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Abstract  The set-valued differential equations (SDEs) are important parts of the set-valued analysis theory. It was 
investigeted by professor Lakshmikantham V., and many other authors (see[1]-[6],[8]-[10]). Beside that, we have to studied 
the problems of existence, comparison and stability of set solutions to the set-valued control differential equations (SCDEs) 
(see[7],[11]-[16]). In this paper, we present the problems of boundedness for set solutions to the Set Control Differential 
Equations (SCDEs) by the Lyapunov-like functions and by admisib le control- feedback. 
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1. Introduction 
In the last 10 years, set-valued analysis is interesting with 

the new field of set differential equations (SDEs). There are 
many the authors are interesting in field  of SDEs, for 
example, Lakshmikantham V., Gnana T., Kaleva O., 
Mohapatra R.,... Before we proceed to investigate our 
problems, let's note the following facts: 

In[5], Prof.V. Lakshmikantham and the other authors have 
studied the set differential equations (SDEs). 

In[13] and[16], the authors have considered the set control 
differential equations (SCDEs), that is SDEs with set 
controls: and have some important results on 
existence, stability. 

In[11] the author has given many kinds of feedback 
 for problem of global 

controllability. 
In this paper, we present the boundedness of set solutions 

to SCDEs by the Liapunov-like functions and by feedback. 
This paper is organized as fo llows: in section 2, we recall 

some basic concepts and notations which are useful in next 
sections. In section 3 we present the boundedness properties 
of set solutions to SCDEs and in the last section, we give the 
conclusion and acknowledgements. 

2. Preliminaries 
In[5], Prof.V. Lakshmikantham and the other authors have  
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studied the set differential equations (SDEs). In this work the 
authors have considered the Hausdorff metric space as 
followings: 

Let denote the collection of all nonempty convex 
subsets of . Given A, B - the Hausdorff distance 
between A and B is defined by 

 

We define the magnitude of a nonempty subset of A 

 

We define the magnitude of a nonempty subset of :  
  (1) 

where  is the zero element o f  which is regarded as a 
one point set.  - norm in  is finite when 
the supremum in (1) is attained with . The set 

, with the metric  defined above, is a complete 
metric space. It has been proven that  becomes a 
semilinear metric space which can be embedded as a 
complete cone into a corresponding Banach space, if it is 
equipped with the natural algebraic operations of addition 
and nonnegative scalar mult iplication. 

Let  if there exists a set  such 
that , then  is called the Hausdorff difference 
(the geometric difference) of the sets  and  and is 
denoted by the symbol  The mapping  

 is said to have a Hukuhara 
derivative  at a point  if 
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By embedding  as a complete cone in a 
corresponding Banach space and taking into account the 
result on the differentiation of Bochner integral, we find that 
if  

where  is integrable in the sence of 
Bochner, then  exists and the equality 

                               (2) 

3. Main Results 
Let's consider the set control differential equations 

(SCDEs): 
                 (3) 

where 
 

, state  and control . If 

 integrable, then it is called an 
admissible control. Let  be a set of all admissible controls. 
The mapping  is said  to be a solution 
of SCDES (3) on  iff it satisfies SCDEs  on  
and is the symbolic representation of the following Hukuhara 
integral expression: 

             (4) 

Definition 3.1.  The set solution  of SCDEs (3) is said 
to be: 

a/ (B)- bounded on , if there exists the constant 
 such that, by (4) we have , for all 

 . 
b/ (EB)- Exponent bounded on , if there exist the 

constants  such that the supper distance: 
 

Assume that  
satisfies the followings: 
(F1). there exists a constant  such that 

 
(F2). there exists constant  such that 

 

(U1).  

Theorem 3.1. Let  satisfies hypotheses 
(F1)-(F2) and  satisfies (U1), then SCDEs (3) has unique 

B- bounded set solutions .  
Proof. We have to prove that:  

a) By (F1), there exists the set solutions, which is 
represented as (4).   

b) Uniqueness of . Assume that the other set solutions 
 such that , then  

in force (F2).  
c) A  boundedness property of set solution  that means 

there exists  such that  for all  . 
We estimate  by (4) and (F2):  

 

 
 

Putting ,  and ,  

we have   . 

