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Abstract  A simple mathemat ical model for the steady state oxygen distribution in the eye has been developed. The 
model introduces the krogh retinal cylinder surrounded by retinal capillary.The analytical solution to the governing equations 
are obtained in normalized forms by employ ing perturbation techniques for the arterial end ,the central region and the venous 
end of the retinal cylinder. Solutions are obtained for each of these regions. The computational results are presented through 
the graphs. The effect o f important parameters on the retinal cap illary  concentration , are examined and d iscussed. The results 
of the model may contribute when axial diffusion is important and when it can be neglected. 
Keywords  Retinal Capillary, Oxygen Transport, Ret inal Tissue 

 

1. Introduction 
Oxygen is essential for the metabolism of ret inal cells and 

thus for their functioning. Retinal t issue is considered 
metabolically as a very active tissue and is sensitive to 
hypoxic conditions.Even in health the functional serve of 
oxygen in the human retina lasts for only seconds. The 
function of the blood is transportation of nutrients and 
oxygen to the tissue will be comprised two separate vascular 
system: the retinal vascularization and the choroidal 
vascularizatio. The former one supplies the inner two-thirds 
of the retina[3,4]through three layers of cap illary  networks 
including the radial peripapillary capillaries and a superficial 
and deep layer of capillaries. The ret inal circulation shows 
progressive slowing of linear flow rate in arterioles and 
capillaries. Therefore, retinal circulat ion is characterized by 
a low blood flow and a high level of oxygen extraction; 
arteriovenous difference in partial pressure of oxygen (pO2) 
is about 40% . To ensure a selective exchange of substances 
between the blood and the surrounding tissues, retinal 
vascular endothelial cells[5,6] are non-fenestrated, tightly 
joined, and form an inner blood-ret inal barrier between the 
retinal cap illaries and the tissue . Thus, retinal cap illaries, 
[7,8] classified as continuous capillaries, are a tube 
developed by the endothelial cells with no intercellu lar or 
intracellular gaps or small intercellular gaps. Gases such as 
O2 and CO2 can transport across the capillary walls. 

The transport of oxygen from the lungs to the systematic 
capillaries is accomplished by a process of bulk flow as 
oxygenated  b lood is  carried  to the t issues. Once b lood 
reaches the systematic capillaries, oxygen dissociates from 
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hemoglobin (in RBC’s) which holds 97% of its maximum 
amount of O2 from normal air o r holds 100% when breathing 
pure O2, diffuses through the red cell membranes into the 
plasma and from there into the t issue. We need O2 for the 
energy cycle that sustains life when we do not have enough 
O2 in our body tissues, series of events occur that, if not 
corrected, lead to disease conditions either infection, t issue 
destruction or both. If there is low O2 in t issues (hypoxia), 
there is a short window of opportunity to correct it. 

In addition to a large number of experimental studies 
numerous mathematical models[1,2,10] for the oxygen 
transport in the systematic capillaries and surrounding tissue 
in d ifferent organs of the body have been developed and 
analyzed. The first simple mathematical model for oxygen 
transport across the capillaries was formulated by Krogh . 
The model is based on the concept that oxygen diffuses only 
in to a tissue cylinder concentric with the capillary. Krogh 
has been used to investigate the oxygen transport in retinal 
capillary and surrounding tissues[8,9].Fried land[2] develop
ed the mathemat ical model of trans mural transport of oxygen 
to the retina of the human eye. He included not only the 
tissue metabolis m and time varying concentrations but also 
included hydrostatic transmural pressure gradients in the 
model.  

The present work is concerned with the formulation of a 
simple mathematical model for the transport of oxygen from 
the retinal capillaries to the surrounding tissue. The 
equations governing the transport of intravascular oxygen in 
the retinal capillary and the transport of extravascular 
oxygen in  the retinal tissue in a hypoxia environment are 
written in  simplified  form by  taking into account the axial 
diffusion in the ret inal t issue and capillary and an arbitrary 
oxyhemoglogbin dissociation relationship. 

2. Mathematical Formulation 
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The illustration of physical model relevant to the present 
study is shown in Fig.1. The model comprises the single 
retinal capillary surrounded by a concentric cylinder of 
retinal tissue. In order to study the effect ofvarious 
parameters on the oxygen transport phenomena the model 
considers: 
ⅰ Oxygen transport in the retinal tissue 
ⅱ Oxygen transport within the retinal cap illary  
The model assumes that the radial and  axial diffusion in  

the retinal tissue and the axial diffusion within the retinal 
capillary along with an  arbitrary oxyhemoglobin  dissociation 
relationship. The oxygen transported by the blood diffuses 
from the ret inal capillary into retinal t issue and it is 
consumed at a constant rate 

 
Figure 1.  Systematic diagram of oxygen transport into the retinal t issue 

In order to obtain the basic differential equations governi
ng the transport phenomena occurring in the tissue the 
following set of additional assumptions is introduced. 

