Weak Insertion of a γ–Continuous Function

Majid Mirmiran

Department of Mathematics, University of Isfahan Isfahan 81746-73441, Iran

Abstract A sufficient condition in terms of lower cut sets are given for the weak insertion of a γ–continuous function between two comparable real-valued functions.

Keywords Weak Insertion, Strong Binary Relation, Preopen Set, Semi-Open Set, γ–Open Set, Lower Cut Set

1. Introduction

The concept of a preopen set in a topological space was introduced by H. H. Corson and E. Michael in 1964[5]. A subset A of a topological space (X, τ) is called preopen or locally dense or nearly open if $A \subseteq \text{Int(Cl}(A))$. A set A is called preclosed if its complement is preopen or equivalently if $\text{Cl}(\text{Int}(A)) \subseteq A$. The term ,preopen, was used for the first time by A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb[13], while the concept of a , locally dense, set was introduced by H. H. Corson and E. Michael[5].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963[12]. A subset A of a topological space (X, τ) is called semi-open[12] if $A \subseteq \text{Cl}(\text{Int}(A))$. A set A is called semi-closed if its complement is semi-open or equivalently if $\text{Int}(\text{Cl}(A)) \subseteq A$. A property P defined on a topological space (X, τ) is called γ–open if $A \cap S$ is semi-open whenever S is semi-open. A set A is called γ–closed if its complement is γ–open or equivalently if $A \cup S$ is preclosed, whenever S is preclosed. The class γ–open sets is a topology on $X[1]$. A real-valued function f defined on a topological space X is called γ–continuous if the preimage of every open subset of X belongs to A, where A is a collection of subset of X. Most of the definitions of function used throughout this paper are consequences of the definition of γ–continuity. However, for unknown concepts the reader may refer to[6,7].

Hence, a real-valued function f defined on a topological space X is called γ–continuous[14] if the preimage of every open subset of R belongs to A, where A is a collection of subset of X. Most of the definitions of function used throughout this paper are consequences of the definition of γ–continuity. However, for unknown concepts the reader may refer to[6,7].

Before giving a sufficient condition for insertability of a γ–continuous function, the necessary definitions and terminology are stated.

Let (X, τ) be a topological space, the family of all γ–open, γ–closed, semi-open, semi-closed, preopen and preclosed will be denoted by $\gamma\text{O}(X, \tau)$, $\gamma\text{C}(X, \tau)$, $\text{sO}(X, \tau)$, $\text{sC}(X, \tau)$, $\text{pO}(X, \tau)$ and $\text{pC}(X, \tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ). Respectively, we define the γ–closure, γ–interior, s–closure, s–interior, p–closure and p–interior of a set A, denoted by $\gamma\text{Cl}(A)$, $\gamma\text{Int}(A)$, $\text{sCl}(A)$, $\text{sInt}(A)$, $\text{pCl}(A)$ and $\text{pInt}(A)$ as follows:

$$\gamma\text{Cl}(A) = \{ F : F \supseteq A, F \in \gamma\text{C}(X, \tau) \}.$$
\[
\gamma \text{Int}(A) = \bigcup \{ O : O \subseteq A, O \in \gamma \text{O}(X, t) \}, \\
s\text{Cl}(A) = \bigcap \{ F : F \supseteq A, F \in \text{sCl}(X, t) \}, \\
s\text{Int}(A) = \bigcup \{ O : O \subseteq A, O \in \text{sO}(X, t) \}, \\
p\text{Cl}(A) = \bigcap \{ F : F \supseteq A, F \in \text{pCl}(X, t) \} \\
\text{Cl}(A) = \bigcup \{ O : O \subseteq A, O \in \text{pCl}(X, t) \}.
\]

If \(\{ A_i : i \in I \} \) be a family of preopen (resp. semi-open) sets, since \(A_i \subseteq \text{Int}(\{ A_i : i \in I \}) \) (resp. \(A_i \subseteq \text{Cl}(\{ A_i : i \in I \}) \)), then \(\bigcup \{ A_i : i \in I \} \subseteq \text{Cl}(\{ A_i : i \in I \}) \) (resp. \(\bigcup \{ A_i : i \in I \} \subseteq \text{Cl}(\{ A_i : i \in I \}) \)), i.e., \(\bigcup \{ A_i : i \in I \} \) is a preopen (resp. semi-open) set. Therefore, both preopen and semi-open sets are preserved by arbitrary unions.

Hence, respectively, we have \(\gamma \text{Cl}(A), s\text{Cl}(A), p\text{Cl}(A) \) are \(\gamma \)-closed, semi-closed, and \(\gamma \)-open sets, \(s\text{Int}(A), p\text{Int}(A) \) are \(\gamma \)-open, semi-open, and \(\gamma \)-preopen sets, respectively.

The following first two definitions are modifications of conditions considered in [9, 10].

Definition 2.2. If \(\rho \) is a binary relation in a set \(S \) then \(\rho^- \) is defined as follows: \(x \rho^- y \) if and only if \(y \rho x \) implies \(x \rho y \) and \(u \rho x \) implies \(u \rho y \) for any \(u \in S \).

Definition 2.3. A binary relation \(\rho \) in the power set \(P(X) \) of a topological space \(X \) is called a strong binary relation in \(P(X) \) in case \(\rho \) satisfies each of the following conditions:

1) If \(A_i \rho B_j \) for any \(i \in \{ 1, ..., m \} \) and for any \(j \in \{ 1, ..., n \} \), then there exists a set \(C \in P(X) \) such that \(A_i \rho C \) and \(C \rho B_j \) for any \(i \in \{ 1, ..., m \} \) and any \(j \in \{ 1, ..., n \} \).

