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Abstract  Major Histocompatibility complex (MHC) molecules play an essential role in introducing and regulation 
immune system. The MHC molecules are divided into two classes, class I and class II which are differ in size of their binding 
pockets. Determining which peptides bind to a specific MHC molecule is fundamental to understanding the basis of immu-
nity, and for the development of vaccines and immunotherapeutic for autoimmune diseases and cancer. Due to the variability 
of the locations of the class II binding cores, the process for predicting the affinity of these peptides is difficult.This paper 
investigates a new method for predicting peptides binding to MHC class II molecules and its affinity using genetic algorithms 
and metaheuristics. The algorithm is based on a fitness function that builds a scoring matrix for all suggested motifs in a 
specific iteration to test the motif ability to be one of the real motifs in the nature. The genetic algorithmpresented here shows 
increased prediction accuracy with higher number of true positives and negatives on almost of MHC class II alleles,about 80 
percent of peptides were correctly classified when testing dataset from IEDB[26]. Generally, these results indicate that GA 
has a strong ability for MHC Class II binding prediction. 

Keywords  Major Histocompatibility complex (MHC), peptide Binding, Binders, NonBinders, Antigen presenting cells 
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1. Introduction 
Vaccines are the greatest single way for preventing infec-

tion diseases, with huge benefits to human wellbeing. Vac-
cine allows the immune system to develop antibodies and 
overcome the disease should we become infected with the 
real disease. 

Developing a vaccine currently takes a long time but with 
the interconnectivity of the world there is a mounting fear of 
a disease quickly spreading as SARS and A (H1N1). To fight 
this, methods for designing vaccines are researched and 
implemented. 

So the accurate and reliable prediction of MHC peptides 
binding is fundamental to the strong identification of T-cell 
epitopes and thus a successful design of peptide – protein 
based vaccine. 

Predicting the peptides that bind to Major Histocompati-
bility Complex class II molecules can reduce the number of 
experiments for identifying T cell and play an important role 
in the process of designing vaccines. 

A MHC molecule binds peptide that derived from an an-
tigen, and then displays it on the cell surface for T cells 
recognition[10]. Thus determining which peptides bind to a 
specific molecule is important for treatment of autoimmune 
diseases and cancer. MHC molecules are classified into two 
major classes and MHC alleles are grouped according to 
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their structure. For class I MHC alleles, the binding groove is 
closed at both ends, making it possible to predict exactly 
which residues is positioned in the binding groove. For class 
II MHC molecules, the binding groove is open at both ends, 
allowing peptides longer than 9-mers to bind[1]. However, it 
has been reported that a 9-mer core region is essential for 
MHC II binding. Because the precise location of the 9-mer 
region of the MHC II binding peptides is unknown, pre-
dicting MHC II binding peptides tends to be more chal-
lenging than MHC I binding peptides. Some of this reasons 
are: the variable length of binding peptides, the undermined 
core regions for individual peptides, the number of amino 
acids admissible as primary anchors and the experimental 
and reporting errors that depending on different methods[1]. 

Despite of the variability of the length of MHC II binding 
peptides, many computational methods exits and can be 
divided into two approaches: sequence based approach and 
structure based approach[15,17]. Peptide binding to MHC is 
allele specific and by looking at frequencies of different 
amino acids in different positions for a large number of 
known binders, sequence motifs can be seen. An example of 
sequence based approach is to create a scoring matrix for a 
specific MHC type and this can be done by looking at fre-
quencies of different amino acids in different positions in the 
peptide. Another approach for prediction is based on struc-
tural information or crystal structure about MHC-peptide 
complexes and evaluates how well a new peptide fits in the 
binding groove of a MHC molecule[6]. 