This Gronwall's inequality implies that 
  

Choosing  , we have  for all 

. 
Theorem 3.2. Let ,  and 

 and by contraction feedback 

 and , then SCDEs (3) has the 
unique (B)- bounded solution in . 

Proof. (a) Problems of existence and uniqueness are clear. 
(b) Problem of (B)- bounded are proved by integral 

expression (4) followings: 
, 

and  

 

    
  

Using Gronwall's inequality, we infer  

 
where , we obtain  
Next, we present some results about (B), (EB) of solutions 

in  with using the Lyapunov-like functions. 
Theorem 3.3. Assume that the positive Lyapunov - like 

function  which satisfies the 
following conditions: 

(i) , where  is 

bounded Lipschitz constant, for all  
 and ;  

(ii) , for 
,where  are 

increasing functions;  
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(iii)

 

where  for all  
 and , we have the 

following affirmat ions:  
a/ If  then a set solution  

 of  SCDEs (3) is (B)-bounded.  
b/  If  
(or if ) then a set solution 

 of SCDEs (3) is (EB)-bounded.  
Proof. Setting the function , we have 

 

 

 so , implies that 
. Since  where  is 

maximal solution of ODE: 

                       (5) 

then  for all 
.  

• Let , be given. Choose a  such 
that . We claim that with this  then (B)- 
bounded solution. If it’s not true, there exists solution  
of SCDEs (3)  and  , such that  and 

 where  for all . 
Wherever , because  

 for all , 

then :

 

by  is a increasing function, therefore this contradiction 
proves that (B)-bounded solution . 

• In the case, if  (or 
) then we have 

 for all . 
If  then 

 and if (EB) 

is not true, given , we choose 

 then 

for all , this contradiction proves that the fuzzy set 
solution  is (EB).  

Definition 3.2. The set solutions of SCDEs (3) are said to 
be: 

a/ (B1)- equi - bounded, if for any  and , there 
exists a  such that 

. 

b/ (B2)- uniform - bounded, if  in (B1) does not depend 
on . 

Theorem 3.4. Assume that the Lyapunov-like function 
 and feedback  

satisfy the following conditions: 

(i) , 

where L is bounded Lipschitz constant, for all 
 and ; 

(ii) add condition  
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We therefore have the scalar differential inequality 

 which y ields, as before, the 
estimate  where  is a maximal 
solution of ODE (5). This proof is complete. 

Corollary 3.1. A function  is  admissible in 
the theorem 3.4 to yield the estimate 

 
Next, we have some denotes: 

, 
 is increasing in 

. 
Now, we introduce some results on the boundedness of set 

solutions for SCDEs (3) by feedback .  
Theorem 3.5.  Assume that  

 is Lyapunov-like function and 
 is feedback fo r SCDEs  (3) satisfies the 

following conditions:  

(i)  

for ; . 
(ii)  

(iii)  

then, the affirmation (B1) holds. 
Proof. Proof of this theorem is analogous proof of theorem 

3.3. 
Theorem 3.6. Assume that 
(i)  where  may be large, 

satisfies: 

 

(ii) for , 
 

(iii)  
and  where , which  are defined 

only on , 
then, (B2) holds. 
Proof. We have to prove that (B2) holds. Because 

 implies  
 and   

 
Thus for all  and  there exists estimate 

 then by (iii) of theorem 3.5 the 
affirmat ion for (B1) holds, that means (B2) holds. 

4. Conclusions  
By the Lyapunov like-funcions and by some kinds of 

feeback we just have investigated the problems of 
boundedness for set solutions to set control differential 
equations - SCDES, that is an one of the new trends in 
set-valued analysis. The boundedness properties of set 
solutions allows testing the ext remal solutions, what is useful 
in practice of applicat ions SDEs and SCDEs. 
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b(|| U(t) ||) a(|| X(t) ||)≤
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