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Abstract  We present a closed-form solution for convex Nonlinear Programming (NLP). It is closed-form solution if all 
the constraints are linear, quadratic, or homogeneous. It is polynomial when applied to convex NLP. It gives exact optimal 
solution when applied to LP. The T-forward method moves forward inside the feasible region with a T-shape path toward the 
increasing direction of the objective function. Each T-forward move reduces the residual feasible region at least by half. The 
T-forward method can solve an LP with 10,000 variables within seconds, while other existing LP algorithms will take 
millions of years to solve the same problem if run on a computer with 1GHz processor. 
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1. Introduction  
A standard nonlinear optimization problem (NLP) can be 

formulated as:   

Standard NLP: 
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: 0 1, 2, ,
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Which involves  M variables and  N constraints.  
Generic NLP is hard to solve. It has been divided into 

several sub-set problems. Linear programming (LP) is one of 
the simplest sub-set of NLP, and has got concentrations for 
researchers.  

During World War II, Dantzig and Motzkin first 
developed the simplex method, which has become one of the 
most famous algorithm since then [12]. The Journal 
Computing in Science and Engineering listed the simplex 
algorithm as one of the top 10 algorithms of the twentieth 
century [5]. 

Khachiyan proposed ellipsoid method in 1979[10, 11]. In 
1984, Karmarkar started the so called interior-point 
revolution (See e.g. [9, 17]). There are also other successful 
algorithms for LP, such as primal-dual interior point method 
[13], logarithmic method [14], etc.  

Most of the algorithms that are successful in LP have been  
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extended to NLP, especially the interior-point method [3], 
primal-dual method [6, 8], barrier methods[7, 15], all have 
found their roles for solving NLP.  

Currently, most of the LP or NLP algorithms are varieties 
of simplex or interior-point methods [4, 16].  

Most of the current existing LP algorithms as well as NLP 
algorithms are path oriented and matrix oriented [1, 2]. Path 
oriented algorithm tries to search the optimal solution in the 
set of Basic Feasible Solution (BFS), which is the set of all 
feasible region defined by all of the constraints. However, 
the BFS is not obvious, thus needs to be calculated or 
maintained repeatedly. To maintain or to calculate BFS is 
one of the major difficulties and takes most of the running 
time for those algorithms. Also, the path oriented algorithm 
needs to search vertex by vertex along the edges. It could 
result a long path or ends up with a loop. Another common 
property for those existing algorithms is matrix oriented, 
which includes a lot of matrix operations in finding the basic 
feasible solutions.  

Convergence and exactness are two of the most important 
factors for an LP or NLP algorithm. Simplex method can 
give exact optimal solution in general. However, it is not 
guaranteed to give solution at polynomial time. Ellipsoid 
method guarantees a polynomial upper bound on 
convergence at the order )lnlnln( 26 LLLNO  [10], and 
interior point method improved the convergence time to 

)lnlnln( 25.3 LLLNO [9]. However, these polynomial 
time algorithms may give ε -approximated solution, instead 
of exact optimal solution. People are still looking for new 
methods with better convergence and can give exact optimal 
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solution. 
We present a new approach, T-forward method, which can 

solve NLP in polynomial time with convergence speed 
)ln( LNLO , and can give exact optimal solution when 

applied to LP. We first construct the closed-form solution for 
the feasible region defined by all the constraints. Having the 
closed-form basic feasible solution in hand, there is no need 
to search paths and no need to do any matrix operations, and 
there is no need to save any feasible solutions in computer 
system. We can always get it through the closed-form 
formula. 

The closed-form solution for the BFS plays key role in the 
methods proposed by this paper. In fact, once we have the 
closed-form solution for BFS, we can transform the original 
optimization problem into an unconstrained problem or an 
equation problem.  

The rest of the paper is organized as follows. Section 2 
discusses how to convert a generic NLP to an NLP with 
linear objective function. The constraints in an NLP define a 
feasible region. Section 3 analyzes basic concepts and 
properties related to a region. Section 4 analyzes the feasible 
region defined by a single constraint. Section 5 further 

analyzes the feasible region defined by all constraints and 
gives the closed-form solution for the feasible region for 
convex NLP. Section 6 gives the gradient function of the 
feasible region. The closed-form formulae for the feasible 
region and infeasible region are summarized in section 7.  
Section 8 introduces the concepts of the dual-point and the 
dual-direction. Section 9 introduces the T-Forward method, 
which gives closed-form solution for convex NLP. Section 
10 introduces the greedy T-Forward method, which is a 
simplified version of the T-Forward method. Section 11 
introduces the Facet-Forward method, which can solve LP in 
polynomial time. Section 12 gives closed-form solution for 
LP, Quadratic Programming, and NLP with homogeneous 
constraints. Section 13 presents method for solving 
nonconvex NLP. Section 14 gives the generic algorithm for 
T-Forward method. In Section 15, we apply the T-forward 
method to solve some example optimization problems. In 
Section 16, we analyze the complexity of the T-forward 
method and compare it with some existing LP algorithms. 
Conclusions are presented in Section 17.  

2. Converting Generic NLP into an NLP with Linear Objective  
A standard NLP can always be converted into an NLP with linear objective function through the following transform: 

NLP:                   (2) 

In fact, there should have another constraint: 0)( 1 ≤− +Mxxf  . However, this constraint is redundant when we try to 

maximize 1+Mx . The NLP problem listed in Equation (2) is a standard NLP with Linear (NLPL) objective function. So, we 
only need to deal with NLP in the following format:  

NLPL:       for            (3) 

Here, we have dropped the constraints 0≥kx  to make the problem more generic. If we want to include the constraints 

0≥kx , we can replace MRx∈ with MRx +∈


, where MR  is the set of all M –dimensional real numbers, and MR+  is 

the set of all M –dimensional real positive numbers. We may also use the following notations: 

                            (4) 

                            (5) 

                                                   (6) 

3. Definitions Regarding a Region  
The basic theory and formula in this paper are mainly based on the feasible and infeasible regions defined by the 

constraints within an NLPL. We first define some useful concepts or notations regarding a region MRA∈ .  
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DEFINITION: Valid path: Given a path MRC∈ , path C  is called valid path if AC∈ .  

DEFINITION: Valid straight path: A valid path and the path is a straight line.   
DEFINITION: Connected region: A region MRA∈  is called connected region if all points in that region can be 

connected through a valid path. 
DEFINITION: Convex region: A region MRA∈  is called a convex region if any two points in region A  can be 

connected through a valid straight path. A convex region can be expressed in mathematics format as: 

                  (7) 

Starting from any point in a convex region, we can reach any other points in that region through a valid straight path.  
DEFINITION: Mathematic formulation for boundary curve: A function )(xG 

 is called a mathematic formulation 

for region MRA∈  if it can be used to formulate region A  in the following format: 

={ , }                                   (8) 

In the rest of this section, we assume )(xG 

is a mathematic formulation for region A .  

