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Abstract  We analyse an unsteady three dimensional free convection flow with combined heat and mass transfer over a 
vertical plate embedded in a porous medium with time dependent suction velocity and transverse sinusoidal permeability. 
The unsteadiness is due to the time dependent suction velocity. The governing equations with the boundary conditions are 
first converted into dimensionless form by non-similar transformations and then resulting system of coupled non-linear 
partial differential equations are solved by series expansion method. The effects of different parameters are shown on velocity 
(u), cross flow velocity (w), temperature (θ), Concentration (C), Skin friction (τx) and Nusselt number (Nu) graphically. We 
observe that skin friction is higher in air (Pr=0.71) than in water (Pr=7) but result differs for Nusselt number. 
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1. Introduction 
The phenomenon of free convective flow with simulta-

neous heat and mass transfer has been a subject of interest of 
many researchers because of its varied applications in natural 
sciences, engineering sciences and in industry. Such phe-
nomenon is observed in buoyancy induced motions in the 
atmosphere, in bodies of water, quasi-solid bodies such as 
earth, etc. Free convective flows with periodic permeability 
through highly porous media play an important role in 
chemical engineering, turbo-machinery and in aerospace 
technology. Such flow include several practical applications, 
for example, geothermal reservoirs, drying of porous solids, 
thermal insulation, enhanced oil recovery, packed-bed 
catalytic reactors, cooling of nuclear reactors and under-
ground energy transport. 

In view of these applications various investigators have 
worked on the subject but restricted themselves to two di-
mensional flows. But situations may arise when the flow 
field may be essentially three dimensional, for example, 
when suction velocity, porous medium, temperature on the 
body etc. varies sinusoidaly. Ahmed[2] has studied heat and 
mass transfer on free convective three dimensional unsteady 
flows over a porous vertical plate. Aboeldahab and Azzam[1] 
have studied unsteady three dimensional combined heat and 
mass transfer for convective flow over a stretching surface  
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with time dependent chemical reaction. Sahin[13] studied 
oscillatory three dimensional flow and heat and mass transfer 
through a porous medium in presence of periodic suction. 
Singh and Gupta[14]have studied MHD free convective flow 
of a viscous fluid through a porous medium bounded by an 
oscillating porous plate in slip flow regime with mass 
transfer. 

Radiative heat transfer flow is very important in manu-
facturing industries for the design of reliable equipments, 
nuclear plants, gas turbines and various propulsion devices 
for aircraft, missiles, satellites and space vehicles. Similarly, 
the effects of thermal radiation on the forced and free con-
vection flows are important in the content of space tech-
nology and processes involving high temperature. Based on 
these applications, England and Emery[6] studied the ther-
mal radiation effect of an optically thin gray gas bounded by 
a stationary vertical plate. Hayat et al.[8] studied the effect of 
thermal radiation on the flow of a second grade fluid. Raptis 
et al.[11] studied the effects of radiation in an optically thin 
gray gas flowing past a vertical infinite plate in presence of a 
magnetic field. Cookey et al.[5] studied the influence of 
viscous dissipation and radiation on unsteady MHD free 
convection flow past an infinite heated vertical plate in a 
porous medium with time dependent suction. Ghosh and 
B’eg[7] have done a theoretical analysis of radiative effects 
on transient free convection heat transfer past a hot vertical 
surface in porous media. 

Flows through porous medium are of principle interest 
because these are quite prevalent in nature. Such flows have 
many engineering applications, viz., in the fields of Petro-
leum technology to study the movement of natural gas, oil 
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and water through the oil reservoirs, in chemical Engineering 
for filtration and purification process, and seepage of water 
in river beds to study the underground water resources. In 
view of these applications, different scholars have made a 
series of investigation where porous medium is either 
bounded by horizontal or vertical surfaces. Chaudhary and 
Sharma[4] studied the three dimensional unsteady convec-
tion and mass transfer flow through a porous medium. Ah-
med and Ahmed[3] studied oscillatory three dimensional 
flow through a porous medium with viscous dissipative heat. 
Singh and Sharma[15] studied three dimensional free con-
vective flow and heat transfer through porous medium with 
periodic permeability. Sahin[12] studied transient three di-
mensional flows through a porous medium with transverse 
permeability oscillating with time. 

