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Abstract  The locally D-optimal design was derived for simple linear regression with the error term of Skew-Normal 
distribution. In this paper, to obtain a D-optimal design, the locally D-optimal criterion was considered, because of depending 
the information matrix on unknown parameters. 
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1. Introduction 
There are many papers which discuss the optimal design 

for simple linear regression when the error terms have nor-
mal distribution. In this paper, the Skew-Normal distribution 
was considered for error term. The central role of general 
random variables in probability and statistics is well-known 
and can be traced to the simplicity of the functional forms, 
basic symmetry properties of the probability density function 
(pdf) and cumulative function (cdf) of the standard normal 
random variable, Z; 

𝜙𝜙(𝑧𝑧) = 1
√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑧𝑧2

2
� ,Φ(𝑧𝑧) = ∫ 𝜙𝜙(𝑒𝑒)𝑑𝑑𝑒𝑒𝑧𝑧

∞      (1) 
Now, the following function can be considered: 

𝑓𝑓𝜆𝜆(𝑒𝑒) = 2𝜙𝜙(𝑒𝑒)Φ(𝜆𝜆𝑒𝑒)              (2) 
is a bona fide pdf of a random variable X which inherits a 

few features of the normal random variables. Some of these 
features happen to be the ones which make the normal dis-
tribution the darling of statistical inference. 

The class of distribution (2) was introduced in[2] and 
Christened Skew-Normal distribution with the skewness 
parameter 𝜆𝜆, in symbol X  SN (𝜆𝜆). The right-tails of these 
distributions are virtually indistinguishable for 𝜆𝜆 > 2; thus, 
in this paper, only optimal design was discussed for 
∈ [−2, +2]. Some properties of this kind of distribution can 
be found in[7]. 

In this paper, a simple linear regression model was con-
sidered as well as 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒 + 𝜀𝜀, where the error term 
had skew-normal distribution with- parameter 𝜆𝜆; meaning 
that, 𝜀𝜀~𝑆𝑆𝑆𝑆(𝜆𝜆). In this situation, Y has also skew-normal 
distribution with the following pdf; 
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𝑓𝑓𝑌𝑌(𝑦𝑦;𝛉𝛉) = 2𝜙𝜙(𝑦𝑦 − 𝛽𝛽0 − 𝛽𝛽1𝑒𝑒)Φ�𝜆𝜆(𝑦𝑦 − 𝛽𝛽0 − 𝛽𝛽1𝑒𝑒)�; 𝑒𝑒 ∈ 𝓧𝓧  (3) 
where 𝛉𝛉 = (𝛽𝛽0,𝛽𝛽1, 𝜆𝜆)𝑇𝑇 . As was already written, is obtaining 
of this paper was to obtain the locally D-optimal design of 
this model based on the unknown parameter vector 𝛉𝛉. 

In this paper, there was concentration on the criterion 
dependence on the variance of parameter estimator. As is 
known, the variance of parameter estimator (ML) is in-
versely proportional to the information matrix[2]. Thus, 
there have been searched designs maximizing the informa-
tion on the estimates as represented in the Fisher informa-
tion matrix in 𝚰𝚰(𝛉𝛉; 𝜉𝜉), where 𝜉𝜉 denotes a design.  

The outline of the paper is as follows. In Section 2, the 
information matrix, the locally D-optimal criterion which is 
a function of the information matrix and the locally 
D-optimal design for model (3) are introduced. At last, con-
clusion is made in Section 3. 

2. Locally D-optimal Design 
To obtain the D-optimal deign, the information matrix 

should be known, which was calculated using the derivative 
degree two of the log-likelihood function. In this paper, the 
information matrix was obtained based on the following 
log-likelihood function according to model (3); 

ℓ(𝛉𝛉; 𝑒𝑒) = ln(2) + ln�𝜙𝜙(𝑦𝑦 − 𝛽𝛽0 − 𝛽𝛽1𝑒𝑒)� 
+ ln �Φ�𝜆𝜆(𝑦𝑦 − 𝛽𝛽0 −  𝛽𝛽1𝑒𝑒)��          (4) 

At first, since the information matrix should be calculated 
for one observation, (for one observation) was obtained by; 

