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Abstract  An approximate analysis of unsteady mixed convection flow of an electrically conducting fluid past an 

infinite vertical porous plate embedded in porous medium under constant transversely applied magnetic field is presented 

here. The periodic transverse suction velocity is applied to the surface due to which the flow becomes unsteady. The 

surface is kept at oscillating wall temperature. Analytical expressions for the transient velocity, temperature, amplitude and 

phase of the skin-friction and the rate of heat transfer are obtained and discussed in detail with the help of graphs, under 

different parameter values. 
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1. Introduction 

The problem laminar flow through a porous medium has 

become very important in recent years particularly in the 

fields of agricultural engineering to study the underground 

water resources, seepage of water in river beds, in chemical 

engineering for filtration and purification process; in 

petroleum technology to study the movement of natural gas, 

oil and water through the oil reservoirs. Oscillatory flows 

play an important role in technological field. The effects of 

free-stream oscillations on the flow past a semi-infinite 

plate were first studied by Lin[1] for finite amplitude and by 

Lighthill[2] for small amplitude oscillations. Lighthill 

studied this problem by employing momentum integral 

method. These results were confirmed experimentally by 

Hill and Stenning[3]. In many industrial, aeronautical 

engineering, atomic propulsion and space science, the 

oscillatory flow past an infinite vertical porous plate plays 

an important role. Free convection effects on the oscillatory 

flow past an infinite vertical porous plate with constant 

suction was initiated by Soundalgekar[4-5]. In both the 

papers, suction was assumed to be constant. However, in 

many engineering applications variable suction exists and 

the effect of variable suction on the flow past an infinite 

vertical porous plate was studied by Soundalgekar[6]. In all 

these studies, the plate temperature was assumed to be 

constant and hence isothermal. 

But in many industrial applications, the flow is steady 
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and in the upward direction and the plate temperature is 

oscillating. Such a study of the flow past an infinite vertical 

porous plate, under oscillating plate temperature and with 

constant or variable suction was presented by Soundalgekar 

et.al.[7]. The unsteady free convection flow past an infinite 

plate with constant suction and heat sources has been 

studied by Pop et.al.[8]. Raptis[9] studied the free 

convective flow through a porous medium bounded by an 

infinite vertical plate with oscillating plate temperature and 

constant suction. Raptis et.al.[10] further analysed the free 

convective flow through a highly porous medium bounded 

by an infinite vertical porous plate with constant suction 

when the free stream velocity oscillates about a mean 

constant value. Hooper et.al.[11] have presented the 

problem of mixed convection along an isothermal vertical 

plate in porous medium with injection and suction. Panda et. 

al.[12] considered the unsteady free convection flow and 

mass transfer past a vertical porous plate. Soundalgekar et. 

al.[13] considered the free convection effects on 

magnetohydrodynamics flow past an infinite vertical 

oscillating plate with constant heat flux. Chandran et. al.[14] 

studied the transient hydromagnetic natural convection on a 

vertical flat plate subject to heat flux. Sahoo et. al.[15] 

studied the magnetohydrodynamic unsteady free convection 

flow past an infinite vertical plate with constant suction and 

heat sink. Heat and mass transfer in magnetohydrodynamics 

flow of a viscous fluid past a vertical plate under oscillatory 

suction velocity has been studied by Singh et. al.[16]. 

Helmy[17] studied the magnetohydrodynamics unsteady 

free convection flow past a vertical porous plate. Acharya et. 

al.[18] made a systematic analysis of magnetic field effects 

on the free-convective and mass transfer flow through 

porous medium with constant suction and constant heat flux. 
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Ahmed et. al.[19] extended Acharya’s[18] works to 

unsteady case by considering a uniform motion of the plate. 

Jaiswal et. al.[20] further extended his problem. Unsteady 

free and forced convection magnetohydrodynamics flow 

past an infinite vertical porous plate with variable suction 

and oscillating plate temperature. Sharma et. al.[21-22] 

considered the hydromagnetic unsteady mixed convection 

and mass transfer flow past a vertical porous plate 

immersed in a porous medium. Recently, Effects of 

fluctuating surface temperature and concentration on 

unsteady convection flow past an infinite vertical plate with 

constant suction discussed by Sharma et. al[23]. 