In a geothermal region a situation may arise when velocity 
slip at the boundary may occur. In many practical applica-
tions, the particle adjacent to the solid surface no longer 
takes the velocity of the surface, it has a finite tangential 
velocity and it slips along the surface. The flow regime is 
called the slip flow regime. Jain and Sharma[10] and Jain 
and Gupta[9] have studied three dimensional coutte flow 
with slip boundary conditions and suction velocity vary 
sinusoidaly. 

Thus, the aim of this paper is to study an unsteady three 
dimensional free convective heat and mass transfer flow 
through a porous medium with constant heat and mass flux 
and periodic permeability in slip flow regime. Hence, nu-
merical calculations up to the fourth level of truncation were 
carried out to investigate the effects of permeability pa-
rameter (K), velocity slip parameter (h1), thermal Grashof 
number (Gr), mass Grashof number (Gc), suction parameter 
(λ), Prandtl number (Pr) etc., on velocity (u), cross flow 
velocity (w), temperature (θ), concentration (C), skin friction 
(τx) and the rate of heat transfer (Nu) of such a flow. Results 
are illustrated graphically. The analysis of the result shows 
that our velocity increases as the permeability rises and also 
we notice that skin friction is higher in air (Pr=0.71) as 
compared to water (Pr=7). 

2. Formulation of the Problem 
Here, we introduce a co-ordinate system with wall lying 

vertically on x-z plane, such that x-axis is oriented in the 
direction of the buoyancy force and y-axis is perpendicular 
to the plane of the wall and directed into the fluid. The 
permeability of the porous medium is assumed to be  

K0(z) =
K

�1 + ϵCos πz
d �

 

where 
K0 = mean permeability of the medium. 
d = wave length of permeability distribution. 
ϵ = amplitude of permeability variation. 
Due to such a permeability variation, the problem is three 

dimensional. Denoting the velocity component u, v, w in the 
x, y, z directions respectively and the temperature by θ. The 

concentration level of the foreign mass present has been 
considered to be very small. The plate is subjected to a con-
stant heat and mass flux. 

Under these conditions and using the Boussinesq ap-
proximation, governing equations of the flow are given by: 

∂v
∂y

+ ∂w
∂z

= 0,                       (1) 
∂u
∂t

+ v ∂u
∂y

+ w ∂u
∂z

= gβ(T − T∞) + gβ∗(C − C∞) +

υ �∂
2u
∂y2 + ∂2u

∂z2� −
𝜐𝜐
𝐾𝐾0

u ,         (2) 
∂v
∂t

+ v ∂v
∂y

+ w ∂v
∂z

= − 1
ρ
∂P
∂y

+ υ �∂
2v
∂y2 + ∂2v

∂z2� −
υ

K0
v ,   (3) 

∂w
∂t

+ v ∂w
∂y

+ w ∂w
∂z

= − 1
ρ
∂P
∂z

+ υ �∂
2w
∂y2 + ∂2w

∂z2 � −
υ

K0
w ,    (4) 

∂T
∂t

+ v ∂T
∂y

+ w ∂T
∂z

= κ
ρCp

�∂
2T
∂y2 + ∂2T

∂z2� −
1

ρCp

∂qr
∂y

 ,          (5) 
∂C
∂t

+ v ∂C
∂y

+ w ∂C
∂z

= D �∂
2C
∂y2 + ∂2C

∂z2� ,           (6) 
where T is the temperature, C is the concentration, g is 

acceleration due to gravity, β is the coefficient of thermal 
expansion, β* is the coefficient of expansion with concen-
tration, P is the pressure and ρ, υ, κ, Cp and D are density, 
kinematic viscosity, thermal conductivity, specific heat at 
constant pressure and diffusion coefficient respectively. 

