1 
for binder bags and 0 for non binder bags. These 9-mers in 
each bag instances represent a candidate binding core; if the 
bag has at least one of these binding cores, then it is a binder 
bag. 

 
Figure 2.  representing MHC II binder peptide into bag of 9-mers subs 
strings, each instance is a candidate to be core 9-mers[20] 

According to Nielsen et al.[4], including peptide flanking 
residues PFR among inputs improves their SMM-align 
method performance on 11 out of 14 MHC-II allele specific 
data sets; EL-Manzalawy et al.[20] tried to apply this finding 
by representing each peptide as a bag of 10, 11, or 12-mers 
extracted from it. According to their findings we could de-
duce that the binding core may not exist at the beginning of 
the peptide and may be delayed for one or two positions as 
the first position would be reserved for the PFR. As a result, 
one of the parameters for our method is the starting position 
for extracting the 9-mers bag instances from the peptide. 

Chang et al.[23] showed the value of using potentially 

useful predictive information that may be available outside 
the 9-mer, SCCE tried to apply this finding by representing 
the whole bag into one vector so all useful predictive in-
formation appears in the resultant vector. 

In SCCE; first we separated between instances from 
binder bags and non binder bags; and removed shared 9-mers 
between them then applied clustering on each list separately. 
By this way, two unrelated lists of the clusters were created 
for each side. The resultant clusters centroids are combined 
in one list and used to build bags vectors by representing 
each bag by a vector of d features (one for each cluster). 
Final vector values are the shortest distance between each 
cluster centroid and the instances in the bag. Our vector has 
continuous values instead of the binary values used in CCE. 

For clustering set of strings, k-means can’t be used as it 
depends on building clusters centroids using the mean value 
for each attribute in the cluster members; to overcome this 
problem k-medoids algorithm has been used[37]. The main 
positive point in k-medoids over k-means is its robustness to 
noise and outliers as it minimizes the sum of dissimilarities 
instead of a sum of square Euclidean distances, the medoid 
can be defined as the instance of cluster whose average dis-
similarity to all instances in the cluster is minimal, i.e. it is 
the most centrally located point in the cluster. K-medoids 
steps are the following: 

1. Initialize: randomly select d instances from the n in-
stances as a medoids. 

2. Associate each instance to the closest medoid (selecting 
the closest medoid is done by collecting the distance using 
distance function which is based on the BLOSUM62 amino 
acid substitution matrix[25]). 

3. Using BLOSUM62 for distance calculation gives us 
larger distance for nearly similar 9-mers and lower values or 
negative values for non similar 9-mers; so all distances will 
be multiplier by -1 to have a smaller values for similar 
9-mers and vice versa. 

4. For each cluster try to swap the medoid point with non 
medoid point and computer the cost for this swap, select 
instance that have the lowest cost as the new medoid. 

5. Repeat steps 2, 3 until there is no change in the me-
doids. 

After complete running K-medoid clustering algorithm, 
two lists of clusters are generated. These clusters medoids 
contain the most important patterns in both negative and 
positive bags. 

New parameter for minimum cluster size has been added 
to remove the noise clusters or clusters containing non core 
9-mers. All final clusters are added in one list and used to 
build bags vectors by representing each bag by a vector of d 
features (one for each cluster). Bags vector values are the 
shortest distance (using BLUSOM62[25]) between cluster 
centroid and the instances in the bag. 

After building all bags vectors, supervised single classifier 
(Support Vector Machine) was trained using training data. 
When unseen peptide presented to SCCE classifier, it is 
converted into a bag of 9-mers substrings and use clusters 
centroids generated during training phase to build unseen 
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peptide vector then send this vector to SCCE classifier to 
retrieve the result whether binder or not. Algorithm 1 showed 
the pseudo-code for the SCCE. 