𝚰𝚰(𝛉𝛉;𝑒𝑒) = −𝐸𝐸 �
𝜕𝜕2ℓ(𝛉𝛉;𝑒𝑒)
𝜕𝜕𝛉𝛉𝜕𝜕𝛉𝛉𝑇𝑇

� 

 = �
𝐼𝐼𝛽𝛽0𝛽𝛽0 𝐼𝐼𝛽𝛽0𝛽𝛽1 𝐼𝐼𝛽𝛽0𝜆𝜆

𝐼𝐼𝛽𝛽1𝛽𝛽1 𝐼𝐼𝛽𝛽1𝜆𝜆

𝐼𝐼𝜆𝜆𝜆𝜆
�       (5) 

where the elements of the symmetry information matrix 



66  H. Jafari, R. Hashemi:  Optimal Designs in a Simple Linear Regression with Skew-Normal Distribution for Error Term 
  

 

(5) were as follows; 
• 𝐼𝐼𝛽𝛽0𝛽𝛽0 = −𝐸𝐸 �𝜕𝜕

2ℓ(𝛉𝛉;𝑒𝑒)
𝜕𝜕𝛽𝛽0

2 � = 1 − 1
2
𝜆𝜆3𝑎𝑎1 + 𝜆𝜆2𝑏𝑏0, 

• 𝐼𝐼𝛽𝛽1𝛽𝛽1 = −𝐸𝐸 �𝜕𝜕
2ℓ(𝛉𝛉;𝑒𝑒)
𝜕𝜕𝛽𝛽1

2 � = 𝑒𝑒2(1 − 𝜆𝜆3𝑎𝑎1 + 𝜆𝜆2𝑏𝑏0), 

• 𝐼𝐼𝜆𝜆𝜆𝜆 = −𝐸𝐸 �𝜕𝜕
2ℓ(𝛉𝛉;𝑒𝑒)
𝜕𝜕𝜆𝜆2 � = (−𝜆𝜆𝑎𝑎3 + 𝑏𝑏2), 

• 𝐼𝐼𝛽𝛽0𝛽𝛽1 = −𝐸𝐸 �𝜕𝜕
2ℓ(𝛉𝛉;𝑒𝑒)
𝜕𝜕𝛽𝛽0𝜕𝜕𝛽𝛽1

� = 𝑒𝑒(1 − 𝜆𝜆3𝑎𝑎1 + 𝜆𝜆2𝑏𝑏0), 

• 𝐼𝐼𝛽𝛽0𝜆𝜆 = −𝐸𝐸 �𝜕𝜕
2ℓ(𝛉𝛉;𝑒𝑒)
𝜕𝜕𝛽𝛽0𝜕𝜕𝜆𝜆

� = (−𝜆𝜆2𝑎𝑎2 + 𝑎𝑎0 + 𝜆𝜆𝑏𝑏1), 

• 𝐼𝐼𝛽𝛽1𝜆𝜆 = −𝐸𝐸 �𝜕𝜕
2ℓ(𝛉𝛉;𝑒𝑒)
𝜕𝜕𝛽𝛽1𝜕𝜕𝜆𝜆

� = 𝑒𝑒(−𝜆𝜆2𝑎𝑎2 + 𝑎𝑎0 + 𝜆𝜆𝑏𝑏1), 
such that; 

     𝑎𝑎𝑘𝑘1 = 𝑎𝑎𝑘𝑘1
(𝛽𝛽0,𝛽𝛽1, 𝜆𝜆, 𝑒𝑒) =  

      = 𝐸𝐸 �(−𝑌𝑌 + 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒)𝑘𝑘1 . 𝜙𝜙�𝜆𝜆(𝑌𝑌−𝛽𝛽0−𝛽𝛽1𝑒𝑒)�
Φ�𝜆𝜆(𝑌𝑌−𝛽𝛽0−𝛽𝛽1𝑒𝑒)�

� ;  
 𝑘𝑘1 = 0,1,2,3 

    𝑏𝑏𝑘𝑘2 = 𝑏𝑏𝑘𝑘2
(𝛽𝛽0,𝛽𝛽1, 𝜆𝜆, 𝑒𝑒) =  

      = 𝐸𝐸 �(−𝑌𝑌 + 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒)𝑘𝑘2 . �𝜙𝜙�𝜆𝜆(𝑌𝑌−𝛽𝛽0−𝛽𝛽1𝑒𝑒)�
Φ�𝜆𝜆(𝑌𝑌−𝛽𝛽0−𝛽𝛽1𝑒𝑒)�

�
2
�  ;  