The boundary conditions are given by: 
y = 0;  u = U0 + L1

∂u
∂y

 , v = −V0(1 + Aϵēnt ), w=0, 

 ∂T
∂y

= − q
κ

 , ∂C
∂y

= −m
D

                (7) 
y → ∞: u → 0 , v → 0 , P → P∞ , w → 0 , T → T∞ , 

C → C∞ 
where q and m are uniform heat and concentration flux at 

the plate respectively. The local radiant for the case of op-
tically thin gray gas is expressed by: 

∂qr
∂y

= −4a∗σ∗(T∞4 − T4)                   (8) 
We assume that the temperature differences within the 

flow are sufficiently small such that T4 may be expressed as a 
linear function of the temperature. This is accomplished by 
expanding T4 in a Taylor series about 𝑇𝑇∞  and neglecting the 
higher order, thus: 

T4 ≅ 4T∞
3T − 3T∞

4 ,                (9) 
by using (8) and (9) we obtain 

∂qr
∂y

= −16a∗σ∗T∞
3(T∞ − T)  ,               (10) 

where 𝜎𝜎∗ is Stephen-Boltzmann constant and 𝑎𝑎∗ is ab-
sorption coefficient. 

On introducing the following non-dimensional quantities: 
y∗ = y

d
 , z∗ = z

d
 , u∗ = u

U0
 , v∗ = v

V0
 , w∗ = w

V0
 , P∗ = P

ρV0
2 ,   

θ = (T−T∞ )κV0
υq

 , C = (C−C∞ )DV0
υm

 , K∗ = K
d2  , t∗ = V0t

d
 , λ =

V0d
υ

 . 
Equations (2) to (6), using (10), in non-dimensional form 

after dropping the asterik are: 
∂v
∂y

+ ∂w
∂z

= 0,                       (11) 
∂u
∂t

+ v ∂u
∂y

+ w ∂u
∂z

=  

Grθ + GcC + 1
λ
�∂

2u
∂y2 + ∂2u

∂z2� −
u(1+ϵCos πz)

Kλ
,     (12) 
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∂v
∂t

+ v ∂v
∂y

+ w ∂v
∂z

= − ∂P
∂y

+ 1
λ
�∂

2v
∂y2 + ∂2v

∂z2� −
v(1+ϵCos πz)

Kλ
 ,  (13) 

∂w
∂t

+ v ∂w
∂y

+ w ∂w
∂z

=  

−∂P
∂z

+ 1
λ
�∂

2w
∂y2 + ∂2w

∂z2 � −
w(1+ϵCos πz)

Kλ
 ,       (14) 

∂θ
∂t

+ v ∂θ
∂y

+ w ∂θ
∂z

= 1
Pr
�∂

2θ
∂y2 + ∂2θ

∂z2� −
R
Pr

θ,         (15) 
∂C
∂t

+ v ∂C
∂y

+ w ∂C
∂z

= 1
Sc
�∂

2C
∂y2 + ∂2C

∂z2� ,       (16) 
with corresponding boundary conditions as: 

y = 0: u = 1 + h1
∂u
∂y

 , v = −(1 + Aϵēnt ), 

w = 0 , ∂θ
∂y

= −1 , ∂C
∂y

= −1             (17) 
y → ∞: u → 0 , v → 0 , w → 0 , θ → 0 ,  

C → 0 , P → P∞ 
where 
Gr = gβdυq

U0V0
2κ

  (thermal Grashof number), 

Gc = gβ∗dυm
U0V0

2D
  (mass Grashof number), 

h1 = L1
d

   (velocity slip parameter), 

Pr = μCp
κ

 (Prandtl number), 

Sc = V0d
D

  (Schmidt number), 

R = 16a∗σ∗υ2T∞
3

V0
2κ

  ( radiation parameter). 

3. Solution of the Problem 
Since the amplitude of the suction velocity ϵ(≪ 1)  is 

very small, we now assume the solution of the following 
form: 

f(y, z, t) = f0(y) + ϵf1(y, z, t) + ϵ2f2(y, z, t) + ⋯      (18) 
where f stands for any of u, v, w, θ, P and C 
When ϵ=0 the problem is reduced to well-known two 

dimensional flow with constant injection and suction at the 
plate and are governed by the following equations: 