DEFINITION: Boundary: If A  is formulated as the above equation, the following set Ω  is called the boundary of 
A  : 

={ , }                                  (9) 

DEFINITION: Shine region of a point: Given a point Ax∈ , there is a region AxA ⊆)( in which all points can be 
connected to x  through valid straight path. )(xA 

 is called the shine region of point x .  

DEFINITION: Sun shine set: Given a point set Ax k ∈


 for Kk ,,2,1 =  the set }{ kx  is called a sun-shine set 
if: 

1
( )

K

k
A x A=

=





                                       (10) 

That means the shine regions of a sun-shine set can cover all points in region A . 
DEFINITION: Order of direct connectedness: The smallest number of points of a sun-set. For example, any convex 

region can be shined by any point in the region, and thus the order of direct connectedness is 1. The order of direct 
connectedness is 1 for a circle region, and infinity for a circle line curve. 

DEFINITION: Ray set: Given a point MRx ∈0 , a unit vector MRz ∈ˆ with 1ˆ =z , the ray line starting from point 

0x  along the direction ẑ  is called an ray set and denoted as )ˆ,( 0 zx 

Ξ . )ˆ,( 0 zx 

Ξ  can be formulated as: 

                       (11) 

DEFINITION: Ray-boundary point: given a ray set )ˆ,( 0 zx 

Ξ , the shortest (ordered by λ )  intersection point of 

)ˆ,( 0 zx 

Ξ  and the boundary Ω  is called the ray-boundary point of the pair ( 0x , ẑ ) and denoted as )ˆ,( 0 zx 



Ω . Within the 

ray-boundary point function, 0x  is called the start point, ẑ  is called the moving direction. )ˆ,( 0 zx 



Ω  can be formulated 
as: 

                                 (12) 

Where )ˆ,( 0 zxG 



 denotes the smallest non-zero positive root of λ  in equation 0)ˆ( 0 =+ zxG  λ , or ∞+  if it 
doesn’t have a positive solution. It can be expressed in mathematics format as: 

             (13) 

DEFINITION: Line region: The intersection set of )ˆ,( 0 zx 

Ξ  and A  is called the line region associated to the pair of 
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( 0x , ẑ ), and denoted as )ˆ,( 0 zxA 

. )ˆ,( 0 zxA 

 can be formulated as: 

               (14) 

The ray-boundary point )ˆ,( 0 zx 



Ω is the boundary point that can be reached and connected from point 0x  and along the 

direction ẑ . )ˆ,( 0 zx 



Ω  is the basic function and representation for the boundary. We will try to build the )ˆ,( 0 zx 



Ω  for 
NLPL in following sections.  

4. Regions Defined by a Constraint 

The ith constraint in the NLPL as shown in Equation (3) defines a feasible region in MR . Let iΘ  denote the feasible 

region defined by the ith constraint in Equation (3), iΘ  denote the infeasible region (with the boundary included even they 
are feasible) defined by the same constraint, and iΩ  denote the common boundary of iΘ  and iΘ . Note that, as a 
convention, we allow the boundary iΩ  to be included in both the feasible region iΘ  and infeasible region iΘ . We may 
frequently use iΩ  to represent the ith constraint. By definition, iΘ , iΘ , and  iΩ  can be formulated as: 

                           (15) 

                            (16) 

                          (17) 

                                             (18) 

                                             (19) 

Given a point , if  and thus ,  is called a boundary point of constraint , and the 

constraint  is called a boundary constraint at point . If  and thus ,  is called a feasible point 

to constraint , and the constraint  is called a valid constraint at . If  and thus ,  is called 

an infeasible point to constraint , and the constraint  is called an invalid constraint at .  

 

Figure 1.  The feasible region 
iΘ  and boundary 

iΩ  defined by a constraint in ellipsoid type. 
ip  is the gradient vector of 

iΩ  at point 
ix  
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A constraint  is called a simple constraint if it has only one feasible region OR only one infeasible region. In this 
paper, we assume all constraints are simple constraints.  

The ray-boundary point  can be formulated as:  

,  if                           (20) 

The above equation gives the feasible boundary point linked to point  and along the direction . Figure 1. illustrates 
the feasible region  and feasible boundary  defined by a constraint in ellipsoid type. 

Similarly, given a point , there should exist a region around  in which all points are infeasible and can be 
connected to  through straight line valid to . This region is called infeasible region connected to  defined by 

constraint . Let  denote this region and  denote its boundary. The ray-boundary point  
can be formulated as: 

)ˆ,(ˆ)ˆ,( 000 zxgzxzx i
i 






+=Ω ,  if ix Θ∈0                          (21) 

5. Feasible Region Defined by All the Constraints in NLPL 

All the constraints in an NLPL as shown in Equation (3) define an M –dimensional polytope in MR , which contains 

some piece-wise curves as its facets, and each piece-wise curve must be a part of one of the feasible boundary iΩ  defined in 
NLPL. All the points in the feasible region are also called Basic Feasible Solution (BFS).  

Let Θ  denote the feasible region defined by all the constraints in NLPL, Θ  denote the infeasible region defined by all 
the constraints in the same NLPL, Ω  denote the common boundary of Θ  and Θ . Θ  is the set in MR  that have all the 
constraints satisfied. By definition, we should have:  

1

N
i

i=
Θ = Θ


                                          (22) 

1

N
i

i=
Θ = Θ


                                          (23) 

                                        (24) 

     Ω=ΘΘ                                          (25) 

Given a point Θ∈Θx , there should have a region that all points can be connected to x  through a straight line valid to 

Θ . Let )( ΘΘ x  denote this region and )( ΘΩ x  denote its boundary. Similarly, given a point Θ∈Θx , there should 

have a region that all points can be connected to x  through a straight line valid to Θ . Let )( ΘΘ x  denote this region and 

)( ΘΩ x  denote its boundary. Based on our definition, both )( ΘΘ x  and )( ΘΘ x  are convex, and 

    Θ⊆Θ Θ )(x                                        (26) 

    Θ⊆Θ Θ )(x                                       (27) 

The line-region )ˆ,( zx ΘΘ  can be formulated as: 
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Thus, the ray-boundary point )ˆ,( zx 



ΘΩ  can be formulated as: 
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Note that all items within the min operation in the above equation are positive and none-zeros. Then the above equation can 
be equivalently transformed into: 

    ( ){ }∑
=
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
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Where { }( )ixΦ  is the following function: 

{ }( ) 1
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And ( )xδ  is an 11 RR →  function defined as: 

                                  (34) 

Function { }( )ixΦ  has the following property: 

{ }( )
1

1
N

i
i

x
=
Φ =∑                                     (35) 

Then, { }( )ixΦ  can be interpreted as a probability partition function of the set { }ix  with non-zero probability when 

{ }iii xx max= , and 0 probability for other cases. { }( )ixΦ  can also be expressed in the following format: 
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To make it easy for use, we can simply drop the “lim” operation by replacing β  with a large number. Then, the above 
equation can be written as: 

{ }( ) { }( )ii xx Φ≈Φ , 
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1
maxββ                (37) 

β  is a large number such that )exp(β  is acceptable for computer system without data over flow. Normally, 

500=β  is good enough for numerical calculations. 