 𝑘𝑘2 = 0,1,2 
See Appendix A1. 
Especially, suppose 𝓧𝓧 = [−1, +1] as design space and 

𝛽𝛽0,𝛽𝛽1 ∈ [−5, +5], 𝜆𝜆 ∈ [−2, +2]. Now, for all the values 
of (𝛽𝛽0,𝛽𝛽1, 𝑒𝑒), the following can be written;  
• Two amounts of 𝑎𝑎1 and  𝑎𝑎3 are equal to zero 

and  𝑎𝑎0(> 0) increase for 𝜆𝜆 ∈ [−2,0] and decrease 
for 𝜆𝜆 ∈ [0, +2]. There exists a similar position for 𝑎𝑎2(> 0), 
where; 

 𝑎𝑎0(𝛽𝛽0,𝛽𝛽1, 0, 𝑒𝑒) = max
𝜆𝜆∈[−2,+2]

 𝑎𝑎0(𝛽𝛽0,𝛽𝛽1, 𝜆𝜆, 𝑒𝑒) = 0.39892, 

 𝑎𝑎2(𝛽𝛽0,𝛽𝛽1, 0, 𝑒𝑒) = max
𝜆𝜆∈[−2,+2]

 𝑎𝑎2(𝛽𝛽0,𝛽𝛽1, 𝜆𝜆, 𝑒𝑒) = 0.39892. 

• 𝑏𝑏0(> 0) increases for 𝜆𝜆 ∈ [−2,0] and decreases 
for 𝜆𝜆 ∈ [0, +2]. There exists a similar position for 𝑏𝑏2(>

0) , where;  
 𝑏𝑏0(𝛽𝛽0,𝛽𝛽1, 0,𝑒𝑒) = max

𝜆𝜆∈[−2,+2]
 𝑏𝑏0(𝛽𝛽0,𝛽𝛽1, 𝜆𝜆, 𝑒𝑒) = 0.63662 

 𝑏𝑏2(𝛽𝛽0,𝛽𝛽1, 0,𝑒𝑒) = max
𝜆𝜆∈[−2,+2]

 𝑏𝑏2(𝛽𝛽0,𝛽𝛽1, 𝜆𝜆, 𝑒𝑒) = 0.63662 

In this case, 𝑏𝑏1  increases as  𝜆𝜆  increases and 
 𝑏𝑏1(𝛽𝛽0,𝛽𝛽1, 0, 𝑒𝑒) = 0.0000. After proposing the two above 
properties (items 1 and 2), an optimal design should be ob-
tained for model (3). As is known, there are many optimal-
ity criteria for obtaining an optimal design such that D- and 
A-optimality criteria which are functions of the information 
matrix (5) and shown by the following notations[1]; 

𝜓𝜓𝐷𝐷(𝛉𝛉; 𝜉𝜉) = − ln �𝑑𝑑𝑒𝑒𝑑𝑑�𝚰𝚰(𝛉𝛉; 𝜉𝜉)�� & 
  𝜓𝜓𝐴𝐴(𝛉𝛉; 𝜉𝜉) = 𝑑𝑑𝑡𝑡�𝐈𝐈−1(𝛉𝛉; 𝜉𝜉)�               (7) 

where 𝜉𝜉 denotes a design with two components; the first 
components are some values of design space 𝓧𝓧 and the 
weight of them are the second components, so that design 𝜉𝜉 
can be defined as follows; 

 𝜉𝜉 = �
𝑒𝑒1 𝑒𝑒2 … 𝑒𝑒𝑚𝑚
𝑤𝑤1 𝑤𝑤2 … 𝑤𝑤𝑚𝑚� ∈ Ξ         (8) 

where Ξ = {(𝑒𝑒,𝑤𝑤)|0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1; ∑ 𝑤𝑤𝑖𝑖 = 1, 𝑒𝑒 ∈ 𝓧𝓧 𝑚𝑚
𝑖𝑖=1 },  

𝚰𝚰(𝛉𝛉; 𝜉𝜉) = ∑ 𝑤𝑤𝑖𝑖𝑚𝑚
𝑖𝑖=1 . 𝚰𝚰(𝛉𝛉;𝑒𝑒𝑖𝑖)  and  𝑒𝑒 ≤ 𝑚𝑚 ≤ 𝑒𝑒(𝑒𝑒+1)

2
 (p de-

notes the number of parameters)[5]. The design is called the 
saturated design when m=p. 