Algorithm 1 Training SCCE 

Function BuildSCCEClassifier (parameters: PosBags, 
NegBags, PosClustersCount, NegClustersCount, Po-
sClustersMinSize, NegClustersMinSize) 
Begin 

set PosInstances to null   #Positive Instances 
set NegInstances to null   #Negative Instances 
set PosClusters to null    #Positive Clusters 
set NegClusters to null   #Negative Clusters 
For integer i loops 1 to size(PosBags) stepping 1 

Foreach instance x Є PosBags_i do  
PosInstances := PosInstances U {x}  

#copy instances from positive bags into PosInstances list  
End 

For integer i loops 1 to size(NegBags) stepping 1 
Foreach instance Є NegBags_i do  

NegInstances := NegInstances U {x}  
#copy instances from negative bags into NegInstances list  

End 
Call RemoveSharedInstances(PosInstances,NegInstances) 
PosClusters := Cluster (PosInstances, PosClustersCount) 
# cluster PosInstances into PosClustersCount groups. 
Call RemoveSmallClusters(PosClusters, Po-

sClustersMinSize) 
NegClusters := Cluster (NegInstances, NegClustersCount) 
# cluster NegInstances into NegClustersCount groups. 
Call RemoveSmallClusters(NegClusters, Neg-

ClustersMinSize) 
AllClustersList := PosClusters U NegClusters 
d := Size(AllClustersList) 
Set FinalVector to null 
For integer i loops 1 to size(PosBags) stepping 1 
Begin 

For integer k loops 1 to d stepping 1 
Begin 

 Yk = arg min dist (AllClustersListk, Pi).  
#we got the minimum distance between the cluster medoid 
and the Bag Instances and add it in the vector. 

End 
S := S U {Y1, Y2….Yk} 

End 
For integer i loops 1 to size(NegBags) stepping 1 
Begin 

For integer k loops 1 to d stepping 1 
Begin 

 Yk = arg min dist (AllClustersListk, Ni).  
#we got the minimum distance between the cluster medoid 
and the Bag Instances and add it in the vector. 

End 
S := S U {Y1, Y2….Yk} 

End 

Classifier := TrainSVM(S) 
Return Classifier 
End 

Function dist (Parameters: s1, s2) 
Begin 

For integer i loops 1 to 9 stepping 1 
Begin 
d+ = BLOSUM62(s1[i]; s2[i]) 
End 
d = d * -1 
Return d 

End 
Table 1 displayed performance comparison on Wang et 

al.[21] benchmark data set by calculating Area Under Curve 
(AUC) for the original CCE after adapting it to fit with MHC 
II epitopes prediction and different versions for SCCE. The 
first Column is the normal CCE; in this case all instances 
from both positive and negative bags are added in one list 
and clustered into 160 clusters, with minimum cluster size 10. 
For the other columns, positive and negative instances are 
separated then applied K-medoid clustering using three dif-
ferent configurations, first one; 80 clusters are created for 
positive instances only with minimum cluster size 10, the 
second, 80 clusters are created also but for negative instances 
only with minimum cluster size 10, the third one which 
achieved the best results; 80 clusters are generated for posi-
tive instances and another 80 clusters for negative instances 
with minimum cluster size for both cases 10 Instances. 

After comparing the results between original CCE and 
these different configurations for the algorithm, creating 
clusters for positive instances and negative instances sepa-
rately has the best average results over any other method; as 
it facilities building clusters that purely represent positive or 
negative instances. Once new peptide presents to classifier; 
if it is related to positive bags it will be more close to clusters 
created from instances from positive bags and vice versa. 
Although original CCE has the second top rank between the 
four methods but if we look at alleles results one by one; we 
will find that original CCE has the best result in only one 
allele from 14 alleles; while the other methods have the best 
results in the other 13 alleles. 

Selecting parameters for clusters count and minimum 
cluster size will be the most important part for building 
SCCE classifier, in some cases build clusters for positive 
instances only gives the best results while in another cases 
cluster negative instances only gives the best results and also 
for balancing between negative and positive instances. 

Another Important point is using ensemble learning; 
original CCE made ensemble between set of classifiers but 
after changing clusters count so the vector for each classifier 
will be different, CCE didn’t specify how to select suitable 
number of clusters. CCE also didn’t build the ensemble 
classifier according to training data. According to table 2; the 
number of clusters for instances can’t be the same for all 
alleles as they vary in the features of each case. 
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Table 1.  Comparison between the CCE original method and different configurations for SCCE method. 