{ }( )ixΦ  is called exact-partition function, whereas { }( )ixΦ  is called smooth-partition function. Here we use 

( )


 =

=
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xif
x

0
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{ }( )ixΦ  to denote the smooth format partition function, so that it can be distinguished from the exact format. In fact, they 

give almost the same values once β  is big enough. In the rest of the paper, as long as there is no confusion, we will use the 

same notation { }( )ixΦ  for both smooth and exact format partition functions.  

Using the partition function, the ray-boundary point )ˆ,( zx 



ΘΩ  in both exact and smooth formats becomes: 

   ( ){ }∑
=

−ΘΘΘΘ 




Φ+=Ω
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Suppose )ˆ,( zxgi


 Θ  has been solved from the equation 0)ˆ( =+Θ zxg ii  λ  for all Ni ,,2,1 = , then both 

Equation (30) and (38) give closed-form solution for a feasible point )ˆ,( zx 



ΘΩ , which is the ray-boundary point of 

)ˆ,( zx Θ . )ˆ,( zx 



ΘΩ  will give all points of the shine-region )( ΘΩ x  once point ẑ  goes through all possible directions. 

Further, once point Θx  goes through all points of a sun set, )ˆ,( zx 



ΘΩ  will give all the points on feasible boundary Ω . 
Therefore, Equation (30), or its smooth format Equation (38), is a closed-form solution for the feasible boundary Ω  or BFS 
defined by all constraints in an NLPL. 

6. Gradient Function of the Feasible Boundary 
In real applications, we may frequently need the gradient of the feasible boundary Ω . Since we already have the 

closed-form solution for the feasible boundary, especially its smooth format, the gradient function can be calculated by 
differentiating the boundary function. However, here we give another simple method to calculate the gradient function.   

Keeping in mind that partition function ( ){ }




Φ

−Θ 1
)ˆ,( zxgi




 is the probability distribution function for any constraint 

iΩ  to be on the boundary Ω . Then, we can use the partition function as a weight or probability distribution to calculate the 

gradient function. Let )ˆ,( zx ΘΛ  denote the gradient of the feasible boundary curve Ω  at the point )ˆ,( zx ΘΩ . Then it 
can be formulated as: 

    ( ){ }∑
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−ΘΘΘ 

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

                     (39) 

Where )ˆ,( zxi 



ΘΛ  is the unit gradient vector of the constraint curve iΩ  at the point )ˆ,( zx 



ΘΩ . )ˆ,( zxi 



ΘΛ  can be 
formulated as: 

    ppzxi 



=Λ Θ )ˆ,( , where )ˆ,(
)()ˆ,(

zxxi xgzxp








ΘΩ=
Θ ∇= ,               (40) 

)ˆ,( zx ΘΛ  gives the average gradient of all the curves passing through the point )ˆ,( zx 



ΘΩ  on the feasible boundary 
Ω . It could be slightly different from the gradient calculated by differentiating the boundary function. However, they will be 
the same as long as the corresponding boundary point contains only one constraint, which is most of the case.  

Although the smooth format might be slightly different from the exact format, it always gives a good approximation when 
β  is big enough. The exact format gradient function may not be continuous, while the smooth format is always smooth and 
continuous. When calculating the gradient, it would be better to use the smooth format partition function. 

7. Summary of Equations for Boudaries Defined by All Constraints 
We have formulated the closed-form solution for the feasible boundary Ω  and its gradient. Similarly, we can construct 

the infeasible boundary Ω  and its gradient by formulating the ray point )ˆ,( zx 



ΘΩ  starting from an infeasible point 
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Ω∈Θx  and along the moving direction ẑ . As a summary, let us list the boundary functions and the gradient functions for 
Ω  and Ω  as following: 

Feasible boundary:  ( ){ }( )∑
=

−ΘΘ Φ+=Ω
N

i
ii ttzxzx

1

1ˆ)ˆ,( 



 ,  if Θ∈Θx              (41) 

Infeasible boundary:  { }( )∑
=

ΘΘ Φ+=Ω
N

i
ii ttzxzx

1

ˆ)ˆ,( 



 ,  if Θ∈Θx               (42) 

Feasible gradient:  ( ){ }( )∑
=

−Θ ΦΛ=Λ
N

i
i

i tzx
1

1)ˆ,(






,  if Θ∈Θx                        (43) 

Infeasible gradient:  { }( )∑
=

Θ ΦΛ=Λ
N

i
i

i tzx
1

)ˆ,(






,  if Θ∈Θx                       (44) 

Supplementary functions: 

Positive root of constraint:  )ˆ,( zxgt ii


 Θ= = }0,0)ˆ(:min{ >=+Θ tztxgt i
            (45) 

Exact partition function: { }( )
( )

( )

1

11

max

max

i i
i N

i N
i i

i Ni

t t
t

t t

δ

δ

≤ ≤

≤ ≤=

 − 
 Φ =
 − 
 

∑
 ; 0>it ; for Ni ,,2,1 =         (46) 

 

Figure 2.  The right side shows the feasible boundary Ω , one of its ray-boundary point )ˆ,( zx 



ΘΩ , and its gradient )ˆ,( zx 



ΘΛ . The left side shows 

the infeasible boundary Ω , one of its ray-boundary point )ˆ,( zx 



ΘΩ , and its gradient )ˆ,( zx 



ΘΛ  
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Smooth partition function: 
{ }( ) ( )

( )
1

exp

exp

i
i N

i
i

t
t

t

β

β
=

Φ ≈

∑                            (47) 

   Gradient of constraint iΩ  :  ppi 



=Λ ,  )ˆ,(
)()ˆ,(

zxxi xgzxp








ΘΩ=
Θ ∇=        (48) 

These are the major functions we are going to use in the rest of this paper. Figure 2. illustrates some vectors or points 
related to the boundary curve and can be calculated by the above equations.   

8. Dual-point and Dual-direction 

Using the boundary functions given in the previous section, we can start from a point Θx  to find a feasible ray-boundary 

point. If Θx  is an infeasible point, we can apply function )ˆ,( zx 



ΘΩ  to get a feasible point.  

Suppose Ω∈Ωx  is a feasible boundary point we have found. Let B  denote the boundary point and the ending point of 
Ωx  as shown in Figure 3.  
Let 0

fΠ  denote the contour plane of the objective function passing through point B , which can be formulated as

)()( 0xfxf 

= . Let fn  denote the unit gradient vector of 0
fΠ , 0Ω  denote the tangent plane of the boundary Ω  at 

point B , and 0
Ωn  denote the unit gradient vector of Ω  at point B . Let vector v  be the projected vector of 0

Ωn  onto 
0
fΠ , point D be the intersection point of v−  with Ω , C be the mid point between B  and D. 