2) If \(A \subseteq B \subseteq A \), then \(\rho^- B \).

3) If \(A \rho B \), then \(\gamma \text{Cl}(A) \subseteq B \) and \(A \subseteq \gamma \text{Int}(B) \).

The concept of a lower indefinite cut set for a real number \(t \) is defined by Brooks [4] as follows:

Definition 2.4. If \(f \) is a real-valued function defined on a space \(X \) and if \(\{ x \in X : f(x) < t \} \subseteq \{ x \in X : f(x) > t \} \) for a real number \(t \), then \(A(f, t) \) is called a lower indefinite cut set in the domain of \(f \) at the level \(t \) of the function.

We now give the following main result:

Theorem 2.1. Let \(g \) and \(f \) be real-valued functions defined on a topological space \(X \) with \(g \leq f \). If there exists a strong binary relation \(\rho \) on the power set of \(X \) and if there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \) then \(A(f, t_1) \rho A(g, t_2) \), then there exists a \(\gamma \)-continuous function \(h \) defined on \(X \) such that \(g \leq h \leq f \).

Proof. Let \(g \) and \(f \) be real-valued functions defined on \(X \) such that \(g \leq f \). By hypothesis there exists a strong binary relation \(\rho \) on the power set of \(X \) and there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \) then \(A(f, t_1) \rho A(g, t_2) \).

Define functions \(F \) and \(G \) mapping the rational numbers \(\mathbb{Q} \) into the power set of \(X \) by \(F(t) = A(f, t) \) and \(G(t) = A(g, t) \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then \(F(t_1) \rho F(t_2) \), \(G(t_1) \rho G(t_2) \), and \(H(t_1) \rho H(t_2) \). By Lemmas 1 and 2 of [10] it follows that there exists a function \(H \) mapping \(\mathbb{Q} \) into the power set of \(X \) such that if \(t_1 \) and \(t_2 \) are any rational numbers with \(t_1 < t_2 \), then \(F(t_1) \rho H(t_2), H(t_1) \rho H(t_2) \) and \(H(t_1) \rho H(t_2) \).

For any \(x \in X \), let \(h(x) = \inf \{ t \in \mathbb{Q} : f(x) < t \} \).

We first verify that \(g \leq h \leq f \). If \(x \) is in \(H(t_1) \) then \(x \) is in \(G(k) \) for any \(k < t \); since \(x \) is in \(G(k) = A(f, k) \) implies that \(g(x) \leq k \), it follows that \(g(x) \leq \inf \{ t \in \mathbb{Q} : f(x) < t \} \). Hence \(g \leq h \).

Also, \(\rho \) for any rational numbers \(t_1 \) and \(t_2 \) with \(t_1 < t_2 \), we have \(h(t_1, t_2) = \gamma \text{Int}(H(t_2)) \cap \gamma \text{Cl}(H(t_1)) \). Hence \(h(t_1, t_2) \) is a \(\gamma \)-open subset of \(X \), i.e., \(h \) is a \(\gamma \)-continuous function on \(X \).

The above proof used the technique of proof of Theorem 1 of [9].

3. Applications

The abbreviations \(pc \) and \(sc \) are used for precontinuous and semicontinuous, respectively.

Before stating the consequences of Theorem 2.1, we suppose that \(X \) is a topological space that \(\gamma \)-open sets are semi-open and preopen.

Corollary 3.1. If for each pair of disjoint preclosed (resp. semi-closed) sets \(F_1, F_2 \), there exist \(\gamma \)-open sets \(G_1 \) and \(G_2 \) such that \(F_1 \subseteq G_1, F_2 \subseteq G_2 \) and \(G_1 \cap G_2 = \emptyset \) then every precontinuous (resp. semi-continuous) function is \(\gamma \)-continuous.

Proof. First verify that \(X \) has the weak \(\gamma \)-insertion property for (pc, pc) (resp. (sc, sc)): Let \(g \) and \(f \) be real-valued functions defined on the \(X \), such that \(f \) and \(g \) are \(pc \) (resp. \(sc \)), and \(g \leq f \). If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(s\text{Cl}(A) \subseteq B \), then \(h(t_1, t_2) \) is a binary relation \(\rho \) on the power set of \(X \), such that \(F_1 \subseteq G_1, F_2 \subseteq G_2 \) and \(G_1 \cap G_2 = \emptyset \) then every precontinuous (resp. semi-continuous) function is \(\gamma \)-continuous.

Proof. Let \(g \) and \(f \) be real-valued functions functions defined on the \(X \), such that \(g \) is \(pc \) (resp. \(sc \)), and \(g \leq f \). If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(s\text{Cl}(A) \subseteq B \), then \(h(t_{1 < t_2} \) is a lower \(\gamma \)-open subset of \(X \), i.e., \(h \) is a \(\gamma \)-continuous function on \(X \).

The above proof used the technique of proof of Theorem 1 of [9].
since \(\{ x \in X : f(x) \leq t_1 \} \) is a semi-closed (resp. preclosed) set and since \(\{ x \in X : g(x) < t_2 \} \) is a preopen (resp. semi-open) set, it follows that \(\text{sCl}(A(f, t_1)) \subseteq \text{plnt}(A(g, t_2)) \) (resp. \(\text{pCl}(A(f, t_1)) \subseteq \text{sInt}(A(g, t_2)) \)). Hence \(t_1 < t_2 \) implies that \(A(f, t_1) \approx A(g, t_2) \). The proof follows from Theorem 2.1.

Remark 3.1. See[1,2], for examples of topological spaces are said in corollaries 3.1 and 3.2.

ACKNOWLEDGEMENTS

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

REFERENCES

This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).