∂v0
∂y

= 0 ,                             (19) 

v0
∂u0
∂y

= Grθ0 + GcC0 + 1
λ
∂2u0
∂y2 − u0

Kλ
 ,        (20) 

v0
∂w0
∂y

= 1
λ
∂2w0
∂y2 − w0

Kλ
 ,                     (21) 

v0
∂θ0
∂y

= 1
Pr

∂2θ0
∂y2 − R

Pr
θ0 ,                   (22) 

v0
∂C0
∂y

= 1
Sc

∂2C0
∂y2                      (23) 

with boundary conditions as: 
y = 0: u0 = 1 + h1

∂u0
∂y

 ,  v0 = −1 , w0 = 0, 

 ∂θ0
∂y

= −1 , ∂C0
∂y

= −1 ,       (24) 
y → ∞: u0 → 0 , v0 → 0 , w0 → 0 , θ0 → 0, 

C0 → 0 , P0 → P∞. 
The solution of this two-dimensional problem is: 

u0 = m3ex3y + Z1ex1y + Z2ēScy  , 
θ0 = m1ex1y  , 

C0 = m2ēScy  ,                   (25) 
with 

v0 = −1 , w0 = 0 , P0 = P∞. 
When ϵ ≠ 0 , substituting equation (18) in (11) to (16) 

and comparing the coefficients of identical powers of ϵ , 
neglecting those of ϵ2, ϵ3 ...etc, the following first order 
equations are obtained: 

∂v1
∂y

+ ∂w1
∂z

= 0 ,                      (26) 
∂u1
∂t
− ∂u1

∂y
+ v1

∂u0
∂y

= Grθ1 + GcC1 + 1
λ
�∂

2u1
∂y2 + ∂2u1

∂z2 � −
1

Kλ
(u1 + u0Cosπz)                 (27) 

∂v1
∂t
− ∂v1

∂y
= − ∂P1

∂y
+ 1

λ
�∂

2v1
∂y2 + ∂2v1

∂z2 � −
1

Kλ
(v1 − Cosπz)(28) 

∂w1
∂t

− ∂w1
∂y

= − ∂P1
∂z

+ 1
λ
�∂

2w1
∂y2 + ∂2w1

∂z2 � −
1

Kλ
w1,       (29) 

∂θ1
∂t
− ∂θ1

∂y
+ v1

∂θ0
∂y

= 1
Pr
�∂

2θ1
∂y2 + ∂2θ1

∂z2 � −
R
Pr
θ1  ,   (30) 

∂C1
∂t
− ∂C1

∂y
+ v1

∂C0
∂y

= 1
Sc
�∂

2C1
∂y2 + ∂2C1

∂z2 � ,         (31) 
with corresponding boundary conditions as: 

y = 0: u1 = h1
∂u1
∂y

 , v1 = −Aēnt  , w1 = 0 ,  
∂θ1
∂y

= 0 , ∂C1
∂y

= 0              (32) 
y → ∞: u1 = 0 , v1 = 0 , w1 = 0 , θ1 = 0 ,  

C1 = 0 , P1 = 0 
This is the set of linear partial differential equations which 

describe the three dimensional flow. In order to solve these 
equations we separate the variable y, z, t, in the following 
manner: 

F1(y, z, t) = F11(y)ēnt + F12(y)Cosπz      (33) 
and 

w1 = − �z ∂v11
∂y

ēnt + ∂v12
∂y

Sin πz
π
�               (34) 

where F1 stands for u1, v1, P1, θ1 and C1. Equations (33) 
and (34) are chosen such that equation of continuity is satis-
fied. 

Hence, putting equations (33) and (34) in (26) to (31) and 
equating the coefficients of harmonic and non-harmonic 
terms, we get: 

u11
′′ + λu11

′ + �nλ− 1
K
� u11 = −Grλθ11 − GcλC11 + v11λu0

′  ,  (35) 

u12
′′ + λu12

′ − �π2 + 1
K
� u12 = −Grλθ12 − GcλC12 + 1

K
u0 +

v12λu0
′  ,          (36) 

v11
′′ + λv11

′ + �nλ − 1
K
� v11 = λP11

′  ,              (37) 

v12
′′ + λv12

′ − �π2 + 1
K
� v12 = λP12

′ − 1
K

   ,              (38) 

v11
′′′ + λv11

′′ + �nλ − 1
K
� v11

′ = 0 ,              (39) 

v12
′′′ + λv12

′′ − �π2 + 1
K
� v12 = P12π2λ   ,             (40) 