Figure 3. Illustrates the points and curves mentioned above.  

 

Figure 3.  A feasible boundary point 
Ωx , its dual-point 

dx , the mid-interior-point 
mx , and the dual-direction 

Dm  

DEFINITION: dual-direction. Vector vvmD 

−=  is called the dual-direction. If 0




=v , we set the dual-direction 

to 
0
Ω− n . 
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DEFINITION: dual-point. Given a boundary point Ωx , its ray-boundary point along the dual-direction is called the dual 

point of Ωx , which is the point D or dx  as shown in Figure 3.  

DEFINITION: mid-interior-point. The middle point between a boundary point Ωx and its dual point dx  is called the 

mid-interior-point of Ωx .  
Here we borrow the words “interior point” and “dual point” to indicate some special points related to a boundary point and 

the boundary curves. However, both of them are very different form the interior-point method and the dual method that are 
frequently used in the optimization world. 

Using the boundary gradient function, the gradient vector 0
Ωn  can be calculated as: 

   nnn 

=Ω
0 , where ( ){ }( )∑

=

−Ω ΦΛ=Λ=
N

i
i

i tzxn
1

1)ˆ,(








                  (49) 

The dual-direction can be easily formulated as: 

( )





≠•−=−
=−

=
ΩΩ

Ω

0,
0

00

0

vifnnnnvvv
vifn

m
ff

D






                    (50) 

The dual-point can be formulated as: 

     ),( Dd mxx 



 ΩΩ=                                   (51) 

The mid-interior-point can be formulated as: 

( )dd
D

m xxxxmxx 





+=−+= ΩΩΩ

2
1

2
                       (52) 

9. T-Forward Method for Nonlinear Programming Problems 

 

Figure 4.  Illustration of the T-Forward vector ),( fnxT 



Ω , and how it related to the feasible boundary point Ωx , the dual-point 
dx , the 

mid-interior-point 
mx , the dual-direction Dm , and the T-forward direction Tm . Point ),( fnxT 



Ω  is the T-forward point. Point K represents the 

common edge of 
0Ω  and 

dΩ  
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Building on the closed-form solution for the feasible boundary and for the boundary gradient, we can give a 
near-closed-form solution for NLP problems. Figure 4. illustrates some of the notations we are going to use in this paper and 
their relationships.  

The following notations will be used in the rest of the paper: 
Θx : A feasible point, Θ∈Θx . 
Θx : An infeasible point, Θ∈Θx . 
Ωx : A feasible boundary point, Ω∈Ωx . 

fn : The gradient of the objective function. 
dx : The dual point of Ωx , Ω∈dx . 
mx : The mid-interior point of Ωx ; 
0Ω : The tangent curve of Ω  at the point Ωx ; 
dΩ : The tangent curve of Ω  at the dual-point dx ; 

K : The common edge of 0Ω  and dΩ ; 
0
Ωn : The gradient of 0Ω ; 
dnΩ


: The gradient of dΩ ; 
0
fΠ : The objective contour plane passing through point Ωx  and dx ; 
Dm : Dual point direction, Ω−= xxm dD  ; 
Tm : T-forward direction, nnmT 

 = , ( )f
dd nnnsignnnn 

•++= ΩΩΩΩ )()( 00 ; 

S


: The point that gives optimal solution to the NLPL problem; We will use ( Ωx , fn ) as the basic variables and have 

other variables expressed as a function of the pair ( Ωx , fn ). 

 

Figure 5.  Illustration of the weighted-interior-point Wx  and the mid-interior-point 
mx . A is the initial point Ωx . D is the dual point 

dx . The 

mid-interior-point 
mx is at the middle of the line AD . C is the weighted-interior-point Wx , which divides the line AD  with µ  and µ−1  

as the weight factors. Starting from the point C (the end point of Wx ), the T-forward direction Tm  will point to the point G, which is the common edge 

of the tangent curve 
0Ω  and the dual tangent curve 

dΩ  
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Figure 5. Illustrates weighted-interior-point  and how to calculate the weight . 
DEFINITION: T-forward-direction. T-forward direction is defined as: 

nnmT 
 = , ( )f

dd nnnsignnnn 

•++= ΩΩΩΩ )()( 00                       (53) 

DEFINITION: Weighted-interior-point Wx . The weighted-interior-point is defined as: 

           )()1( ΩΩΩ −+=+−= xxxxxx ddW  µµµ                        (54) 

where 
θα

αθµ
coscos2

)cos( +
= ; ( )( )dnn ΩΩ •−=

 0arccos
2
1 πα ; ( )fnn 

•−= Ω
0arcsinαθ         (55) 

DEFINITION: T-forward-point. The ray-boundary point starting from the weighted-interior-point Wx  and along the 

T-forward direction Tm  is called the T-forward-point, denoted as ),( fnxT 



Ω . 
Using the weighted-interior-point as starting point and the T-forward-direction as the forward move direction, the 

ray-boundary-point  will point to the point K, which is the common edge of the tangent curve  and the 

dual tangent curve . The T-forward-point will try to reach the edge or vertex whenever possible. 

DEFINITION: T-forward-function: The function maps from the pair ),( fnx Ω  to the T-forward-point ),( fnxT 



Ω  

is called T-forward-function, which is also denoted as ),( fnxT 



Ω .  

By definition, the T-forward-point ),( fnxT 



Ω  can be formulated as: 

( ) ( )TDTdTW
f mmxxmxxmxnxT 























),,()1(,)1(),(),( ΩΩΩΩ Ω+−Ω=+−Ω=Ω= µµµµ  

Thus, the T-forward-point and the T-forward-function ),( fnxT 



Ω  can be written as: 

      ( )TD
f mmxxnxT 













),,()1(),( ΩΩΩ Ω+−Ω= µµ                    (56) 

The T-forward point ),( fnxT 



Ω  is also a boundary point. We can apply the T-forward-function to it to get another 
T-forward-point. By applying the T-forward-function repeatedly, we will eventually reach a point where the T-forward-point 
cannot move further. That must be a point where the objective contour plane and the feasible boundary Ω  have just one 
common contact point. That is the optimal solution for the NLP in the shine-region )( ΩΩ x .  

DEFINITION: T-forward-solution: Given a feasible boundary point Ω∈Ωx  and the objective gradient fn , let 

),( fnxS 



Ω  denote the optimal solution for the NLPL problem in the shine-region )( ΩΘ x  (with )( ΩΩ x  as its 
boundary). By repeatedly applying the T-forward-function, we can reach a solution for the NLPL. This solution is called 
T-forward-solution and denoted as ),( f

T nxS 



Ω .   

The T-forward solution can be formulated as: 

       ( )( )ffff
T nnnxTTTnxS 















,,),,(),( ΩΩ =                   (57) 

Or expressed in iterative format: 

      
KkfornxTx

nxTnxS

f
kk

f
K

f
T

,,2,1),,(

),(),(
1

















==

=
−

Ω

                    (58) 

DEFINITION: T-forward point method: Using the T-forward-function to solve NLPL problem is called T-forward 
point method, or simply T-forward method.  