In the above stated studies the flows with the oscillatory 

suction velocity and with the influence of uniform magnetic 

field are not considered while such flows are encountered in 

geophysical problems, astrophysical problems, soil sciences 

and so on. Therefore, the present investigation is to study 

the effects of permeability and magnetic field as the flow 

past a vertical plate embedded on a porous medium and 

subjected to oscillating suction and temperature field. It is 

found that the permeability and magnetic field have 

significant effects on the flow and heat transfer. 

2. Mathematical Formulation 

We consider the flow of an electrically conducting viscous 

incompressible fluid through a porous medium bounded by 

an infinite vertically porous flat plate. The x*-axis is taken 

along the plate, being the vertically upward direction of the 

flow and y*-axis is taken perpendicular to the plate directed 

into the fluid. The fluid flows with uniform free stream 

velocity U. A uniform magnetic field B  is imposed along 

the y*-axis. The induced magnetic field is negligible which 

is possible on a laboratory scale. Since the plate is considered 

infinite in the x*-direction, hence all the fluid properties are 

independent of x*. Let u*, v* be the fluid velocities along x*, 

y*-axes respectively and the plate temperature T* is 

oscillating about a non-zero plate temperature *

wT . The 

variation of the suction velocity distribution of the form 
iw*t*v*(t*) V (1  e )              (1) 

Where V > 0 is the constant mean velocity and < 1, the 

negative sign in equation (1) indicates that the suction is 

towards the plate. Then under usual Boussineq's 

approximation, the magnetohydrodynamic flow in the 

porous medium is governed by the following differential 

equations  
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In these equations  is the density; t* is the time;  the 

kinematic viscosity; g the acceleration due to gravity;  the 

coefficient of volume expansion; K* is the permeability of 

the porous medium; T* the characteristic temperature of the 

fluid, 
*T the temperature of the fluid far away from the plate; 

 the scalar electrical conductivity ; U the uniform velocity 

of the fluid in the upward direction; Cp the specific heat at 

constant pressure;  the thermal conductivity and  is the 

coefficient of viscosity. The plate being infinite in length, the 

flow variables are functions of y* and t* only. 

The boundary conditions of the problem are 
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Here  is the frequency of the plate temperature 

oscillations and 
*

w
T is the temperature of the plate. The 

subscripts w and  denotes physical quantities at the plate 

and in the free stream respectively. 

Introducing the following non-dimensional quantities in 

equations (2) to (4) 
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The corresponding boundary conditions reduce to 
iwty    0  ;  u    0  ,  1 e
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 Applied Mathematics. 2011; 1(1): 39-45 41 

 

 

3. Solution 

When the amplitude  < < 1 is very small, in order to 

solve these coupled non-linear differential equations, we 

assume the solution in the neighbourhood of the plate that the 

unsteady flow is superimposed on the mean steady flow is 

represented mathematically of the form 
iwt
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           (9) 

Substituting equation (9) into equations (6) and (7), 

equating the coefficients of harmonic and non-harmonic 

terms, neglecting the coefficients of like powers 
2
 and 

3
, 

we get 
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where primes denote differentiation with respect to y. 

The corresponding boundary conditions become 
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These are non-linear differential equations and their exact 

solutions are not possible. So we again expand u0, u1, 0 and 

1 in terms of the Eckert number Ec (Ec < 1 for 

incompressible fluids), in the following manner 
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Substituting equation (15) into equations (10) to (13) and 

equating the coefficients of different powers of Ec, 

neglecting those of Ec
2
, we get the following differential 

equations 
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These are ordinary differential equations whose exact 

solutions of u0, u1, 0 and 1 under the boundary conditions 

are obtained as 
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Substituting u0, 0, u1 and 1 in equation (9) for u and , we 

get the expressions for the main flow velocity and 

temperature, which can be expressed in terms of the 

fluctuating parts as 
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For t = /2, we can obtain the expressions for the 

transient velocity and temperature profiles as  
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   


   
        (31) 

Now we can express the skin-friction in terms of the 

amplitude and the phase as 

0

y 0

du
|B |  cos ( t )

dy
  



 
     

 
    (32) 

where 

1
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y 0
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B    B i B
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
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    

 
 

2 2 i
r i

r

B
|B |    B B , tan 

B
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Further we can express the rate of heat transfer in terms of 

its amplitude and phase as 

iwt 1
m m

y 0

q    q e   q | | cos( )
y

Q t
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 
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where 
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4. Discussion of Results 

 
Figture 1.  Transient velocity for  = 0.2, Ec = 0.1 and t = /2. 

