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Abstract  Parameterized complexity is a branch of computational complexity theory in computer science that focuses 
on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input. 
In this context, the present paper examines, through computer experiments, the behavior of a new version of Quick sort, 
called K-sort, when the sorting elements follow a Negative Binomial distribution. A computer experiment is a series of runs 
of a code for various inputs. A deterministic computer experiment is one which produces identical results if the code is 
re-run for identical inputs. If the response of the computer experiment is the complexity of the underlying algorithm then it 
is deterministic for a fixed input but may be taken as stochastic for fixed input size and randomly varying input elements as 
in sorting. Even otherwise we can advocate stochastic modeling imagining the response as stochastic to achieve cheap and 
efficient prediction. 
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1. Introduction 
Parameterized complexity is a branch of computational 

complexity theory in computer science that focuses on clas-
sifying computational problems according to their inherent 
difficulty with respect to multiple parameters of the input. 
The complexity of a problem is then measured as a function 
in those parameters. This allows to classify NP-hard prob-
lems on a finer scale than in the classical setting, where the 
complexity of a problem is only measured by the number of 
bits in the input. The first systematic work on parameterized 
complexity was done by Downey & Fellows[1]. The present 
paper examines the behavior of K-sort[2] (a new version of 
Quick sort that removes interchanges; an older version[3] 
used an auxiliary array which has been removed now) for 
negative binomial distribution inputs and is in continuation 
of our earlier work on this new algorithm for binomial dis-
tribution inputs[4] with the acknowledgement that here the 
focus will be on how the parameters of negative binomial 
distribution affect the average sorting time. This is a work in 
parameterized complexity whereby use is made of factorial 
experiments* when the n observations to be sorted come 
independently from negative binomial distribution NB (k, 
p).Here k is the desired number of successes (trials, that can 
result in either success or failure, continue independently 
until k successes are obtained; when k=1, we get geometric 
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distribution) and p is the probability of successes in a trial 
that is fixed for all trials. To investigate the individual effect 
of number of sorting elements (n), negative binomial dis-
tribution parameters k and p as well as their interaction ef-
fects, a 3-cube factorial experiment is conducted with three 
levels of each of the three factors n, k and p. Although K-sort 
has been described in[2] we brief it again in section 1.2 for 
the sake of completeness. The experimental results are ob-
tained through computer experiments.** 

*Remark 1: A factorial experiment allows the effect of 
several factors and even interactions between them to be 
determined with the same number of trials as are necessary to 
determine any one of the effects by itself with the same 
degree of accuracy[5]. The term "factorial" may not have 
been used in print before 1935, when Prof. R. A. Fisher used 
it in his book The Design of Experiments[6]. Frank Yates 
made significant contributions, particularly in the analysis of 
designs, by the Yates Analysis[7,8].  

**Remark 2: A computer experiment is a series of runs of a 
code for various inputs. Further literature on computer ex-
periments can be found in[9]. A deterministic computer 
experiment is one which produces identical results if the 
code is re-run for identical inputs. If the response of the 
computer experiment is the complexity of the underlying 
algorithm then it is deterministic for a fixed input but may be 
taken as stochastic for fixed input size and randomly varying 
input elements as in sorting. Even otherwise we can advocate 
stochastic modeling imagining the response as stochastic to 
achieve cheap and efficient prediction. A recent book that 
gives a computer experiment oriented approach to algo-
rithmic complexity, including parameterized complexity, 
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is[10]. 