DEFINITION: T-forward path: The series of the T-forward points starting from the initial point Ωx  and ending at the 

optimal point ),( fnxS 



Ω  make up a path, which is called T-forward path.  

Wx µ

),( TW mx 




Ω 0Ω
dΩ
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DEFINITION: T-forward accuracy: The relative difference between ),( f
T nxS 



Ω  and ),( fnxS 



Ω  is called 

T-forward accuracy, denoted as ),( f
T nx Ω∆ . That is: 

   ),(),(),(),( ff
T

ff
T nxSnxSnxSnx 











 ΩΩΩΩ −=∆                 (59) 

Given a feasible boundary point Ω∈Ωx , we can find its dual-point dx . Both Ωx  and dx  are on the same contour 
plane 0

fΠ , and thus give the same objective value. If the feasible region is convex and continuous, all the points between 
Ωx  and dx  should be interior points and thus have some points between the contour plane and the feasible boundary Ω . 

For those points that are outside the contour plane 0
fΠ  and along the direction fn , which is the normal direction of 0

fΠ , 

will give better objective values. Particularly, the T-forward-point between Wx , will possibly give the longest move within 

the feasible boundary Ω  if we move from Wx  along the direction Tm . As long as the point Wx  is a strict interior point, 

the ray-boundary-point ),( TW mx 




Ω  will definitely give a larger objective value than the point 0x .  
Normally, T-forward-point method gives ɛ-approximated solution for NLP. For LP problems, the T-forward-point method 

is designed to move to the edge or vertex if possible. The final solution is always on the optimal edge or vertex. As long as the 
LP has a solution, the T-forward-point method guarantees to give the exact optimal solution. 

10. Greedy T-Forward Method for Nonlinear Programming Problems 
The Greedy T-forward method a simplified version of the T-forward method. Everything is the same as the T-forward 

method except it takes the mid-interior-point mx  as the starting point in each T-forward step.  So, if we replace Wx with 
mx , the T-forward method will become greedy T-forward method. Compared with the T-forward method, the greedy 

T-forward method doesn’t have any advantages except its simplicity. It may work as efficient as the T-forward method. 
However, it may not give exact optimal solution when applied to LP problems. Everything in the previous section is 
applicable to the greedy T-forward method. There is no need to repeat them. Here we just list the greedy T-forward function.  
By definition, the greedy T-forward-point ),( fnxG 



Ω  can be formulated as: 

( )( )TDdTm
f mmxxmxnxG 














,,2)(),(),( +ΩΩ=Ω= ΩΩ  

Thus, the greedy T-forward-point and the greedy T-forward-function ),( fnxG 



Ω  can be written as: 

( )( )TDd
f mmxxnxG 









,,2)(),( +ΩΩ= ΩΩ                        (60) 

The greedy T-forward solution can be formulated as: 

KkfornxGx

nxGnxS

f
kk

f
K

f
G

,,2,1),,(

),(),(
1

















==

=
−

Ω

                      (61) 

11. Facet-forward Method for Linear Programming 
The T-forward method gives ɛ-approximated solution for NLP, and gives exact optimal solution for LP, both in 

polynomial time if the feasible region is convex. However, the complexity for the T-forward method is little bit difficult to 
prove. In this section, we introduce facet-forward method, which simply applies the T-forward method on facet.  

Given a feasible boundary Ω∈Ωx , we can find its constraint curve 0Ω . Let 0
ΩΠ be the facet on Ω  and contains the 

point 0x , that is: 

                                         (62) 

The facet-forward method first finds the local optimal solution of the LP problem restrained in the facet 0
ΩΠ , let it be 0S



. 

00 ΩΩ=ΠΩ 
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Then we cut the feasible boundary Ω  using the objective contour plane 0
fΠ , which passes the point 0S



. This can be 

easily done by adding the function 0)()( 0 ≤− xfSf 



 as an extra constraint to the original LP listed in Equation (3). Let 
us call the feasible boundary of the LP problem as the original feasible boundary. Once we add an objective contour plane 

0)()( 0 ≤− xfSf 



 to the original problem LP, the original feasible boundary Ω  will be cut by the contour plane 0
fΠ  

into two parts. 
DEFINITION: NLPL on residual feasible region. The NLPL problem of the original problem restrained in the residual 

feasible boundary. In other words, it is the following NLPL problem: 

Residual  NLPL:  








≤−
=≤

•=

0)()(:
,,2,10)(:

)(:

0 xfSftoSubject
NiforxgtoSubject

xcxfMaximize

i










         (63) 

DEFINITION: Residual Feasible Boundary. The feasible boundary of the residual NLPL problem. Actually, it is the set 
of the original feasible boundary with objective value greater than )( 0Sf



.  

Since )( 0Sf


 is the largest value on the facet 0
fΠ , then the constraint 0Ω  becomes completely redundant to the LP on 

residual feasible boundary. The constraint 0Ω  can be completely removed from the problem by substituting with the new 
constraint 0)()( 0 ≤− xfSf 



. The new constraint doesn’t have any impact when we search on another facet and try to find 

objective values greater than )( 0Sf


. So, the problem becomes a LP with the number of constraint reduced by at least 1. 
There are N constraints in total, so, at most of N steps of such facet forward search, we will find the optimal solution.   

One method for finding the local optimal solution within a facet is called on-boundary T-forward method. The 
on-boundary T-forward method simply applies the T-forward method in a facet, which means the dual point, the dual 
direction and the T-forward direction are all restrained in the facet.   

Another method is called edge-forward method. Given a staring feasible point, we can apply the ray-boundary point 

function )ˆ,( zx 



ΩΩ  repeatedly to the starting point Ωx , but with the moving direction vector ẑ constrained in the facet 
0
ΩΠ , sometimes may be along the edge of that facet. By repeating this process, we can eventually reach the local optimal 

solution of the specified facet.  

12. Closed-form Solutions 

Everything in the optimal solutions ),( f
T nxS 



Ω  as described in the previous sections are in closed-form format except 

the root value )ˆ,( zxgi


 Θ . If )ˆ,( zxgi


 Θ  can also be expressed in closed-form format, then all these solutions 

),( f
x nxS Ω  give closed-form solution for NLPL or LP in the region )( ΩΘ x . Actually, we can give closed-form solution 

for )ˆ,( zxgi


 Θ  for some special cases. In this section, we give closed form solution for LP, QCQP, and NLP with 
Homogeneous (NLPH) constraints.  