2.1. Assumptions 

( ⅰ )A uniform rad ial oxygen distribution within the 
capillary. 

(ⅱ)The transport phenomena are steady. 

2.2. Governing Equations 

Retinal Tissue Region: 
By taking into account all the above mentioned 

assumptions, the oxygen concentration into the retinal t issue 
satisfies the equations in the form: 

       (1) 

The above equation states that the oxygen concentration 
into the retinal tissue as a result of rad ial and axial d iffusion 
into the retinal tissue. Where C represents the oxygen 
concentration in the retinal tissue,L capillary length, Rt 
radius of retinal tissue,M oxygen consumption rate, Dr, Dz 
radial and axial diffusivity. 

Capillary Region: 
The governing equation for the oxygen concentration 

within the capillary is given by 

(2) 

The above equation states that the oxygen of the blood 
changes along the capillary as a result of axial d iffusion 
within the capillary and radial diffusion into the surrounding 
tissue. Where q is the volume blood flow rate , Db  
diffusivity of blood. Here oxygen content per unit of blood is 

. Where the first term cb represents the 

dissolved oxygen and the second term  defines 

the oxygen bound to hemoglobin,  the oxygen capacity 
of blood at 100% saturation, ) is the oxyhemoglobin  

dissociation relat ionship.The function ) may be 

approximated by the empirical formula  

           (3) 

for the suitable choice of the constants K and n. 

2.3. Boundary Conditions 

In order to formulate a physically consistent and 
mathematically tractable model, the boundary conditions 
relevant to the present problem are prescribed as follows: 

In tissue region:  

       (4) 

      (5) 

The boundary condition (4) and (5) states that there will no 
permeat ion of oxygen along the radial and axial direction. 
Where C, R and z are prescribed. 

In capillary region: 
Cb(0)=1                    (6) 

Ct(tR,Z)=cb(z),0≤z≤L             (7) 

2.4. Non Dimensionalization 

We define the non- dimensional variab le by 

 

 
under the above scheme, Eqs. (1) and(2) fo r various 

regions are converted in the following normalized fo rms: 
along with the boundary condition’s 

           (8) 

           (8.1) 

            (8.2) 

      (9) 

along with the boundary conditions: 
C(0)=1,C(R,z)=C(z)           (10) 
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2.5. Solution to the Problem 

In the present work we are interested in the study of effect 
of axial d iffusion in the retinal capillary and tissue in the eye 
in order to ascertain when these effects can be neglected and 
when they must be taken in to account. The solutions of Eqs. 
(1)-(2) for the unknown function c(r,z) and C(z) with 
boundary conditions under different cases: (i) By setting €=0 
and corresponds to neglecting axial d iffusion in the retinal 
tissue and capillary. (ii) The effect of axial diffusion by 
considering the higher order terms (iii) Effect of radial and 
axial diffusion in  the narrow region or boundary layer or near 
the ends. The above equations (8)and (9) may be solved for 
small € by using perturbation method. The solution for C(z) 
and c(r,z) will be obtained in  the fo rm of an  asymptotic series, 
applicable for s mall €: 

C(z)~ Co(z)+ €2 C1(z)+........         (11) 
c (r,z) ~co(r,z)+ €2c1(r,z)+........          (12) 

The leading term Co and co satisfy Eq.(8) and (10) with 
ε=0. 

Case (i): Without axial diffusion: In this case we consider 
the problem of finding C0(z) and c0(r,z) from Eqs. (8)-(8.1) 
and (9’) it follows that, 

Co(r,z)=Co(z)+      (13) 

Substituting this into Eq.(9) and using the boundary 
condition (9’), it follows that 

C0+NS(Co)=
      

(14) 

The above Equation gives z explicitly in terms  of C0. For 
any choice of S(Co), z(Co) can be computed, starting at 
Co=1, where z=0,and continuing untill z=1 is attained. 