Prediction has also been made by using machine learning 
approaches such as artificial neural network (ANN) and 
Hidden Markov Model (HMM)[3,4]. Each of all prediction 
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methods has its pros and cons. 
This papershows an ideal prediction method which would 

integrate the strengths of these individual methods while 
minimizing their disadvantages.The aim of this paper is to 
predict MHC binding peptides and its affinity cores using 
genetic algorithms and metaheuristics. A genetic algorithm 
is an approach to solving certain kinds of search and opti-
misation problems, this approach involves maintaining a 
population of possibility solutions and then generating new 
solutions by the use of genetic operators such as reproduc-
tion, crossover and mutation[10]. A fitness function is a 
measure of the quality of the solution so as the genetic al-
gorithm proceeds the binding matrices improve. In this pro-
ject sequence data of peptides that bind different MHC types 
can be extracted from public databases. The sequences can 
then be trained in MHCPEP dataset[5]. The input will be a 
peptide sequences and the output will be yes or no (1 or 0) 
yes for each binder and no for each nonbinder. The genetic 
algorithm will then be able to predict if a peptide binds or not 
given its sequence.After that a comparative study done be-
tween the output of the genetic algorithm and the output of 
the test dataset (IEDB)[26,27]. The next step is to predict the 
best 9’s through binder’s classifier. The last step is to de-
termine the accuracy of the algorithm. This paper also com-
bined the results of experimental studies to represent the 
accuracy and utility of genetic algorithm in the prediction of 
peptide MHC II binding. These results are expected to be of 
practical interest to immunologists for efficient identification 
of peptides as candidates for immunotherapy. 

2. Materialsand Methods 
2.1. Data Collection 

The data sets used for training and testing for binders and 
non-binders (BNB) were obtained from MHCBN (Bhasinet 
al., 2003), MHCPEP (Brusicet al., 1998b), and IEDB (Peters 
B, et al. 2005) for testing and predicting binding affinity 
(9-mers). 

The MHCBN is a curated database consisting of detailed 
information about Major Histocompatibility Complex (MHC) 
binding, non-binding peptides and T cell epitopes. The 
MHCBNdatabase provides information about peptides in-
teraction with TAP and MHC linked autoimmune diseases 
[16]. 

MHCPEP is a curated database comprising over 13000 
peptide sequences for MHC molecules. Entries are compiled 
from published reports as well as from direct submission of 
experimental data. Each entry contains the source protein 
(when known), an estimate of binding affinity and critical 
anchor residues (if identified), and is fully referenced[5]. 

IEDB (Immune Epitopes Database) provides a catalog of 
experimentally characterized B and T cell epitopes, as well 
as data on Major Histocompatibility Complex (MHC) 
binding[26,27]. The IEDB database covers 99% of all pub-
licly available information on peptide epitopes. With respect 

to MHC II the IEDB database provides a tool that employs a 
consensus approach to predict MHC class II epitopes and its 
9-mers based upon different methods such as Sturniolo, 
ARB, and SMM_align[13]. 

In this study the MHCBN and MHCPEP are used as 
training datasets, these datasets contains many unique pep-
tides known to bind or not bind to the MHC II molecules. 
The lengths of the peptides vary from 9 to 30 amino acids 
and have an average length of 15 amino acids.The structure 
of the peptides is a line containing the amino acids of the 
actual peptide; the first five peptides on the training dataset 
are shown below. 

AAPYEKEVPLSALTNILSAQL 
AEALERMFLSFPTTKTHLA 
GMGWAGWLLSPRGSA 
AGFKGEQGPKG 
RPSWGPTDPRRRSRA 
The IEDB is used as a testing dataset to evaluate the pre-

dictive performance of the genetic algorithm which used in 
this project. The output of this dataset is a table with many 
rows; each row corresponds to one peptide prediction. The 
columns contain the allele the prediction was made for, the 
position of the peptide in the input sequences, the core se-
quence, the predicted score and percentile rank for ARB, 
combinatorial library, SMM_align and Sturniolo. The last 
column is percentile rank for the consensus method such that 
top percentile means good binders. 