The transient velocity has been shown in Figure 1, for  = 

0.2, t = /2, Ec = 0.1 and other values of parameters. It is 

observed that the transient velocity increases with the 

increase in  or M but an increase in Gr, K or Pr leads to a 

decrease in the transient velocity. The transient velocity 

increases with increase in distance from plate until it attains 

its maximum value (nearly y = 1), after which it decreases. 

The value of the transient velocity is larger in the air (Pr = 

0.71) than in water (Pr = 7). The effects of Hartmann number 

M, frequency , permeability K, Grashof number Gr and 

Prandtl number Pr on the transient temperature have been 

exhibited in Figure 2. It is observed that the transient 

temperature increases with the increase in  or M but an 

increase in Gr, K or Pr leads to a decrease in the transient 

temperature. The transient temperature field falls more 

rapidly for water (Pr = 7) in comparison to air (Pr = 0.71). 

The transient temperature decreases with increase in distance 

from the plate and tends to zero. The value of the transient 

temperature is large in the air (Pr = 0.71) than in water (Pr = 

7). Figure 3 is drawn for amplitude of skin-friction | B | 

against . We observe from it that the amplitude of the 

skin-friction | B | increases with increasing K or Gr but 

decreases when M is increased. It is observed that for M = 0, 

| B | is more in air (Pr = 0.71) than that of water (Pr = 7). 

However, the effect of magnetic field increases its 

magnitude in the case of water than air. As  increases the 

amplitude | B | goes on decreasing steadily. There is always a 

phase lead. It is observed from Figure 4 that the phase of 

skin-friction tan  increases in case of air (Pr = 0.71) and 

decreases for water (Pr = 7). For the large values of , 

magnetic field M, permeability K and buoyancy Gr increases 

the phase for air, while reverse effect is observed in water. 

There is always phase lead for both air and water. Figure 5 is 

drawn for amplitude of rate of heat transfer | Q | against . It 

is observed for air (Pr = 0.71) that the amplitude of rate of 

heat transfer | Q | increases with increasing K or Gr but 

decreases when M is increased. It is noted here that in the 

case of water (Pr = 7), it behaves oppositely than that of air 

(Pr = 0.71). In the absence of magnetic field the magnitude of 

| Q | is more in air than that of water (Pr = 7). When 

frequency  increases the amplitude of rate of heat transfer 

increases steadily. It is observed from Figure 6 that the phase 

of rate of heat transfer tan  decreases in case of air (Pr = 

0.71) and increases in water (Pr = 7) for the small or large 

values of . The magnitude of tan  remains more in water 

than that of air whatever be the effect of M or K or Gr. There 

is always a phase lead. 

 
Figture 2.  Transient temperature for  = 0.2, Ec = 0.1 and t = /2. 

 
Figture 3.  The amplitude of skin-friction for  = 0.2, Ec = 0.1 and t = 

/2. 

 
Figture 4.  Phase of skin-friction for  = 0.2, Ec = 0.1 and t = /2. 

Fig.1. Transient velocity  for e  = 0.2, Ec = 0.1  and

  t =   / 2
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Fig.2. Transient temperature  for e  = 0.2 , Ec = 0.1 and t =  /2
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Fig.3. The amplitude of skin-friction for e  = 0.2, Ec = 0.1 and

 t =   / 2
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Figture 5.  The amplitude of the rate of heat transfer for  = 0.2, Ec = 0.1 

and t = /2. 

 
Figture 6.  Phase of rate of heat transfer for  = 0.2, Ec = 0.1 and t = 

/2. 

 

REFERENCES 

[1] Lin, C.C., 1957, Motion in the boundary layer with a rapidly 
oscillating external flow, Proc 9th Intl. Congress Appl. 
Mechanics, Brussels, .4, 155-167. 

[2] Lighthill, M.J., 1974, The response of laminar skin-friction 
and heat transfer to fluctuations in the stream velocity, Proc. 
Roy. Soc. London, Seriea A 224, 1-24. 

[3] Hill, P.G., Stenning, 1960, Laminar boundary layers in 
oscillating flow, Tr. ASME J. Basic. Engg., 82D, 593-603. 