Case(ii): The effect of axial diffusion: We consider the 
problem of finding the functions C1(z)and c1(r,z) by 
substituting the expansions (11,12 ) into Eqs. (8), (8.1), 
(8.2),() and retaining term of order €2. Using the expansion 
S(Co+€2C1)=S(C0)+ €2S’(Co) C1, this gives 

     (15) 

 (16) 

 
c1(R,z)=C1(z)  ,C1 (0)=0         (17) 

and includes the effect of axial d iffusion. The solution to 
Eq.() satisfying the boundary condition is easily found to be  

c1(r,z)=C1(z)- (18) 

where C0(z) is already known from Eq.(14).Substituting 
this into Eq.(15) and integrating with respect to z gives 

C1(z)[1+NS’(Co(z))]-C1(0)[1+NS’(1)]=   (19) 
Using the boundary condition C1(0)=0 in  Eq.(18) 

completes the solution for C1(z).The solution obtained in the 
form of expansion given by Eq.(11),(12) is not valid at the 
end z=0 because in the present analysis it has not been 
possible to satisfy the boundary condition expressed by 
Eq.(8’’), and the solution Co(z)+ε2C1(z) give nonzero 

O2flux through the ends of the cylinders. In order to 
determine the unknown constants C1(0) and complete the 
solution for C1(z) it is necessary to examine the solution in 
the region near z=0. 

THE SOLUTION NEAR z=0 
The boundary layer at the arterial end occupies a small 

region about z=0 in the limit  Therefore it cannot be 
described in terms  of the physical variable z. The 

approximate boundary layer variab le ,which has the 

property In terms of this variab le the 
governing equation are 

    (20) 

   (21) 

 The boundary conditions are 

 
    (22) 

We write the solutions in terms of r and Z,and  
expanding the result in a series in  

(z)~ 1+ €αZ+   (23) 
c(r,z) 1+

(24) 

where  

It can be shown that . 

It follows from Eq.(24) that the boundary layer expansion is 
of the form 

 (z)~ 1+ αZ+ , 

(25) 

THE ARTERIAL BOUNDARY LAYER 
In the previous section, we have obtained solution of order 

€2 for the cap illary  and ret inal tissue oxygen concentration in 
the region bounded away from the arterial and venous ends. 

Thus, in this section, we have examined the asymptotic 
expansion near z=0 and the approximate analytical solutions 
to the governing equations are obtained in normalized forms 
by employing perturbation methods. From the expansion (20) 
we observed that to order €2 , the boundary layer expansions 
for the retinal capillary and tissue concentration are of the 
form given by(21),Where equations and boundary conditions 
for P and s were obtained above.Substituting the 
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expansion (21) into the boundary layer equations gives the 

following problem for : 

    (26) 

    (27) 

 
∞, 

R≤r≤1                   (28)
 The problem for can be solved in terms of an eigen 

function expansion involving composite Bessel functions: 

=   (29) 

The eigenfunctions are defined in terms of the 
Bessel functions J0 and Yo by 

= Yo( )J ( - Jo( )Y ( , (30) 

and the eigenvalues are the roots of 
Jo( )Y1 ( - J1( )Y ( =0  (31) 

Here Jm, Ym denote the mth order Bessel functions of the 
first and second kind, respectively. 

From the Eq.() has no imaginary or repeated roots, and has 
an infin ite number of positive roots  

The function P(Z) describing the retinal capillary oxygen 
concentration can be determined by substituting the solution 
fo  ψ(r,Z) into Eq.(). Th is gives 

  (32) 

 
The solution to the Eq.() for φ is much more complex. 

Writing  
(33) 

Where  

THE VENOUS BOUNDARY LAYER: 
The arterial boundary layer solution can be extended to the 

venous end. In this case the boundary layer variable is 
X=(1-z)/ε, which has the property z→1 as ε →0 for fixed X. 
In terms of this variab le the governing equations are 

      (34) 

  (35) 

where  

 

It can be shown that 

(z)~ C0(1)+ €αZ+  

 

  

3. Results and Discussion 
The values of most of model parameters are not known to 

the best of our knowledge. We have used appropriately 
estimated values of the physiological parameters in the 
computational model results. The computational results of 
the present model have been obtained from the above 
approximate solutions by using appropriate values of the 
physiological parameters listed in Table.1. 

Parameter Case1 Case2 

Arterial blood oxygen concentration 
CA(cm3O2/cm3 blood 3.2*10-3 2.8*10-3 

Oxygen diffustivity 2*10-5 1.7*10-5 

Oxygen capacity of the blood at 100% 
saturation 6*10-5 4*10-5 

(cm3O2/cm3blood)oxygen 

consumption rate 

0.204 0.204 

M (cm3O2/cm3tissue sec) 8.5*10-4 4*10-4 
Capillary length L 200 400 

Capillary radius Rc (µm) 3 3 
Tissue radius Rt((µm) 30 30 

Volume blood flow rate q (µm3/sec) 1.1.3*104 5.66*104 

Constant K in oxyhemoglobin 
dissociation relationship 8.55*105 8.55*105 

Constant n in oxyhemoglbin 
dissociation relationship 2 2 

Case.I: It is observed from solutions that for the axial 
diffusion results in  amore rapid  decrease in the retinal 
capillary oxygen  concentration at the arterial end and oxygen 
is delivered to the retinal tissue in excess of that necessary to 
meet its metabolic needs. This excess oxygen moves 
longitudinally in the retinal tissue. 