2.2. Predictive Model (Algorithm) 

A Genetic algorithm can be defined as a search heuristic 
that mimics the process of natural evolution. Genetic algo-
rithms belong to the larger class of evolutionary algorithms 
(EA) which generate solutions to optimization problems 
using techniques inspired by natural evolution, such as in-
heritance, mutation, selection, and crossover. 

A GA that presented in this paper consists of 4 steps as 
follow: 

(1). Representing input variables as individuals or chro-
mosomes in population. 

(2). Formulating the fitness (objective function) to evalu-
ate individuals. 

(3). Generating a new population by genetic operations 
(selection, crossover, and mutation) on the current popula-
tion. 

(4). Determining if the population has reached the optimal 
fitness. 

The fitness function presented in this paper should pro-
duce a score for each peptide input evaluating how good the 
input is, the input consists of a number of sequences of amino 
acids. 

Given a dataset containing n peptides, S1, S2, … Sn, the 
main goal of the genetic algorithm is to find the optimal 
alignment of the peptides to get a corresponding core of the 
motif(best 9mer) from each peptide. Each peptide is a se-
quence of amino acids and there are 20 different amino acids 
identified by a roman character in the alphabet ∑. 
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Example of input peptides can be seen in the following 
figure 1. 

 
Figure 1.  Example of 5 Peptides Represented as Sequences of Amino 
Acids, The Highlighted Amino Acids in Each Peptide is The 9 mers which 
the Algorithm Should Determine and This is Called a Motif 

To determine how to move in each peptide to get the start 
position for each motif the Single Sequence Movealgorithm 
applied and implemented here. In the single sequence move a 
new starting point for the alignment of a sequence is selected 
at random. The motif for each peptide is defined as having 
length 9 and represented as Ti, for each peptide Si- it has a 
length defined as Mi and each motif has a start position Li 
this is can summarised below as equations. 

∑={‘A’, ‘D’, ‘G’, ‘N’, ‘P’, ‘R’, ‘S’, ‘C’, ‘E’, ‘H’, ‘I’, ‘L’, 
‘K’, ‘M’, ‘F’, ‘T’, ‘W’, ‘Y’, ‘V’, ‘Q’} alphabet of amino 
acids. 

N: number of sequences/ peptides. 
S: representation for each peptide/sequence. 
Si: a peptide i, i € [1,N].  
Mi: length of each peptide i, Mi >9.  
Ti: T (i, p) , …, T (i, 8), motif for each peptide Si , p € [1,9] 

as a position. 
Li: start position of the motif in peptide i, Li € [1, Mi-8].  
The fitness function has the same structure of Gibbs 

sampler fitness with other modifications. The fitness func-
tion f used by the algorithm has been designed and imple-
mented by the author of this paper, and it is determined by 
the following equation 1. 

( )( )E Ca,  p.Log2 Fa,p / Va / N
= =

= ∑∑
209

a 1p 1      
(1) 

In the above equationa is a representation of an amino acid, 
p for a position of amino acid in each suggested motifs given 
to the fitness function, C is a counted number of amino acid a 
found at position p in the motifs. Fa, p is the weighted fre-
quency of which amino acid a found at position p in the 
motifs. V is the background frequency of which amino acid a 
is found at position p in the nature. And finally Nisthe 
number of motifs given to the function. The fitness function 
consists of small parts needed to be calculated to gets the 
fitness function value and it can be divided into 6 steps. 

Step (1): Compute C from all suggested motifs Tis given 
to the function as follow: 

Ca, p=|{Tip|Tip =a, 1≤ i ≤ N}|       (2) 
Where p € [1, 9] and a € ∑, this is done for evaluating each 

amino acid. 
Step (2): Calculate the sequence weight SWi for each 

sequence i, and this is used later when calculating the 
weighted frequencies. There are two methods to calculate the 
sequence weight either by Hobohm methodology or 
Henikoff and Henikoff sequence weighting methodology[7]. 
In this paper to calculate the sequence weight the Henikoff 
and Henikoff methodology is used to downweight every 

frequency according to the number of different amino acids 
at the given position[10], and it can be calculated as follow: 
the first two equations to give each amino acid a weight and 
compute the sequence weight as inthe equation 5. 