12.1. Closed-Form Solution for Linear Programming 

If the problem is LP, then all constraints are linear functions. The constraint )(xgi


 can be expressed as: 

ii
i cxbxg +•=





)(                                    (64) 

Then 0)ˆ( =+Ω zxg i
i

 λ  becomes: 

   0)ˆ()( =++•= Ω iii
i czxbxg 



 λ                            (65) 

From which we can easily solve iλ  as:  
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zb

xbc
i

ii
i

ˆ





•

•−−
=

Ω

λ                                  (66) 

Based on the definition for )ˆ,( zxgi


 Ω , we have: 

  








∞+
>
=•

=Ω

else
ifelse

zbif
zxg ii

i

i 0
0ˆ0

)ˆ,( λλ








                        (67) 

It is in closed-form format, and thus Equation (58) gives closed-form solution for LP. Also, the feasible boundary for LP 
must be convex and have just one region. Then, Equation (58) gives global optimal solution for LP.  

12.2. Closed-Form Solution for Quadratically Constrained Quadratic Programming 

In the case of QCQP, all the constraints are quadratic. The constraint )(xgi


 can be expressed as: 

                                (68) 

Then 0)ˆ( 0 =+ zxgi
 λ  becomes: 

0)ˆ( 20 =++=+ cbazxgi λλλ

                             (69) 

where 

 
1 1

ˆ ˆ
M M

i
jk j k

k j
a A z z

==
= ∑ ∑ ; ( )0 0

1 1 1
ˆ ˆ ˆ

M M M
i i i
jk j k kj k j j j

k j j
b A z x A z x B z

= = =
= + +∑ ∑ ∑ ; 

i
M

k

M

j
jkk

i
jk CxxAc +=∑∑

= =

ΘΘ

1 1
(70) 

λ  can be solved through the well known closed-form solution for  quadratic equation:  

acb
a

b
a

b ii 4,
2

,
2

2
21 −=∆

∆−
=

∆+
= λλ                       (71) 

By definition, )ˆ,( zxgi


 Θ  can be formulated as:  









>
≤≤>
≤≤<∆∞+

=Θ

0
)0(0

)00(0
)ˆ,(

22

22111

21

ii

iiiii

ii

i

ifelse
orandifelse

andorif
zxg

λλ
λλλλλ
λλ




             (72) 

Then Equation (58) gives closed-form solution for QCQP. 

12.3. Closed-Form Solution for NLP with Homogeneous Constraints 

DEFINITION: Homogeneous function. A function )(xf   is called homogeneous with degree γ  if: 

                               (73) 

Here γ  is a positive integer number. 
DEFINITION: NLP with homogeneous constraint (NLPH). A nonlinear programming in which all the constraints are 

homogeneous.  
For an NLPH, the ith constraint can be expressed as: 

1)( ≤xgi


  for Ni ,,2,1 =                             (74) 

And )(xgi


 has the following property: 

)()( xgxg ii
i

 γµµ =   for Ni ,,2,1 =                        (75) 

iTiTi
i CxBxAxxg ++=

)(

1),()( Rxfxf ∈∀= µµµ γ 
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For an NLPH, the origin point is always a feasible point. The )ˆ,( zxgi


 Θ  is the root of the equation 1)ˆ( =+Θ zxgi
 λ . 

We can choose 0




=Θx . Then )ˆ,( zxgi


 Θ  is the root of 1)ˆ( =zgi
λ . With the homogeneous property, λ  can be solved 

as:  

( )
1

ˆ( ) i
i

ig z γλ
−

=                                    (76) 

By definition, )ˆ,( zxgi


 Θ  can be formulated as:  

   ( )






∞+
>=

−

else
zgifzgzxg iii

i 0)ˆ()ˆ()ˆ,(
1

0





γ
                    (77) 

Therefore, Equation (58) gives the closed-form solution for NLPH. 

13. Find the Global Optimal Solution for NLPL 

Given a feasible point Θ∈Θx , we can find the feasible boundary point Ω∈Ωx  by applying )ˆ,( ΘΘΩ Ω= xxx 





. 

Then, Equation (58) and (61) give the optimal solution for NLPL in the shine region )( ΘΘ x . If )( ΘΘ x  happened to be 

the whole feasible region Θ , then the solution ),( f
T nxS 



Ω  given by Equation (58) is the global optimal solution for 
NLPL.  

For example, when Θ  is convex, we should have Θ=Θ Θ )(x . Then ),( f
T nxS 



Ω  is the global optimal solution for 
NLPL. Particularly, the feasible region of an LP is always convex, we can always give global optimal solution through the 
closed-form solution ),( f

T nxS 



Ω  for LP.  

However, if )( ΘΘ x  cannot cover all the feasible region Θ , ),( f
T nxS 



Ω  might be a local optimal solution. In that 
case, we need to find a sun-shine-set that can cover all points in the feasible region through direct path connection. The 

infeasible boundary function )ˆ,( zx 



ΘΩ  given in Equation (42) can be useful in finding the sun-shine set. Suppose 

Θ∈Θx , we can apply )ˆ,( zx 



ΘΩ  with some randomly generated directions ẑ  until we find a feasible point that is not in 
the shine regions that have been searched.  

14. Algorithm for T-Forward Method  
Based on the previous sections, the algorithm for T-Forward method can be summarized as follows. 
 
Main Procedure: T-forward-method  
Input: ε : requested precision;  N: number of the constraints; M: Number of variables; c : gradient of the objective 

function; Θx : an feasible interior point; and all the coefficients in each of the constraint  )(xgi


. 

Output: A feasible boundary point Ωx  that maximizes the objective function. 
1. Formulate the original NLP in the following NLPL as shown in Equation (3): 

NLPL:  




=≤
•=

NiforxgtoSubject
functionlinearaxcxfMaximize

i ,,2,10)(:
)(:







     for  MRx∈  

2. Initialization  
2.1. Set  ccn f



← . 

2.2. Set fnz 

←ˆ . 

2.3. Calculate ray-boundary point Ωx :  
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←Ωx  get-ray-boundary-point( Θx , ẑ ) 
2.4. Set 2/0 Ω← xx 

. 

3. While ε>− ΩΩ xxx  0  do loop 

3.1. Set Ω← xx  0 . 

3.2. Set ←Ωx  get-T-forward-point( Ωx , ẑ ). 
3.3. End While-do loop. 
4. Return Ωx  as the optimal solution and ( )Ωxf   as the optimal objective value.  

End of T-forward-method 
 
Function get-T-forward-point ( Ωx , ẑ )  
Input: A boundary point Ωx , and all the input information for the NLPL. 
Output: A boundary point Tx , which is the T-forward point with Ωx  as starting point. 