1.2. K-sort[2] 
The steps of K-sort are given below:- 
Step-1: Initialize the first element of the array as the key 

element and i as left, j as (right+1), k = p where p is (left+1). 
Step-2: Repeat step-3 till the condition (j-i) ≥ 2 is satisfied. 
Step-3: Compare a[p] and key element. If key ≤ a[p] then 
Step-3.1: if (p is not equal to j and j is not equal to (right + 

1) ) 
then set a[j] = a[p] 
else if ( j equals (right + 1)) then 
set temp = a[p] and flag = 1 
decrease j by 1 and assign p = j 
else (if the comparison of step-3 is not satisfied i.e. if key > 

a[p] ) 
Step-3.2: assign a[i] = a[p] , increase i and k by 1 and set p 

= k  
Step-4: set a[i] = key 
if (flag = = 1) then 
assign a[i+1] = temp 
Step-5: if (left < i - 1) then 
Split the array into sub array from start to i-th element and 

repeat steps 1-4 with the sub array  
Step-6: if (left > i + 1) then 
Split the array into sub array from i-th element to end 

element and repeat steps 1-4 with the sub array  

2. Empirical Results 
Our first study examines the behavior of K sort for varying 

p with fixed n and k. 
Table - 1 gives the average run time y (average taken over 

100 readings) for different values of the argument p for fixed 
n=100000 and k=100. 

Table 1.  Average sorting time Paverage sorting time in sec. 

0.1 0.1205 
0.2 0.2345 
0.3 0.3565 
0.4 0.5082 
0.5 0.6814 
0.6 0.911 
0.7 1.231 
0.8 1.7219 
0.9 2.8236 

 

Figure 1.  Average sorting time versus p: 4th degree polynomial fit. 

From Fig. 1, based on the experimental results given in 
table1, we find that a fourth degree polynomial is the ade-
quate fit to represent the average sorting time in terms of p 
for negative binomial distribution input for fixed n and k. We 
next study how time varies with varying k for n and p fixed. 
Table 2 and fig. 2 based on table 2 give a summary of the 
results. 

Table 2.  Average sorting time for varying k with fixed n=100000 , p=0.5. 

K Time 
100 0.6814 
500 0.319 

1000 0.2346 
1500 0.2004 
2000 0.1752 

 
Figure 2.  Average time contradicting O(nlogn) complexity. 

We will next examine the robustness of K sort for negative 
binomial inputs. Our results are summarized in tables 3 and 4, 
fig. 3 and 4. Surprisingly, the results are supporting the worst 
case O(n2) complexity even for the average case. See the 
discussion in section 3. 

Table 3.  Table showing nlogn versus time. 

X=n(log2n) Time 
780482 0.086 
1660964 0.3281 
2579190 0.7372 
3521928 1.3128 

 
Figure 3.  Average time contradicting O(nlogn) complexity. 

y = 22.46x4 - 34.45x3 + 19.24x2 - 2.962x + 0.268
R² = 0.999

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

T
im

e 
(in

 S
ec

)

P

Time for different p

time

多项式 (time)

y = 4E-07x - 0.3417
R² = 0.973

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000000 2000000 3000000 4000000

T
im

e 
(in

 S
ec

)

n(logn)

time

time

线性 (time)

y = 4E-07x - 0.341
R² = 0.973

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000000 2000000 3000000 4000000

Ti
m

e 
(in

 S
ec

)

n(logn)

time

time

线性 (time)Linear (Time) 

Poly (Time) 

Poly (Time) 



 Algorithms Research 2012, 1(1): 1-4 3 
 

 

Table 4.  Table showing n versus time. 

X= n time 
50000 0.086 

100000 0.3281 
150000 0.7372 
200000 1.3128 

 
Figure 4.  Average complexity supporting the worst case O(n2) complex-
ity! 

Table 5.  Data for 33 factorial experiment for k-sort. 
n = 100000 

m p=0.2 p=0.5 p=0.8 
100 0.1093 0.3281 0.8232 
1000 0.0598 0.1512 0.3718 
1500 0.0358 0.1093 0.265 

n=150000 
m p=0.2 p=0.5 p=0.8 

100 0.2372 0.7372 1.8592 
1000 0.114 0.3376 0.8312 
1500 0.0907 0.2502 0.5924 

n = 200000 
m p=0.2 p=0.5 p=0.8 

100 0.4252 1.3128 3.2952 
1000 0.2008 0.594 1.4735 
1500 0.1748 0.4596 0.6704 

K-sort times in seconds for negative binomial ( k , p ) distribution input for 
various n (100000, 150000, 200000) , K ( 100 , 1000, 1500) and p (0.2, 0.5, 
0.8). 