Dp=|{Ca, p| a € ∑, Ca, p > 0}|          (3) 
Ha, p=1/ (Dp. Ca, p)                     (4) 

{ }
9

P 1
SWi Ha,p | a Ti, p
=

= ∑ =            (5) 

Where i € [1,N] and p € [1,9]. 
Step (3): Compute the Weighted Frequency W from all 

sequence weights SWs, it can be calculated from the fol-
lowing equation 6: 

( ) ( )
nn

i 1i 1

Wa,p {SWi | Ti, p a} / SWi
= =

= ∑ = ∑
  

 (6) 

Where a € ∑ and p € [1,9]. 
Step (4): Compute the pseudocount correction G, this is 

done using BLOSUM62 frequency matrix which contains 
the frequency by which amino acid a isaligned to amino acid 
b. The pseudocount correction G can be calculated as the 
following equation 7.  

Ga, p= ∑bW(b, p). Q(b, a)        (7) 
Where Qb,a is a BLOSUM62 frequency value, a, b € ∑ 

and p € [1,9]. 
Step (5): Compute the effective frequency Fa, p, from the 

following equation: 
.Wa,p .Ga,pFa,p α β

α β
+

=
+

           (8) 

Where α and β are the weights put on sequence weighting 
and pseudocount correction respectively. Β is a parameter to 
the algorithm optimized to 50 using Henikoff and Henikoff 
sequence weighting. α is the effective number of sequences 
minus one. 

Step (6): Compute the value of the fitness function as all of 
its components is ready to be integrated and used in this step. 
The output of the fitness function is a value for variable E 
that describes how different the distribution of amino acids 
in the motifs are from the distribution of amino acids ex-
pected to be found in the nature, the higher the value of E the 
more likely that these amino acids suggested in the motifs 
given to the fitness function will bind to MHC-II molecules 
and by doing that the algorithm achieves the paper goal. The 
overall structure of this prediction system is showed in figure 
2 

2.3. The Parts of the Genetic Algorithm 

A genetic algorithm consists of three main functions; Se-
lection, Crossover and Mutation. These functions are used to 
convert an old generation of chromosomes into a new gen-
eration that fit the requirements of the fitness function. 

The Selection process is responsible for selecting which 
chromosomes in the current generation are to be used in the 
new generation and which will be forgotten. The type of 
selection process used in this project is the Roulette selec-
tion. 
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Figure 2.  Overall structure of the prediction algorithm, in the data ex-
traction stage, peptide sequences and their binding affinities are collected 
from a variety of sources. In the pre-processing stage, a GA algorithm 
generates alignment matrices which are then used to find a score for each 
peptide to be evaluated after that and get binding affinities for binders 

The roulette selection is one of the simplest selection 
methods. The probability that a chromosome xi is picked is 
proportional to its fitness score. Assume X be a random 
variable representing the chromosome that is picked by the 
selection, the probability that the chromosome xi is chosen 
from a population of size S is defined as in the following 
equation 9: 

( ) ( )
( )

i 1

f xi
P X xi

f xi
=

= =
∑

          (9) 

Crossover is a process for merging two solutions; it makes 
the genetic algorithm better than the randomized search. The 
main idea is that if we have two suitable chromosomes it 
might be possible to combine the good parts from both and 
extract them into a good and a bad chromosome. An example 
of the crossover process is shows in figure 3. 

 
Figure 3.  Crossover performed on the chromosomes A and B with the 

crossover points marked by the sign _ results in the chromosomes C and D 

There are many methods for applying crossover process 
but this paper implements Uniform Crossoveras shown in the 

above figure. In the uniform crossover every part of the 
chromosome is picked as a crossover point with a 50% 
chance. At every crossover point the parts of one chromo-
some is replaced with the parts from the other chromosome. 
As the parts which are to be replaced are chosen at random 
this type of crossover works well on all parts of the chro-
mosome[10]. 

