
Algorithms Research 2012, 1(1): 1-4
DOI: 10.5923/j.algorithms.20120101.01

K Sort Revisited for Negative Binomial Inputs

Kiran Kumar Sundararajan1, Mita Pal2, Soubhik Chakraborty2,*, Bijeeta Pal3, N.C. Mahanti2

1Barclays Bank PLC, United Arab Emirates, Dubai
2Department of Applied Mathematics, Birla Institute of Technology, Mesra, Ranchi, 835215, India

3Department of Computer Engineering, Institute of Technology, Banaras Hindu University, Varanasi , India

Abstract Parameterized complexity is a branch of computational complexity theory in computer science that focuses
on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input.
In this context, the present paper examines, through computer experiments, the behavior of a new version of Quick sort,
called K-sort, when the sorting elements follow a Negative Binomial distribution. A computer experiment is a series of runs
of a code for various inputs. A deterministic computer experiment is one which produces identical results if the code is
re-run for identical inputs. If the response of the computer experiment is the complexity of the underlying algorithm then it
is deterministic for a fixed input but may be taken as stochastic for fixed input size and randomly varying input elements as
in sorting. Even otherwise we can advocate stochastic modeling imagining the response as stochastic to achieve cheap and
efficient prediction.
Keywords K-Sort, Parameterized Complexity, Negative Binomial, Factorial Experiments, Robustness

1. Introduction
Parameterized complexity is a branch of computational

complexity theory in computer science that focuses on clas-
sifying computational problems according to their inherent
difficulty with respect to multiple parameters of the input.
The complexity of a problem is then measured as a function
in those parameters. This allows to classify NP-hard prob-
lems on a finer scale than in the classical setting, where the
complexity of a problem is only measured by the number of
bits in the input. The first systematic work on parameterized
complexity was done by Downey & Fellows[1]. The present
paper examines the behavior of K-sort[2] (a new version of
Quick sort that removes interchanges; an older version[3]
used an auxiliary array which has been removed now) for
negative binomial distribution inputs and is in continuation
of our earlier work on this new algorithm for binomial dis-
tribution inputs[4] with the acknowledgement that here the
focus will be on how the parameters of negative binomial
distribution affect the average sorting time. This is a work in
parameterized complexity whereby use is made of factorial
experiments* when the n observations to be sorted come
independently from negative binomial distribution NB (k,
p).Here k is the desired number of successes (trials, that can
result in either success or failure, continue independently
until k successes are obtained; when k=1, we get geometric

* Corresponding author:
soubhikc@yahoo.co.in (Soubhik Chakraborty)
Published online at http://journal.sapub.org/ algorithms
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

distribution) and p is the probability of successes in a trial
that is fixed for all trials. To investigate the individual effect
of number of sorting elements (n), negative binomial dis-
tribution parameters k and p as well as their interaction ef-
fects, a 3-cube factorial experiment is conducted with three
levels of each of the three factors n, k and p. Although K-sort
has been described in[2] we brief it again in section 1.2 for
the sake of completeness. The experimental results are ob-
tained through computer experiments.**

*Remark 1: A factorial experiment allows the effect of
several factors and even interactions between them to be
determined with the same number of trials as are necessary to
determine any one of the effects by itself with the same
degree of accuracy[5]. The term "factorial" may not have
been used in print before 1935, when Prof. R. A. Fisher used
it in his book The Design of Experiments[6]. Frank Yates
made significant contributions, particularly in the analysis of
designs, by the Yates Analysis[7,8].

**Remark 2: A computer experiment is a series of runs of a
code for various inputs. Further literature on computer ex-
periments can be found in[9]. A deterministic computer
experiment is one which produces identical results if the
code is re-run for identical inputs. If the response of the
computer experiment is the complexity of the underlying
algorithm then it is deterministic for a fixed input but may be
taken as stochastic for fixed input size and randomly varying
input elements as in sorting. Even otherwise we can advocate
stochastic modeling imagining the response as stochastic to
achieve cheap and efficient prediction. A recent book that
gives a computer experiment oriented approach to algo-
rithmic complexity, including parameterized complexity,

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computational_problems
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computational_problems
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Parameterized_complexity#CITEREFDowneyFellows1999#CITEREFDowneyFellows1999
http://jeff560.tripod.com/f.html

2 Soubhik Chakraborty et al.: K Sort Revisited for Negative Binomial Inputs

is[10].

1.2. K-sort[2]
The steps of K-sort are given below:-
Step-1: Initialize the first element of the array as the key

element and i as left, j as (right+1), k = p where p is (left+1).
Step-2: Repeat step-3 till the condition (j-i) ≥ 2 is satisfied.
Step-3: Compare a[p] and key element. If key ≤ a[p] then
Step-3.1: if (p is not equal to j and j is not equal to (right +

1))
then set a[j] = a[p]
else if (j equals (right + 1)) then
set temp = a[p] and flag = 1
decrease j by 1 and assign p = j
else (if the comparison of step-3 is not satisfied i.e. if key >

a[p])
Step-3.2: assign a[i] = a[p] , increase i and k by 1 and set p

= k
Step-4: set a[i] = key
if (flag = = 1) then
assign a[i+1] = temp
Step-5: if (left < i - 1) then
Split the array into sub array from start to i-th element and

repeat steps 1-4 with the sub array
Step-6: if (left > i + 1) then
Split the array into sub array from i-th element to end

element and repeat steps 1-4 with the sub array

2. Empirical Results
Our first study examines the behavior of K sort for varying

p with fixed n and k.
Table - 1 gives the average run time y (average taken over

100 readings) for different values of the argument p for fixed
n=100000 and k=100.