θ11
′′ + Prθ11

′ + (nPr − R)θ11 = −v11ex1y Pr ,     (41) 
θ12

′′ + Prθ12
′ − (π2 + R)θ12 = −Prv12ex1y  ,       (42) 

C11
′′ + ScC11

′ + nScC11 = −v11ēScy Sc ,       (43) 
C12

′′ + ScC12
′ − π2C12 = −v12ēScy Sc  ,          (44) 

with relevant boundary conditions as: 
y = 0: u11 = h1u11

′  , v11 = −A , w11 = 0 , θ11
′ =0, 

C11
′ = 0 , P11 = 0 ,  

u12 = h1u12
′  , v12 = 0 , w12 = 0 , θ12

′ = 0 , 
                C12

′ = 0 , P12 = 0,              (45) 
y = ∞: u11 → 0, v11 → 0, w11 → 0, θ11 → 0, 

                C11 → 0, P11 → 0,  
                 u12 → 0, v12 → 0, w12 = 0, θ12 → 0, 
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 C12 → 0, P12 → 0. 
Hence from equations (35) to (44) under the equation (45) 

the solution of u1, v1, θ1, C1, w1 and P1 are obtained as: 
u1 = �A8ex17 y + J10 ex9y + J11 e(x5+x1)y + J12ex13 y

+ J13 e(x5−Sc )y + J14e(x5−x3)y }ēnt + 
�A9ex19 y + J15 ex11 y + J16 e(x7+x1)y + J17ex1y + J18 ex15 y

+ J19e(x7−Sc )y + J20ēScy + J21ex3y

+  J22 e(x7+x3)y }Cosπz 
v1 = {−Aex5y }ēnt + {J1(ex7y − 1)}Cosπz 

w1 = �(−Azπ5ex5y )ēnt + J1x7ex7y Sin πz
π
�        (46) 

θ1 = �J2ex9y + J3e(x5+x1)y�ēnt  
+�J6ex11 y + J4e(x7+x1)y + J5ex1y�Cosπz 

C1 = �A6ex13 y + J7e(x5−Sc )y�ēnt  
+�A7ex15 y + J8e(x7−Sc )y + J9ēScy �Cosπz 

P1 = 0. 

4. Skin Friction 
Once the velocity component u is known, we can now 

calculate an important parameter dimensionless skin friction 
in the main flow and the transverse direction as: 

τx = τx
∗

ρU0V0
= �∂u

∂y
�

y=0
= �∂u0

∂y
�

y=0
+ ϵ �∂u1

∂y
�

y=0
=

{m3x3 + Z1x1 − Z2Sc} + ϵ{[A8x17 + J10 x9 + J11(x5 +
x1+J12x13+J13x5−Sc+J14x5+x3+A9x19+J15x11+J16
x7+x1+J17x1+J18x15+J19x7−Sc−J20Sc+J21x3+J22x7

+x3Cosπz . 

τz = τz
∗

ρU0V0
= ϵ �∂w1

∂y
�

y=0
= ϵ �Azx5

2ēnt − J1x7
2 Sin πz

π
� . 

5. Nusselt Number 
Another important physical parameter of interest viz. 

Nusselt number is given by: 

Nu =
1

θ(0)
 

Nu = 1
m1+ϵ{(J2+J3)ēnt +(J6+J4+J5)Cos πz}

  

where 

x1, x2 = −Pr∓�Pr 2+4R
2

  

x3, x4 =
−λ∓�λ2+4�1

K�

2
  

x5, x6 =
−λ∓�λ2−4�nλ−1

K�

2
  

x7, x8 =
−λ∓�λ2+4�π2+1

K�

2
  

x9, x10 =
−Pr ∓ �Pr2 − 4(nPr − R)