 No Separation Cluster Only Positive 
Instances 

Cluster Only Negative 
Instances 

Cluster separated Positive and 
negative Instances 

DRB1-0101 0.81 0.81 0.785 0.811 
DRB1-0301 0.72 0.741 0.647 0.72 
DRB1-0401 0.64 0.69 0.534 0.682 
DRB1-0404 0.77 0.76 0.515 0.783 
DRB1-0405 0.705 0.657 0.491 0.746 
DRB1-0701 0.758 0.805 0.495 0.79 
DRB1-0802 0.648 0.47 0.506 0.72 
DRB1-0901 0.633 0.627 0.517 0.653 
DRB1-1101 0.797 0.813 0.587 0.793 
DRB1-1302 0.677 0.522 0.604 0.69 
DRB1-1501 0.743 0.751 0.617 0.75 
DRB3-0101 0.706 0.537 0.727 0.69 
DRB4-0101 0.773 0.673 0.502 0.801 
DRB5-0101 0.813 0.807 0.583 0.79 

     
Average 0.728 0.69 0.58 0.744 

 

3.3. Genetic Algorithm for Selecting Parameters 

According to previous section we need to have a meth-
odology for specifying the parameters. The number of pa-
rameters are duplicated many times according to classifiers 
used in the ensemble, selecting ensemble parameters can’t be 
the same for all alleles specially that they vary in the number 
of binders and non binders, binding cores,.. 

SCCE depends on GA for selecting ensemble parameters. 
First, training data were split into training and validation data 
set. Genetic Algorithm runs using training data and after 
each generation the best chromosome was tested with vali-
dation data set to make sure that the enhancements achieved 
in recognizing training data didn’t lead to over fitting. Once 
the results are going down; generations creation terminates 
and returns the best chromosome. Finally, we train the clas-
sifier using the whole training data with the final parameters. 

Genetic Algorithm chromosome contains all ensemble 
parameters; gene for each parameter, so for each classifier in 
the ensemble there is a gene for positive clusters count, 
negative clusters count, minimum size for positive cluster, 
minimum size for negative cluster and the starting position in 
the peptide to extract the 9-mers bag instances. GA fitness 
function is 3 fold cross validation result. Genetic algorithm 
run for specifying the parameters for 20 ensemble classifiers, 
we started GA with initial population of 20 randomly gen-
erated chromosomes; each chromosome has the parameters 
for 20 ensemble classifiers. After completing all steps for 
generating new generation from the initial population like 
selection, cross over and mutation; the best chromosome was 
tested using validation data; if there is an enhancements in 
the results then GA Search continues in generating new 
generation, if the result is going down on validation data set 
or GA search reached to maximum number of generations, 
GA terminates and return best chromosome. 

4. Results 
4.1. The Wang et al. data set[39] 

SCCE was evaluated using Wang et al.[39] data set using 

five folds cross validation. The data set was split into five 
folds and used to compare the results between several MHC 
Class II epitopes prediction methods. Wang et al.[39] pub-
lished the results using this data set for five methods using 
5-fold cross validation. 

SCCE classifier was created by ensemble 15 classifiers; 
training data has been split into training and validation. 
Training data was used for selecting classifiers parameters, 
and validation data set has been used to make sure that the 
new GA generations are not going to over fitting. After 
completing GA iterations; all training data was used for 
building the ensemble classifiers and tested using testing 
data. 

From the results in Table 2; SCCE is ranked number 2 
after NN-align but SCCE has an advantage over NN-align 
which is its ability to work without need for binding affinity 
information. SCCE was mainly designed to work with clas-
sification data where only binary labels (binder or not binder) 
are available. Another advantage in SCCE is the ability to 
adapt it in the future to use any high generalization capability 
classifier rather than SVM, Currently SVM is one of the best 
classification methods but we can switch to any other new 
classifier if it proves better generalization capability. 

4.2. IEDB Benchmark Data Set 

Quantitative IEDB benchmark data set from Nielsen et 
al.[28] has been converted to qualitative using a threshold of 
500 nM. This means that peptides with log50k transformed 
binding affinity values greater than 0.426 are classified as 
binders and peptides with binding affinity values less than or 
equal 0.426 as classifier as non binders. The data has been 
split into five folds; SCCE was evaluated using five folds 
cross validation. 