Table 6 gives the results using MINITAB statistical 
package version 15 

Table 6.  Results of 33 factorial experiment on K-sort for negative bino-
mial inputs. 

General Linear Model: y versus n, k, p 
Factor Type Levels Values 

n fixed 3 1, 2, 3 
k fixed 3 1, 2, 3 
p fixed 3 1, 2, 3 

Analysis of Variance for y, using Adjusted SS for Tests 
Source  DF   Seq SS   Adj SS  Adj MS        F  P 
n       2    7.6505   7.6505   3.8252   281942.68  0.000 
k       2    7.0575   7.0575   3.5287   260089.68  0.000 
p       2    14.4923  14.4923  7.2462   534085.81  0.000 
n*k     4    1.8387   1.8387   0.4597   33881.48   0.000 
n*p     4    3.7694   3.7694   0.9424   69457.80   0.000 
k*p     4    3.8380   3.8380   0.9595   70721.00   0.000 
n*k*p   8    1.0142   1.0142   0.1268    9343.78   0.000 
Error   54    0.0007   0.0007   0.0000 
Total   80    39.6614 
S = 0.00368340   R-Sq = 100.00%   R-Sq(adj) = 100.00% 

3. Discussion 
K- sort is highly affected by the main effects n, k and p. 

When we consider the interaction effects, interestingly we 
find that all interactions are significant in K- sort. Strikingly, 
even the three factor interaction n*k*p cannot be neglected. 
It is observed that y increases for increasing p in fig. 1. When 
the success probability p increases, it is common sense that 
we would be requiring comparatively lesser trials to get the 
same number of successes k. This is likely to increase the 
number of tied observations in the negative binomial variate 
values. A moment’s reflection on the construction of the 
algorithm convinces us that more computations are required 
for the condition “if(key<=a[p])” (step 3) than for the con-
dition “if(key>a[p])”. In other words, the case of equality 
resulting in ties is attached with the less than type (<) op-
erator where more computations are taking place. This 
increases the average sorting time. In contrast, for Binomial 
inputs, it was observed that y decreases for increasing p up to 
0.5 and then increases for increasing p. This is because as p 
gets away from 0.5, either the lower values of the variate 
(p<0.5) or the higher values of the variate (p>0.5) are more 
likely resulting in more ties. With reference to k, sorting time 
decreases with increasing k because increasing k reduces the 
ties! 

Although this is a study on parameterized complexity, we 
examined whether the average case O(nolgn) complexity is 
robust over negative binomial inputs. Surprisingly, it is not 
and the results are supporting the worst case O(n2) com-
plexity even for the average case. It is important to mention 
here that the quick sort O(nlogn) complexity has been re-
cently challenged for non-uniform inputs[11]. K sort is only 
a variation of Quick sort.  

Remark: Average case complexity under the universal 
distribution equals worst case complexity[12]. 

4. Conclusions and Suggestions for   
Future Work 

Our second case study on three-cube factorial experiments 
conducted on K-sort again reveal that the negative binomial 
parameters alongwith the input size singularly and interac-
tively have significant effect on the average sorting time 
which increases with increasing p but decreases with in-
creasing k. The algorithm supports the worst case complex-
ity even in the average case for negative binomial inputs. 
Thus what holds for uniform inputs may not in general hold 
for non uniform inputs placing the robustness of average 
complexity as a challenging research problem. Some recent 
works in this direction have shown that the ideal bound for 
average case complexity is a statistical bound that is weight 
based and takes all operations collectively rather than 
mathematical bounds that are count based and operation 
specific. The problem with the count based mathematical 
bounds is that in average case we need to know the pivotal 
operation before applying mathematical expectation on it 
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and, moreover, the probability distribution over which ex-
pectation is taken has to be realistic over the problem domain. 
We refer the reader to[13,14]. See also[15] for a general 
overview on parameterized complexity. 
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