2
 

x11, x12 = −Pr∓�Pr 2+4(π2+R)
2

  

x13, x14 =
−Sc ∓ √Sc2 − 4nSc

2
 

x15, x16 =
−Sc ∓ √Sc2 + 4π2

2
 

x17, x18 =
−λ∓�λ2−4�nλ−1

K�

2
  

x19, x20 =
−λ∓�λ2+4�π2+1

K�

2
  

Z1 = −Gr λm1
(x1−x3)(x1−x4)

 , Z2 = −Gc λm2
(Sc +x3)(Sc +x4)

 ,  

m1 = − 1
x1

 , m2 = 1
Sc

 , m3 = Z1(1−h1x1)+Z2(1+h1Sc )−1
(h1x3−1)

 ,  

J1 = 1
K x7x8

 , J2 = −A Pr (x5+x1)
x9(x5+x1−x9)(x5+x1−x10 )

 ,  

J3 = A Pr
(x5+x1−x9)(x5+x1−x10 )

 ,   

J4 = −Pr J1
(x7+x1−x11 )(x7+x1−x12 )

 ,  

J5 = Pr J1
(x1−x11 )(x1−x12 )

 , J6 = −J4(x7+x1)−J5x1
x11

 ,  

A7 = −A Sc  (x5−Sc )
x13 (x5−Sc−x13 )(x5−Sc−x14 )

 ,  

J7 = A Sc
(x5−Sc−x13 )(x5−Sc−x14 )

 ,   

J8 = −J1 Sc
(x7−Sc−x15 )(x7−Sc−x16 )

 , J9 = J1 Sc
(Sc +x15 )(Sc +x16 )

  

A7 = −J8(x7−Sc )+J9Sc
x15

 , J10 = −Gr  λ J2
(x9−x17 )(x9−x18 )

 ,  

J11 = −(Gr  λ J3+A λ Z1x1)
(x5+x1−x17 )(x5+x1−x18 )

 , J12 = −Gc λA6
(x13−x17 )(x13−x18 )

 ,  

J13 = −(Gc λJ7−AλZ2Sc )
(x5−Sc−x17 )(x5−Sc−x18 )

 ,    

J14 =
−Aλm3x3

(x5 + x3 − x17)(x5 + x3 − x18) , 

A8 =
�
J10 (1−h1x9)+J11 [1−h1(x5+x1)]+J12 (1−x13 )

+J13 [1−h1(x5−Sc )]+J14 [1−(x5+x3)] �

[(h1x17 )−1]
  

J15 = −Gr λJ6
(x11−x19 )(x11−x20 )

 ,  

 J16 = −(Gr  λ J4−J1λ Z1x1)
(x7+x1−x19 )(x7+x1−x20 )

 ,  

J17 =
−�Gr  λ J5−

Z1
K +J1λ Z1x1�

(x1−x19 )(x1−x20 )
 ,  

J18 = −Gc  λ A7
(x15−x19 )(x15−x20 )

 ,  

J19 = −(Gc  λ J8+J1λ Z2Sc )
(x7−Sc−x19 )(x7−Sc−x20 )

 ,  

J20 =
−�Gc  λ J9−

Z2
K −J1λ Z2Sc�

(Sc +x19 )(Sc +x20 )
 ,  

J21 =
−�J1 λm3x3−

m 3
K �

(x3−x19 )(x3−x20 )
 ,   

J22 = J1λ m3x3
(x7+x3−x19 )(x7+x3−x20 )

 ,  
A9 =

�
J15 (1−h1x11 )+J16 [1−h1(x7+x1)]+J17 (1−h1x1)+J18 (1−h1x15 )

+J19 [1−h1(x7−Sc )]+J20 (1+h1Sc )+J21 (1−h1x3)+J22 [1−h1(x7+x3)]�

(h1x19−1)
  

6. Results and Discussions 
In order to point out the effects of different parameters on 

velocity (u), cross flow velocity (w), temperature (θ), con-
centration (C), skin friction (τx) and the rate of heat transfer 
(Nu) the following discussions are set out. Numerical cal-
culations are carried out for different values of the perme-
ability parameter(K), velocity slip parameter(h1), thermal 
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Grashof number(Gr), mass Grashof number(Gc), suction 
parameter(λ), Prandtl number(Pr) and Schmidt number(Sc). 
The values of Prandtl number(Pr) are chosen to be 0.71 and 7 
which approximately represent air and water respectively at 
20℃. The values of Gr and Gc are chosen arbitrarily. We fix 
ϵ=0.05, n=0.1 and t=1, A=0.5 (except concentration). 