Table 3 displayed the results for SCCE using five folds 
cross validation with IEDB data set[28]. The first three 
methods results were collected from NN-align[14] using five 
cross validation. NN-align[14] published the five folds used 
for training and testing on http://www.cbs.dtu.dk/suppl/ 
immunology/NetMHCII-2.0.php. 

SCCE is very competitive with the state of art methods. 
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Both SMM and NN-align collected its results after training 
using regression data while SCCE and TEPITOPE depend 
only on qualitative data. SCCE achieved big difference than 
TEPITOPE and competitive performance with SMM and 
NN-align without need for quantitative training data. 

4.3. El-Manzalawy Benchmark Data Set 

El-Manzalawy et al.[29] introduced new benchmark data 
set by using four different similarity reduction methods to 
create four data sets beside the original data. El-Manzalawy 

et al. proved that the performance for MHC II prediction 
method depends mainly on inherent peptide similarity in the 
training data and will be affected according to the similarity 
reduction level. 

SCCE performance has been compared with MHC class II 
epitopes prediction methods (5-spectrum, LA, and CTD) 
included in the El-Manzalawy et al.[29] using five folds 
cross validation. This comparison enabled us measure to 
what extend the result will be affected by similarity reduc-
tion. 

Table 2.  comparison between set of known MHC II epitopes prediction methods and SCCE using five folds cross validation on IEDB HLA-DR, DP and 
DQ data set published by Wang et al.[39] 

Allele ARB SMM-align PROPRED combinatorial library NN-align SCCE 
HLA-DPA1*0103-DPB1*0201 0.832 0.921  0.84 0.943 0.93 

HLA-DPA1*01-DPB1*0401 0.847 0.93  0.833 0.947 0.94 
HLA-DPA1*0201-DPB1*0101 0.824 0.909  0.849 0.944 0.94 
HLA-DPA1*0201-DPB1*0501 0.859 0.923  0.867 0.956 0.94 
HLA-DPA1*0301-DPB1*0402 0.821 0.932  0.864 0.949 0.94 
HLA-DQA1*0101-DQB1*0501 0.871 0.93  0.809 0.945 0.92 
HLA-DQA1*0401-DQB1*0402 0.845 0.896  0.681 0.922 0.891 
HLA-DQA1*0501-DQB1*0201 0.855 0.901  0.586 0.932 0.91 
HLA-DQA1*0501-DQB1*0301 0.844 0.91  0.802 0.927 0.91 

HLA-DRB1*0301 0.753 0.852 0.699  0.887 0.84 
HLA-DRB1*0401 0.731 0.781 0.737  0.813 0.79 
HLA-DRB1*0404 0.707 0.816 0.769  0.823 0.803 
HLA-DRB1*0405 0.771 0.822 0.767  0.87 0.841 
HLA-DRB1*0701 0.767 0.834 0.773 0.762 0.869 0.85 
HLA-DRB1*0802 0.702 0.741 0.647  0.796 0.772 
HLA-DRB1*0901 0.747 0.765  0.572 0.81 0.8 
HLA-DRB1*1101 0.8 0.864 0.804  0.9 0.87 
HLA-DRB1*1302 0.727 0.797 0.6  0.814 0.783 
HLA-DRB1*1501 0.763 0.796 0.743  0.852 0.831 
HLA-DRB3*0101 0.709 0.819  0.655 0.856 0.8 
HLA-DRB4*0101 0.785 0.816  0.697 0.87 0.84 
HLA-DRB5*0101 0.76 0.832 0.728  0.886 0.83 

H-2-IAb 0.8 0.855   0.858 0.85 
Avarage 0.7858 0.853 0.7267 0.752 0.885 0.861 

Min 0.702 0.741 0.6 0.572 0.796 0.772 
Max 0.871 0.932 0.804 0.867 0.956 0.94 

Table 3.  comparison between set of known MHC II epitopes prediction and SCCE on IEDB HLA-DR data set published by Nielsen et al.[28]. 