In Table 1, an optimal design is shown for model (3) 
based on the information matrix (5). In this case, for differ-
ent amounts of parameter 𝜆𝜆 ∈ [−2, +2] and every value 
of 𝛽𝛽0,𝛽𝛽1 in the interval [-5, +5] and also the equivalence 
Theorem[6] (See Appendix A2), the following can be writ-
ten[9]; 
𝑑𝑑𝑡𝑡�𝚰𝚰(𝛉𝛉; 𝑒𝑒)𝚰𝚰−1(𝛉𝛉; 𝜉𝜉∗)� = 2 + 𝑒𝑒2;  𝑒𝑒 ∈ 𝓧𝓧 = [−1, +1],∀𝛉𝛉 (10) 

Table 1.  Locally D- and A-optimal design for some values of 𝝀𝝀 and any values of the other parameters 

𝝀𝝀 𝝃𝝃 = �
𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑
𝜶𝜶𝟏𝟏 𝜶𝜶𝟐𝟐 𝜶𝜶𝟑𝟑� 𝒅𝒅𝒅𝒅𝒅𝒅�𝚰𝚰(𝝃𝝃∗)� 𝒅𝒅𝒕𝒕�𝚰𝚰−𝟏𝟏(𝝃𝝃∗)� 

0.00  
 
 
 
 
 
 

𝝃𝝃∗ = �−𝟏𝟏.𝟎𝟎 𝟎𝟎.𝟎𝟎 +𝟏𝟏.𝟎𝟎
𝟎𝟎.𝟓𝟓 𝟎𝟎.𝟎𝟎 𝟎𝟎.𝟓𝟓 � 

0.00001 218048.37666 
-0.10 (+0.10) 0.00798 206.80126 
-0.20 (+0.20) 0.03072 55.51984 
-0.50 (+0.50) 0.14759 13.60039 
-0.80 (+0.80) 0.25024 9.74240 
-0.90 (+0.90) 0.27128 9.60189 
-0.95 (+0.95) 0.27919 9.64598 
-0.97 (+0.97) 0.28200 9.67855 
-0.99 (+0.99) 0.28449 9.72339 
-1.00 (+1.00) 0.28567 9.74842 
-1.10 (+1.10) 0.29419 10.12550 
-1.15 (+1.15) 0.29660 10.38839 
-1.18 (+1.18) 0.29747 10.56942 
-1.19 (+1.19) 0.29772 10.63339 
-1.20 (+1.20) 0.29788 10.69999 
-1.30 (+1.30) 0.29772 11.45680 
-1.40 (+1.40) 0.29459 12.38894 
-1.50 (+1.50) 0.28927 13.49405 
-1.53 (+1.53) 0.28726 13.85854 
-1.54 (+1.54) 0.28669 13.98369 
-1.55 (+1.55) 0.28602 14.10990 
-1.57 (+1.57) 0.28462 14.36935 
-2.00 (+2.00) 0.24804 21.72277 
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Figure 1.   𝑑𝑑𝑡𝑡�I(θ0;𝑒𝑒)I−1(θ0; 𝜉𝜉∗)� 

According to Equation (10), Figure 1 shows that in the 
two points 𝑒𝑒 = −1.0, +1.0, 𝑑𝑑𝑡𝑡�𝚰𝚰(𝛉𝛉; 𝑒𝑒)𝚰𝚰−1(𝛉𝛉; 𝜉𝜉∗)� is equal 
to 3; but, for 𝑒𝑒 = 0.0, this quantity is less than 3 (the num-
ber of parameters). Then, it can be said that the following 
locally D-optimal design exists with two support points -1, 
+1; 

𝜉𝜉∗ = �−1.0 +1.0
0.5 0.5 �. 

In this case, it can be also seen that the maximum of the 
determinant of the information matrix exists when  𝜆𝜆 =
−1.2, 1.2 in Table 1. 

3. Conclusions  
In this paper, the Skew-normal distribution was consid-

ered for error term in simple linear regression. In this kind 
of model, there are three parameters, two of which are re-
lated to the regression model and one is the parameter of 
Skew-normal distribution. Then, based on these three pa-
rameters and Caratheodory’s theorem[3], a design with 
three support points assumed. To obtain an optimal design, 
the D-optimal criterion was considered. In this case, due to 
the dependence of the information matrix on unknown pa-
rameters, the locally D-optimal design was obtained[8]. 