Mutation process is the changing in a single solution to get 
better one, one bit changed might result in new and better 
solutions, which will then be used to generate the next solu-
tions. 

Shift Mutation is implemented in this project, which 
moves the entire placement a random number of steps to one 
side or the other; it adds the same randomly chosen integer to 
all the start positions. To prevent the start position being 
located outside the allowed range the number of steps could 
be in the range [0, length -8]. 

This type of mutation is useful when the position of the 
motif in one sequence is dependent on the positions of the 
motifs in the other sequences. An example of shift mutation 
can be seen in figure 4. 

 
Figure 4.  Shift Mutation is performed in the chromosome leading to leave 
the mutated amino acids to a large extent more different from its main shape 
(replicated from) 

2.4. Evaluation 

Evaluation done using the AUC (Area under Curve) gives 
a value indicating how much deference between the results 
of the algorithm and the real results that got from the labs. 
The evaluation starts after testing using IEDB dataset to 
know the binders, nonbinder, the output from the IEDB is to 
say if the peptide binds or not and with what value?.  

In the AUC if the peptide binds it is said to be positive and 
represented as T and if it does not bind it is said to be nega-
tive and represented as N. And there are 4 categories: 

TP: if a positive peptide is predicted to be binding it is 
considered a true positive. 

FN: if a negative peptide is predicted to be binding it is 
considered a false negative. 

TN: if a negative peptide is predicted not to be binding, it 
is considered a true negative. 

FP: if a positive peptide is predicted not to be binding it is 
considered a false positive. 

After the previous step of classification, the total number 
of actual positive peptides can be calculated as P=TP+FN 
and the total number of negative peptides calculated as 
N=FP+TN. After that the TP_Rate and FP_Ratecan be cal-
culated as follow: 

Positives correctly classified TPTP _ Rate
Total number of positives P

= =  

Negative incorrectly classified FPFP _ Rate
Total number of negatives N

= =  
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A good prediction would be indicated by the point (0, 1). 
The TP_Rate=1 means that the number of positives correctly 
classified is equal to the number of positives (TP=P). 

The worst prediction is located in (1,0) as this means that 
none of the positives has been correctly classified and all the 
negatives has been incorrectly classified. GA applied in this 
paper predicts binding peptides affinity with high accuracy; 
about 80 percent of peptides were correctly classified. 

3. Results 
The GA was applied to derive a position specific scoring 

matrix for predicting MHC-II binding affinities for the al-
leles in the dataset. The predictive performance of the GA 
was tested on IEDB datasetand compared with Gibbs sam-
pler and SVRMHC method[28]. The binding of a peptide 
was calculated as the score of the highest scoring 9mer sub 
peptide.The predictive performance of the different methods 
was measured in terms of the area under the curve (AUC) 
[19]. 

Table (1).  Prediction Results (AUC values) for a Sample of MHC-II 
Alleles 

MHC-II AlleleAUC Value 
DRB1*0101 0.768 
DRB1*0301 0.752 
DRB1*0401 0.761 
DRB1*0701 0.763 
DRB1*1101 0.770 
DRB1*1501 0.775 

As seen in Table 1, GA achieved AUC values greater than 
0.7 for all of MHC-II alleles provided by the IEDB dataset. 

To compare the performance of paper’s fitness function 
with other methods, a training datasetwas created by com-
bining all the experimental datasets, motifs derived on the 
training dataset were tested on an IEDB dataset- a balanced 
set generated from this training set. 

Comparison of performance of GA derived motifs with 
Gibbs sampler[1], SVRMHC[26], and ARB[23] is given in 
Table 2. As seen, GA shows comparable performance with 
Gibbs sampler. 