The curves in Fig.2 depict the retinal cap illary  
concentration profiles both without axial diffusion and with 
axial diffusion for different values of tissue diffusivity. The 
solution without axial diffusion is independent of tissue 
diffusivity. As the diffusivity increases when the axial 
diffusion and the absolute value of  €2C1(0) is increased. 

The extent of the deviation of the O2 profile from the 
solution directly related to the magnitude of €2C1(0) . In 
terms of d imensional variables 

φ
1 0, 1, 0rr r zz R r Z
r

ϕ ϕ ϕ+ + = ≤ ≤ ≥

0,10 ≥==
∂
∂ Zr

r
φ

,0=
∂
∂
Z
φ

→+−−−+→ ZRRrrCZ )ln
2

ln
2

()0(
22

1
2 µµφ

ψ

ψ ∑
∞

=

−

−
−

1
223 4])1([

)(
4

n nnn

Z
n

f
erf

Z
n

λπλ
παα

λ

)(rf n

)(rf n Rnλ 0 )( rnλ Rnλ 0 )( rnλ
nλ

Rλ )(λ λ 0 )( Rλ

Z

n
n

neA
NS

R
RM

CZZP λ

β
µ −

∞

=
∑+

−
−+=

1
2'2

0

1
2

])1(1[

)1(4
)0()(

12222 }4])1([{ −−= RfRA nnnn λλπ

)ln
2

ln
2

()0(),(),(
2

1

2

1
2 RRrreACZZrZr

n

Z
n

n +−−−−++= ∑
∞

=

− µξµϕφ λ

])1(1[

)1(4
2'2

0

NS
R

RM

+

−
=
β

ξ

2

2
1 ( ) 1, 0o

c cr M R r X
r r r X

∧ ∧∂ ∂ ∂
+ = ≤ ≤ ≥

∂ ∂ ∂
，

2
'

2[ ( )] , 0
r R

d c d CC NS C X
dX r dz

β ε εδ
∧ ∧

∧ ∧

=

∂
− + = + ≥

∂

areconditionsboundarytheandXrcandXCXC )1,()1()( εε −−=
∧∧

,0
1
=

∂
∂

=

−

rr
c ,0

0
=

∂
∂

=

−

ZX
c

)(),( XCXRC −− =

∧

C
∧

)(2 XPε

),(),()ln
2

ln
2

(
2

)1( 2
22

0 XrXrRRrrM
Cc o

∧∧∧

+++−−+≈ φεψε

)1()( 1
2 CXXP +→

∧∧

µ XXr
∧

∧

→αψ ),(

−

N



 Deepti Seth:  Mathematical Modeling of Oxygen Transport in theEye 98 
 

 

€2C1(0)=  

As €2C1(0)→0, the effect of axial diffusion on the oxygen 
profiles becomes negligible.sAs arterial O2 concentration 

decreases, decreases and axial diffusion become 

less important.  
The curve in Fig.3(a,b) represents the effect of change in 

metabolic rate relat ive to data shown in table.1. These curves 
illustrate when the metabolic rate is increased, the value of 

increased. Thus these curve illustrate the greater 
importance of axial diffusion at the arterial end. 

(a) 

 
(b) 

 
Figure 2.  The effect on the capillary oxygen concentration of changes in 
various parameters(a)Increased oxygen content of the arterial blood, 
(b) decreased oxygen content of the arterial blood (I) without axial 
diffusion, (II) with axial diffusion 

However, difference between the curves with and without 
axial d iffusion in these figures are comparable in the 
midcapillary reg ion. From the factor[1+NS’C0(z)], C1(z) 
decreases, with distance z as the slope of the oxyhemoglobin 
relationship increases. The more amount of oxygen 
consumed in  the ret inal tissue to move from the relatively  flat 
portion of the dissociation curve to the very step portion. 

Thus there should be a significant decrease in 

along the capillary length. However while is 

greater in Fig.3(b) decreases to much smaller values of 

 as the lower oxygen concentration is observed. 

Thus, the non-linearity of the oxyhemoglobin dissociation 
relationship plays an important role in determining the 
difference between the solution with and without axial 
diffusion.  

(a) 

 
(b) 

 
Figure 3.  The effect on the capillary oxygen concentration of changes in (a) 
decreased oxygen consumption rate (b) increased oxygen consumption rate; 
(I) without axial diffusion,(II)with axial diffusion 
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