1. Set  ←ẑ  ΩΩ xx 

; 

2. Calculate { }( )itΦ   for the point Ωx :  

{ }( )←Φ it  get-partition-function ( Ωx , ẑ ); 

3. Calculate gradient vector 0
Ωn :  

←Ω
0n  get-gradient-vector( Ωx , ẑ )  

4. Calculate dual point 
dx  through Equation (51): 

←dx  get-dual-point ( Ωx , ẑ ) 
5. Calculate gradient vector dnΩ



:  

←Ω
dn  get-gradient-vector ( dx , ẑ )  

6. Calculate T-forward direction 
Tm through Equation (53): 

( )f
dd nnnsignnnn 

•++= ΩΩΩΩ )()( 00 , nnmT 
 =  

7. Calculate weighted-interior point 
Wx  through Equation (54): 

θα
αθµ

coscos2
)cos( +

= ;      ( )( )dnn ΩΩ •−=
0arccos

2
1 πα ;          

)()1( ΩΩΩ −+=+−= xxxxxx ddW  µµµ  
8. Calculate T-forward point 

Tx : 
←dx  get-ray-boundary-point ( Wx , Tm ) 

End of Function get-T-forward -point 
 
Function get-ray-boundary-point ( Θx , ẑ )  
Input: A feasible interior or boundary point Θx , a unit vector ẑ , and all the input information for the NLPL. 
Output: A boundary point Ωx . 

1. Calculate { }( )itΦ   for the pair ( Θx , ẑ ):  

{ }( )←Φ it  get-partition-function ( Θx , ẑ ); 

2. Calculate ray-boundary point Ωx  through Equation (41):  

←Ωx   ( ){ }( )∑
=

−ΘΘ Φ+=Ω
N

i
ii ttzxzx

1

1ˆ)ˆ,( 



 

End of Function get-ray-boundary-point 
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Function get-gradient-vector ( Ωx , ẑ )  
Input: A boundary point Ωx , a unit vector ẑ , and all the input information for NLPL. 
Output: Ωn ,  which is the gradient vector of the feasible boundary at  Ωx . 

1. Calculate { }( )itΦ   for the pair ( Ωx , ẑ )::  

{ }( )←Φ it  get-partition-function ( Ωx , ẑ ); 

2. Calculate gradient vector iΛ


 for each constraint at the point Ωx  through Equation (48):  

ppi 



=Λ ,  
)ˆ,(

)()ˆ,(
zxxi xgzxp








ΩΩ=
Θ ∇=

 
3. Calculate gradient vector 0

Ωn  through Equation (43):  

←Ω
0n  ( ){ }( )∑

=

−Ω ΦΛ=Λ
N

i
i

i tzx
1

1)ˆ,(






 

End of Function get-gradient-vector 
 
Function get-dual-point ( Ωx , ẑ )  
Input: A boundary point Ωx , and all the input information for the NLPL. 
Output: A boundary point dx , which is the dual point of Ωx . 
1. Calculate gradient vector 0

Ωn :  

←Ω
0n  get-gradient-vector ( Ωx , ẑ )  

2. Calculate dual direction Dm  through Equation (50): 

( )





≠•−=−
=−

=
ΩΩ

Ω

0,
0

00

0

vifnnnnvvv
vifn

m
ff

D






 

3. Calculate dual point 
dx : 

←dx get-ray-boundary-point ( Ωx , Dm ) 
End of Function get-dual-point 
 
Function get-partition-function ( , )  

Input: A feasible point , a unit vector , and all the input information for the NLPL. 
Output: , which is the partition function at the feasible boundary point . 

1. Calculate . For linear constraints,  can be calculated through Equation (66) and (67). For quadratic 

constraints,  can be calculated through Equation (70), (71), and (72). 

2. Calculate  through Equation (45), (46), or (47).  
End of Function get-partition-function 

15. Solving Linear Programming Examples 

A standard LP can be expressed as: 

LP:  




=≤+•=
∈•=

NiforbxaxgtoSubject
RxforxcxfMaximize

ii
i

M

,,2,10)(:
)(







            (78) 

DFINITION: Negative Constraint. A constraint in the format 0)( ≤xgi


 is called a negative constraint if 0)0( ≤


ig , 
and a positive constraint if otherwise.  

Θx ẑ
Θx ẑ

{ }( )itΦ Ωx

)ˆ,( zxgt ii


 Θ= it

it
{ }( )itΦ
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A negative constraint is a valid constraint at the origin point. If all constraints are negative constraints, then the origin point 
will be a feasible point. If the origin point O is a feasible point, then, all constraints must be negative constraints. Suppose 

Θ∈Θx  is a feasible point we have found, for example, we can apply simplex phase-I to find a feasible point. We can 
transform all constraints into negative constraints through the following transform: 

      Θ+= xyx 

                                   (79) 

Then the original problem listed in Equation (78) becomes: 

LP after variable transform: 




=≤+•=
∈•+•= Θ

NifordyaygtoSubject
RxforxcycyfMaximize

ii
i

M

,,2,10)(:
)(







      (80) 

where     0≤+•= Θ iii bxad   for Ni ,,2,1 =                         (81) 

Without losing generality, we can assume that the LP problem has been transformed into an LP with all negative 
constraints. In other words, we assume the LP listed in Equation (78) has the following property: 

0≤ib  for Ni ,,2,1 =                                   (82) 

15.1. Example 1: An LP with 2 Variables and 100 Constraints 

Our first example is an LP with 2 variables and 100 constraints. The input data are randomly generated numbers in the 
range [-10, 10] for i

ka , and in the range [-20,-10] for ib . Table 1 lists the input data in table format.  

We first apply the closed-form solution, as listed Equation (41), to draw the feasible boundary Ω , as shown in Figure 6.  
It can be observed that the feasible boundary contains only 7 straight lines. Then we know that there are about 93 constraints 
are redundant for this problem! However, there is no need for us to figure out which constraint is redundant and which is not. 
The closed-form boundary function can do the nice job for us and can filter out all the redundant constraints automatically. 

Table 2 lists step-by-step results for T-forward method to solve LP Example-1 with objective . 

Table 1.  Input data for LP Example-1 in table format 

 

1)( xxf =
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Table 2.  T-forward method takes 2 forward steps to give exact optimal solution for LP Example-1 (objective 1)( xxf =


)  

 
 
Table 3 lists step-by-step results for T-forward method to solve LP Example-1 with objective 1)( xxf −= . 
Figure 6. also shows the first few T-forward steps for the results listed in Table 2 and Table 3. T-forward method takes only 

two forward steps to solve LP Example-1 and give exact optimal solution. 

Table 3.  T-forward method takes 2 forward steps to give exact optimal solution for LP Example-1. (objective ) 

 

 
Figure 6.  Finding optimal solutions for LP Example-1 through T-forward method. The blue lines on the right side illustrate the T-forward path for 
maximizing 1)( xxf = (see Table 2). The red lines on the left side illustrate the T-forward path for maximizing 1)( xxf −= (see Table 3). The vertical 
dashed lines represent the dual directions. T-forward method takes 2 forward steps to find exact optimal solution for both objective functions 

1)( xxf −=
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15.2. Example 2: An LP with 2 Variables and 11 Constraints 

Our second example is an LP problem that is used to describe the interior-point method at the website: 
http://en.wikipedia.org/wiki/Karmarkar's_algorithm. This problem can be formulated as: 

LP Example-2: 




=−=≤−−+
+

NiforippxpxtoSubject
xxMaximize

,,2,110)1(,012:
:

2
21

21



  (83) 

Table 4 lists the input data in table format for LP Example-2. Figure 7. shows the feasible boundary of this problem. By 
applying Equation (41), we can draw the feasible boundary Ω  as shown in Figure 8. It can be observed that the boundary 
curve drawn through our closed-form Equation (41) is exactly the same as the feasible boundary as shown in Figure 7. This 
gives another validation for our closed-form solution.  