Allele TEPITOPE SMM NN-align SCCE 
DRB1*0101 0.72 0.802 0.837 0.83 
DRB1*0301 0.664 0.795 0.808 0.79 
DRB1*0401 0.716 0.75 0.767 0.75 
DRB1*0404 0.77 0.8 0.815 0.8 
DRB1*0405 0.759 0.789 0.771 0.742 
DRB1*0701 0.761 0.812 0.844 0.82 
DRB1*0802 0.766 0.787 0.826 0.782 
DRB1*0901  0.655 0.623 0.67 
DRB1*1101 0.721 0.796 0.822 0.803 
DRB1*1302 0.652 0.785 0.822 0.77 
DRB1*1501 0.686 0.727 0.754 0.73 
DRB4*0101  0.793 0.811 0.77 
DRB5*0101 0.68 0.761 0.789 0.77 

Avg 0.72 0.77 0.79 0.77 
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Table 4.  Comparison between set of MHC II epitopes prediction methods and SCCE using El-Manzalawy et al.[29] benchmark data set. 

Data Set Name Similarity Reduction Method 5-spectrum LA CTD SCCE 

MHCPEP[40] 

UPDS 0.885 0.886 0.9 0.91 
SRDS1 0.702 0.789 0.77 0.81 
SRDS2 0.575 0.709 0.659 0.73 
SRDS3 0.684 0.751 0.702 0.76 
WUPDS 0.722 0.741 0.719 0.804 

MHCBN[41] 

UPDS 0.758 0.797 0.775 0.84 
SRDS1 0.451 0.697 0.719 0.753 
SRDS2 0.36 0.636 0.673 0.71 
SRDS3 0.68 0.756 0.703 0.77 
WUPDS 0.609 0.718 0.694 0.763 

 

Results show clearly that SCCE outperformed all methods 
besides its robustness in case of low similarity between the 
data. 

5. Discussion 
Predicting MHC Class II binder epitopes is an essential 

step in developing Genetic Vaccines[1], MHC II epitopes 
predictions is much more complicated than predicting MHC 
I binders epitopes according to the open binding groove at 
both ends. MHC II structure leads to variable length epitopes 
and complicating the task for detecting the core binding 
9-mer. 

SCCE has been inspired from both[20] and[27]. 
EL-Manzalawy et al.[20] has introduced converting MHC 
class II binding epitopes prediction into multiple instance 
learning; Construct Clustering Ensemble (CCE)[27] con-
verted Multiple Instance Learning problem where each in-
stance in the bag has its own feature vector into normal sin-
gle classifier where each bag has one feature vector repre-
senting all bag instances and assign the bag label to this new 
feature vector. Combining both[20] and[27] enabled us to 
get benefit from the knowledge outside binding core and 
build one vector for all bag instances. SCCE has adapted 
CCE to MHC Class II epitopes prediction by using 
K-medoid clustering algorithm and BLOSUM62 amino acid 
substitution matrix for distance calculation. 

SCCE introduced separating between instances from 
positive and negative bags and remove shared instances 
between each other; then create clusters for each group 
separately. By this way the new clusters represent unique 
9-mer in positive instances or negative instances separately 
and neglect representing shared 9-mers, the resultant clusters 
are used to build single vector for the whole bag instances. 
Ensemble learning has been generated between many clas-
sifiers; each one has different clusters count; by this way we 
used different ways for representing features and better 
generalization capability. 

SCCE also introduced using Genetic Algorithm for 
specifying ensemble classifiers parameters, the parameters 
include positive and negative clusters count and minimum 
cluster size. GA iterations terminate when reach to the 

maximum number of iterations or validation data set results 
is going down. 

SCCE used Support Vector Machine (SVM) for classifi-
cation as it is currently one of the most robust methods[38] 
and has a very good generalization capability.  

6. Conclusions 
In this paper new classification method for predicting 

MHC Class II epitopes was presented, this method has been 
tested against three main benchmark data sets and proved to 
be competitive with the state of art methods, SCCE is a very 
flexible method that can change its input vector size auto-
matically according to patterns in training data. GA enabled 
SCCE to represent all feature in the training data by selecting 
the best number for positive and negative clusters count plus 
selecting the minimum cluster size. SCCE can be developed 
in the future to use any classifier rather than SVM or even 
make ensemble between SVM and any other classifiers. 
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