In this situation, there was only one locally D-optimal 
design for every value of the parameters 𝛽𝛽0,𝛽𝛽1 ∈
[−5, +5] and for different values of 𝜆𝜆 ∈ [−2, +2]. This 
result is shown in Table 1, where 𝜆𝜆 = 1.2 maximizes the 
determinate of the information matrix. Also, it was shown 
that locally A-optimal design was the same as locally 
D-optimal design, where 𝜆𝜆 = 0.99 minimizes 𝑑𝑑𝑡𝑡�𝚰𝚰−1(ξ∗)� 
(Table 1). 

Appendix A1 
To calculate the elements of the information matrix (5), 

the derivatives of the log-likelihood function (4) with re-
spect to three parameters𝛽𝛽0,𝛽𝛽1 and 𝜆𝜆 is needed as follows; 

𝜕𝜕2ℓ(𝜃𝜃; 𝑒𝑒)
𝜕𝜕𝛽𝛽0

2 = −1 + λ3(−y + β0 + β1𝑒𝑒).
ϕ�λ(y − β0 − β1𝑒𝑒)�

2Φ�λ(y − β0 − β1𝑒𝑒)�

− λ2.�
ϕ�λ(y− β0 − β1𝑒𝑒)�
Φ�λ(y− β0 − β1𝑒𝑒)�

�
2

 

𝜕𝜕2ℓ(𝜃𝜃; 𝑒𝑒)
𝜕𝜕𝛽𝛽1

2 = −𝑒𝑒2 + λ3𝑒𝑒2(−y + β0 + β1𝑒𝑒).
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

− λ2x2.�
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

�
2

 

𝜕𝜕2ℓ(𝜃𝜃; 𝑒𝑒)
𝜕𝜕𝜆𝜆2 = 𝜆𝜆(−y + β0 + β1𝑒𝑒)3.

ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

− (−y + β0

+ β1𝑒𝑒)2.�
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

�
2

 

𝜕𝜕2ℓ(𝜃𝜃; 𝑒𝑒)
𝜕𝜕𝛽𝛽0𝜕𝜕𝛽𝛽1

= −𝑒𝑒 + λ3𝑒𝑒(−y + β0 + β1𝑒𝑒).
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

− λ2𝑒𝑒.�
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

�
2

 

𝜕𝜕2ℓ(𝜃𝜃; 𝑒𝑒)
𝜕𝜕𝛽𝛽0𝜕𝜕𝜆𝜆

= (λ2(−y + β0 + β1𝑒𝑒)2

− 1).
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

− λ(−y + β0

+ β1𝑒𝑒).�
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

�
2

 

𝜕𝜕2ℓ(𝜃𝜃; 𝑒𝑒)
𝜕𝜕𝛽𝛽1𝜕𝜕𝜆𝜆

= (λ2𝑒𝑒(−y + β0 + β1𝑒𝑒)2 − 𝑒𝑒).
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

− λ𝑒𝑒(−y + β0

+ β1𝑒𝑒).�
ϕ�λ(y − β0 − β1𝑒𝑒)�
Φ�λ(y − β0 − β1𝑒𝑒)�

�
2

 

Appendix A2 
Theorem (Equivalence Theorem)[9]: Based on the design 

𝝃𝝃 the following three items are equivalent: 
•  𝝃𝝃∗  is the locally D-optimal design if: 𝝃𝝃∗ =

𝐚𝐚𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦𝐦𝐦𝝃𝝃∈𝚵𝚵 𝝍𝝍𝑫𝑫(𝛉𝛉𝟎𝟎; 𝝃𝝃), where 𝛉𝛉𝟎𝟎 denotes the true value of 
parameters. 
• 𝒅𝒅𝒕𝒕�𝐈𝐈(𝛉𝛉𝟎𝟎;𝒙𝒙)𝐈𝐈−𝟏𝟏(𝛉𝛉𝟎𝟎; 𝝃𝝃∗)� ≤ 𝒑𝒑;∀𝒙𝒙 ∈ 𝓧𝓧 (G-optimality 

criterion), p denotes the number of parameters. 
• 𝒅𝒅𝒕𝒕�𝐈𝐈(𝛉𝛉𝟎𝟎;𝒙𝒙∗)𝐈𝐈−𝟏𝟏(𝛉𝛉𝟎𝟎; 𝝃𝝃∗)� = 𝒑𝒑, where 𝒙𝒙∗  is the sup-

port points. 
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