[4] Soundalgekar, V.M., 1973, Free convection effects on the 
oscillatory flow past an infinite vertical porous plate with 
constant suction (I), Proc. Roy. Soc. London, Series A 333, 
25-35. 

[5] Soundalgekar, V.M., 1973, Free convection effects on the 

oscillatory flow past an infinite vertical porous plate with 
constant suction (II), Proc. Roy. Soc. London, Series A 333, 
37-50. 

[6] Soundalgekar, V.M., 1974, Free convection effects on steady 
MHD flow past a vertical porous plate, J. Fluid Mech., 66, 
541-555. 

[7] Soundalgekar,V.M., Shende, S.R., 1968, Free convection 
flow past an infinite vertical porous plate with variable 
suction and oscillating wall temperature, Revista Brazil Cene. 
Meca., 10, .291-301. 

[8] Pop, I., Soundalgekar V M., 1974, The unsteady 
free-convection flow past an infinite plate with constant 
suction and heat sources, Int. J. Heat Mass Transfer, 17, 
85-91. 

[9] Raptis, A., 1983, Unsteady free convection flow through a 
porous medium Int. J. Engin. Sci., .21,345-348. 

[10] Raptis, A.A., Perdikis, C.P., 1985 Oscillatory flow through a 
porous medium by the presence of free convective flow, Int. J. 
Engng. Sci., 23, 51-55. 

[11] Hopper, W.B., Chen, T.S. and Armaly, B.F. (1994): “Mixed 
convection along an isothermal vertical plate in porous 
medium with injection and suction”. Numer Heat transfer Part 
A 25, pp.317-329. 

[12] Panda, J.P., Dash, G.C., Dash, S.S., 2003, Unsteady free 
convection flow and mass transfer past a vertical porous plate, 
AMSE Modelling B, 72(3), 47-54. 

[13] Soundalgekar, V.M., Das, U.N, Delha, R.K, 1997, Free 
convection effects on MHD flow past an infinite vertical 
oscillating plate with constant heat flux, Indian J. Math., 39(3), 
195-202. 

[14] Chandran, P., Nirmal, C., Sacheti, 2001, Transient 
hydromagnetic natural convection on a vertical flat plate 
subject to heat flux, AMSE Modelling Measurement & 
Control B, 70 (8), 15-21. 

[15] Sahoo, P.K., Datta, N., Biswal, S., 2003, 

Magnetohydrodynamic unsteady free-convection flow past 
an infinite vertical plate with constant suction and heat sink, 
Indian J. pure Appl Math., 34(1), 145-155. 

[16] Singh, A.K., Singh, N.P., 2003, Heat and Mass transfer in 
MHD flow of a viscous fluid past a vertical plate under 
oscillatory suction velocity, Indian J. Pure Appl. Math., 34(3), 
429-442. 

[17] Helmy, K.A., 1998, MHD unsteady free convection flow past 
a vertical porous plate, ZAMM, 78 (4), .255-270. 

[18] Acharya, M., Dash, G.C., Singh, L.P., 2000, Analysis of 
magnetic field effects on the free convective and mass 
transfer flow through porous medium with constant suction 
and constant heat flux, Indian J. Pure Appl. Math., 31(1), 
1-18. 

[19] Ahmed, S., Ahmed, N., 2004, Two-dimensional MHD 
oscillatory flow along a uniformly moving infinite vertical 
porous plate bounded by porous medium, Indian J. Pure Appl. 
Math., .35 (12), 1309-1319. 

[20] Jaiswal, B.S., Soundalgekar, 2001, Unsteady free and forced 
convection MHD flow past an infinite vertical porous plate 
with variable suction and oscillating plate temperature, Bull. 

Fig.5. The amplitude of the rate of heat transfer for e 
= 0.2, Ec = 0.1  and   t  =    /2

0

2

4

6

8

5 10 15



l 
Q

 l

Pr = 0.71     M  k   Gr     Pr = 7

    I              5   ∞   5     a

    II             0   5    5     b

   III             0   ∞   5     c

   IV            5   5   10     d

   V             5   5    5     e

I
V

IV

e

d c

b

 a

 II  III

Fig.6. Phase of rate of heat transfer for e  = 0.2, Ec = 0.1  and
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