Table 5 lists step-by-step results for T-forward method to solve LP Example-2 with objective 21)( xxxf +=


.  
T-forward method takes 2 forward steps to give exact optimal solution for this problem as shown in Figure 8., while 

interior method takes many steps to reach an ɛ-approximated solution as shown in Figure 7.  

Table 4.  Input data for LP Example-2 with objective 21)( xxxf +=  

 
 

 
Figure 7.  The feasible boundary curve for LP Example-2. The red line represents the path searched by the interior method. This figure is used to describe 
the interior point method at the website http://en.wikipedia.org/wiki/Karmarkar's_algorithm 
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Table 5.  T-forward method gives exact optimal solution in 2 forward steps for LP Example-2 (objective ) 

 
 

 

Figure 8.  Starting from a feasible boundary point Ωx , T-forward method takes two steps to find the exact optimal solution for LP Example-2. The red 
arrow line represents the T-forward move. The dashed lines represent the dual direction 

16. Complexity Analysis 
Let us analyze the complexity for the T-forward-point method and the Facet-forward method introduced in previous 

sections. 
The T-forward-point method is simply to call the T-forward-function ),( fnxT 



Ω repeatedly. Each T-forward-function 

),( fnxT 



Ω , as shown in Equation (56), includes two calls of the boundary function )ˆ,( zx 



ΘΩ  and two calls of the 

gradient function )ˆ,( zx 



ΘΛ . Each of these functions needs to calculate the roots )(xgi




 for Ni ,,2,1 = . The 

complexity for calculating one )(xgi




 through Equation (67) is )(LO  , where L represents the maximum arithmetic 

calculations for calculating one )(xgi




 or the length of the input for one constraint. For LP problems, ML = . The 

complexity for calculating all the roots )(xgi




 for Ni ,,2,1 =  is )(NLO . Once )(xgi




 is calculated, the boundary 

function )ˆ,( zx 



ΘΩ  and the gradient function )ˆ,( zx 



ΘΛ  can be calculated in )(NO . Thus, the T-forward-function 

),( fnxT 



Ω  can be calculated in )(NLO .  

21)( xxxf +=
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Now let us estimate how many T-forward steps are needed to find the optimal solution through T-forward method. Here we 
only consider convex NLP, which means the feasible region Ω  is convex. 

 

Figure 9.  Initially the residual feasible region is Θ , the residual feasible region is 1Θ  with 
1E  as their upper bound ellipsoid. After one T-forward 

move, the residual feasible region becomes 2Θ  with 
2E as their upper bound ellipsoid. 

aE is an ellipsoid contained in 
1E  and centered at 

1T  

and an upper bound for 
2E . The curve GH  bisects the region AGDCA. The volume of 

aE  is less than half of 
1E , and the volume of 

2E  is less 

than half of 
aE . Then, after one T-forward step, the residual feasible region is reduced at least be a factor of 4 

As illustrated in Figure 9. , at the initial feasible point Ωx , we use the objective contour plane 0
fΠ  to cut the feasible 

region Ω . The residual feasible region must be in the region bounded by the two plane curves 0Ω  and dΩ , where 0Ω  is 
the tangent plane curve of Ω  passing the point Ωx , and  dΩ  is the tangent plane curve of Ω  passing through the dual 

point dx . Point G represents the common edge of the two plane curves 0Ω  and dΩ . The line GH  represents the 
bisector of the two curves 0Ω  and dΩ . Before we start the T-Forward step, the upper bound ellipsoid of the residual 
feasible region is in the region GAD. Here we only consider the ellipsoid that is cut by the contour plane 0

fΠ . After the first 

T-forward step, the feasible region is cut at the T-forward point 1T


. Since 1T


 is designed to be along the direction GH , 

and it is a boundary point of the feasible region. Then the residual region after 1T


 becomes the region 2Θ , with 1T


 as 
one of its boundary point. Thus 2Θ  must be either in the region GBT1 or GET1, either one is half of the region GBE. We 
draw another ellipsoid aE , which with 1T



 as its center and upper bounded by 1E , and with 2E  to be contained in aE . 
We should have: 

)(
2
1)( 2 aEVolEVol ≤ , )(

2
1)( 1EVolEVol a ≤ , )(

4
1)( 22 EVolEVol ≤         (84) 

Therefore, each T-forward step moves the cutting plane k
fΠ  close to the target further and reduces the volume of the 

residual feasible region at least by a factor of 4. After K times of T-forward steps, the volume of the residual feasible region 

will be reduced by K4 . The relative difference between the T-forward solution )ˆ,( zxS T 



Ω  and the optimal solution S

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will be reduced to the order of K−4 . In other words, if the requested precision is ε , we need to call T-forward function 
)1ln( ε  times. 

Ellipsoid method is proven to be polynomial through similar method as we used above [10, 11]. 
In summary, the running time for T-forward method to give an ε -approximated solution for NLP is ( ))1ln( εNLO .  

If the problem is LP, the T-forward method can give exact optimal solution with complexity ( ))ln(NNLO . 

The facet-forward method simply calls )ˆ,( zx 



ΘΩ  and )ˆ,( zx 



ΘΛ  at most N times to give local optimal solution in a 

facet. It takes ( )LNO 2  time to get a solution for one facet and have the number of constraint reduced at least by 1. Then, it 
needs to run at most N times to reduce all constraints and give final optimal solution for LP problems. Therefore, the running 
time for facet-forward method is ( )LNO 3 .   

Table 6 compares the methods proposed in this paper with the current best known existing LP algorithms, including 
simplex method, the ellipsoid method, and the interior point method.   

Table 6.  Comparison of the T-forward method with simplex, ellipsoid, and the interior point method 

 
 
Suppose we run a computer with 1Ghz processor, Table 7 lists the estimated running time in seconds for various methods 

and various N  and L . For simplicity, here we assume LN = .   

Table 6.  Estimated running time (in seconds) on a computer with 1 GHz processor 

 
 
For example, if we want to solve an LP with 410== LN , our proposed T-forward method will take couple of seconds 

to solve it, while the interior point method will take 610  years to solve the same problem, which is a mission impossible for 
most of the current existing LP algorithms.  

 

17. Conclusions 
The main contributions of this paper include the 

closed-form solutions for LP, QCQP, and the 
near-closed-form solution for NLP. Another contribution is 
the T-forward method for NLP and the facet-forward method 
for LP. Both methods are polynomial time. The T-forward 
method and the facet-forward method are not only faster than 
any existing LP or NLP algorithms, but also give exact 
optimal solution when applied to LP. 
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