Table (2).  Comparison for predictive results for GA, SVRMHC, Gibbs 
and ARB 

AUC 
SVRMHC Gibbs ARB GA 

0.71 0.79 0.66 0.76 
0.65 0.76 0.65 0.75 
0.63 0.74 0.65 0.73 
0.62 0.67 0.57 0.61 
0.57 0.59 0.60 0.59 

From these results, it is shown that Gibbs sampler and 
Genetic algorithm are very effective and have good results in 
solving MHC-II prediction problem. 

But the question now is which one is better, Gibbs sampler 
or GA? The result may be dependent on the dataset, time 
taken to reach the effective motif and value (score) of the 
fitness function.  

Finally, the GA model predicts binding affinity of pep-
tides with high accuracy; about 80 percent of peptides were 
correctly classified. The prediction accuracy of this GA 
model is better than those of other methods, includingARB 
and SVRMHC. 

4. Discussion 
Determining which peptides bind a particular MHC 

molecule important for understanding the basis of immune 
responses, and has potential applications in the design of 
peptide vaccines and other issues. Tools to facilitate predic-
tion of peptide MHC binding have practical utility in mini-
mising the number of binding experiments in the laboratory. 
Many methods were implemented to do this job as predicting 
peptides binding to MHC class I and II and each one has its 
own performance and major. In this contribution to the field, 
GA used and a fitness function was developed for binding 
several MHC molecules using peptide data and other tech-
niques required and used as classifier systems. 

The main objective of this paper was to design a method 
for the prediction of MHC class II- binding peptides that 
could integrate experimental data and expert knowledge with 
the search and classification tools of the information science 
to be able to design vaccines for critical diseases like cancer. 
The results indicate that GA and its fitness function dis-
cussed in this paper succeeded in achieving this objec-
tive.GA predictions of peptides binding to MHC-II alleles 
are as good as or better than alternative methods. 

Peptides are typically longer than the core motif, and 
correct alignment is a key for obtaining good prediction 
performance. 

Prediction of MHC class II peptides is a difficult task, and 
the prediction accuracy of the method described is good. 

As the genetic algorithm is as good as the Gibbs sampler 
and its ability to predict is very good, but the fitness function 
used here is simpler than the one used by the Gibbs sampler. 
However tests of the fitness function performed has shown 
that the fitness functions are identical with some exceptions 
like using Henikoff and Henikoff sequence weighting and 
the training and testing datasets. The following figure shows 
the comparable values for AUC between Genetic Algorithm 
and Gibbs sampler. 

 
Figure 5.  AUC values for Gibbs sampler & Genetic algorithm 
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Finally, this paper proposed a new approach for predicting 
binding affinity to MHC class II molecules by collecting 
peptides binding data from datasets. In this paper also a 
method for determining the start position of the placement 
(Single Sequence Move) is implemented in addition to the 
fitness function that worked well to achieve the goal. 

The experimental results show that GA significantly im-
proves the accuracy of predicting peptides binding to 
MHC-II molecules defined at IEDB dataset. 

For MHC class -II allele’s experimental methods to define 
the actual binding region of a peptide for every peptide 
would be very useful and effective. A database containing 
experimentally verified non-binding protein would also be 
very useful. Furthermore data would be needed to expand the 
predictions to more alleles and to test the final models. 

5. Conclusions 
This paper presents a Genetic algorithm for predicting 

peptides binding to MHC class-II molecules and finding its 
motifs. GA has successfully designed in modules to make it 
easy to change the types of elements (mutation, selection, 
etc.) and implementedin a simple way to optimise the fitness 
function. The problem of this paper was written using 
mathematical notation in order to clarify what has to be 
calculated. The experiment shows that the proposed GA is 
better than earlier methods in predicting binding sites on 
most alleles of class II MHC IEDB dataset. This shows the 
applicability of GA methodology to find binding motifs in a 
wide range of MHC alleles and thus can help biologists in 
designing vaccines for autoimmune diseases and cancer. 
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