In figure 1, velocity distribution is plotted against y, fixing 
z=0.25, and R=0.2. It is evident from this figure that the 
velocity increases with increase in K, h1, λ and Gr. Inter-
preting physically, increase in the permeability parameter(K) 
increases the flow which leads to increase in velocity. We 
further notice that increasing Gc decreases the velocity on 
the plate but rises as we move away from the plate. We have 
specially observed the result in air(Pr=0.71) and water(Pr=7) 
choosing values of Sc as 0.61 and 1.002. We observe that for 
same Sc velocity is higher in air than in water, this is due to 
the fact that air is lighter than water. Also we notice that for 
both the basic fluids air and water velocity is higher for 
Sc=0.61 and lower for Sc=1.002. We have made observa-
tions for K=∞ viz. free flow and notice that the velocity 
increases. When K=∞ and h1=0(no slip), the velocity drops 
in comparison with h1≠0 and when K= ∞ , h1=0 and 
λ=0(suction parameter is zero), velocity decreases very 
slightly as we move away from the plate. 

The cross flow velocity component (w) is due to trans-
verse suction velocity distribution applied through the plate 
at rest. This secondary flow component is shown in figure 2, 
plotted against y and taking water as the fluid (Pr=7). We 
notice that w increases on increasing z and as λ increases, w 
decreases near the plate but increases as we move away from 
the plate. 

 
Figure 1.  Velocity profiles plotted against y for different values of K, h, 
Gr, Gc, λ, Pr, and Sc 

 
Figure 2.  Cross flow velocity profiles in water against y for different 
values of λ and z 

 
Figure 3.  Temperature profiles plotted against for different values of K, 
λ, R and Pr 

Temperature profiles in air (Pr=0.71) are plotted against y 
in figure 3. We notice that temperature falls on increasing K 
and R where as temperature rises on increasing λ. Also for 
negative of radiation (absorption) temperature increases. It is 
specially observed that in case of free flow (K=∞) tem-
perature dips this is due to the fact that the distance between 
the particles increases and hence the temperature drops. For 
K=∞, temperature rises in both the cases when λ=0 and R=0. 
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Further we see that temperature is lower in water (Pr=7) as 
compared in air (Pr=0.71). 

In figure 4, Concentration profiles are plotted against y, 
fixing z=0.25. We observe that concentration decreases on 
increasing K, Sc and A whereas it increases on increasing λ. 
Observations made for free flow K=∞ and λ=0, shows that 
the concentration decreases. Interpreting physically, we can 
say that when we increase the permeability parameter (K) it 
increases the gap between the particles of the fluid leading to 
decrease in concentration. 

Skin friction in main flow direction is plotted against K in 
figure 5. We observe that skin friction increases on increas-
ing Gr, Gc, λ and z, on the other hand skin friction increases 
on decreasing h1 and R. For negative of radiation (absorption) 
skin friction increases. Increase in skin friction due to Gc is 
more than that due to Gr. Also we specially observe that skin 
friction is higher in air (Pr=0.71) than in water (Pr=7), this is 
due the fact that velocity is higher in air than in water. 

In figure 6, Nusselt number profiles are plotted against K. 
We notice that for water (Pr=7), the rate of heat transfer 
decreases on increasing λ and same happens on decreasing z. 
Further we observe that for both the basic fluids air (Pr=0.71) 
and water (Pr=7), the rate of heat transfer decreases on de-
creasing R. Also we specially observe that when both λ=0 
and R=0 the rate of heat transfer falls. It is generally ob-
served that the rate of heat transfer is higher in water than in 
air. 

 
Figure 4.  Concentration profiles plotted against for different values of K, 
Sc, λ and A 

 
Figure 5.  Skin friction plotted against K for different values of Gr, Gc, 
h1, λ, R, Z, Pr 

 
Figure 6.  Nusselt number plotted against K for different values of λ, z, R, 
Pr 
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