Table 1. Average sorting time Paverage sorting time in sec.

0.1 0.1205
0.2 0.2345
0.3 0.3565
0.4 0.5082
0.5 0.6814
0.6 0.911
0.7 1.231
0.8 1.7219
0.9 2.8236

Figure 1. Average sorting time versus p: 4th degree polynomial fit.

From Fig. 1, based on the experimental results given in
table1, we find that a fourth degree polynomial is the ade-
quate fit to represent the average sorting time in terms of p
for negative binomial distribution input for fixed n and k. We
next study how time varies with varying k for n and p fixed.
Table 2 and fig. 2 based on table 2 give a summary of the
results.

Table 2. Average sorting time for varying k with fixed n=100000 , p=0.5.

K Time
100 0.6814
500 0.319

1000 0.2346
1500 0.2004
2000 0.1752

Figure 2. Average time contradicting O(nlogn) complexity.

We will next examine the robustness of K sort for negative
binomial inputs. Our results are summarized in tables 3 and 4,
fig. 3 and 4. Surprisingly, the results are supporting the worst
case O(n2) complexity even for the average case. See the
discussion in section 3.

Table 3. Table showing nlogn versus time.

X=n(log2n) Time
780482 0.086
1660964 0.3281
2579190 0.7372
3521928 1.3128

Figure 3. Average time contradicting O(nlogn) complexity.

y = 22.46x4 - 34.45x3 + 19.24x2 - 2.962x + 0.268
R² = 0.999

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

T
im

e
(in

 S
ec

)

P

Time for different p

time

多项式 (time)

y = 4E-07x - 0.3417
R² = 0.973

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000000 2000000 3000000 4000000

T
im

e
(in

 S
ec

)

n(logn)

time

time

线性 (time)

y = 4E-07x - 0.341
R² = 0.973

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000000 2000000 3000000 4000000

Ti
m

e
(in

 S
ec

)

n(logn)

time

time

线性 (time)Linear (Time)

Poly (Time)

Poly (Time)

 Algorithms Research 2012, 1(1): 1-4 3

Table 4. Table showing n versus time.

X= n time
50000 0.086

100000 0.3281
150000 0.7372
200000 1.3128

Figure 4. Average complexity supporting the worst case O(n2) complex-
ity!

Table 5. Data for 33 factorial experiment for k-sort.
n = 100000

m p=0.2 p=0.5 p=0.8
100 0.1093 0.3281 0.8232
1000 0.0598 0.1512 0.3718
1500 0.0358 0.1093 0.265

n=150000
m p=0.2 p=0.5 p=0.8

100 0.2372 0.7372 1.8592
1000 0.114 0.3376 0.8312
1500 0.0907 0.2502 0.5924

n = 200000
m p=0.2 p=0.5 p=0.8

100 0.4252 1.3128 3.2952
1000 0.2008 0.594 1.4735
1500 0.1748 0.4596 0.6704

K-sort times in seconds for negative binomial (k , p) distribution input for
various n (100000, 150000, 200000) , K (100 , 1000, 1500) and p (0.2, 0.5,
0.8).

Table 6 gives the results using MINITAB statistical
package version 15

Table 6. Results of 33 factorial experiment on K-sort for negative bino-
mial inputs.

General Linear Model: y versus n, k, p
Factor Type Levels Values

n fixed 3 1, 2, 3
k fixed 3 1, 2, 3
p fixed 3 1, 2, 3

Analysis of Variance for y, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F P
n 2 7.6505 7.6505 3.8252 281942.68 0.000
k 2 7.0575 7.0575 3.5287 260089.68 0.000
p 2 14.4923 14.4923 7.2462 534085.81 0.000
n*k 4 1.8387 1.8387 0.4597 33881.48 0.000
n*p 4 3.7694 3.7694 0.9424 69457.80 0.000
k*p 4 3.8380 3.8380 0.9595 70721.00 0.000
n*k*p 8 1.0142 1.0142 0.1268 9343.78 0.000
Error 54 0.0007 0.0007 0.0000
Total 80 39.6614
S = 0.00368340 R-Sq = 100.00% R-Sq(adj) = 100.00%

3. Discussion
K- sort is highly affected by the main effects n, k and p.

When we consider the interaction effects, interestingly we
find that all interactions are significant in K- sort. Strikingly,
even the three factor interaction n*k*p cannot be neglected.
It is observed that y increases for increasing p in fig. 1. When
the success probability p increases, it is common sense that
we would be requiring comparatively lesser trials to get the
same number of successes k. This is likely to increase the
number of tied observations in the negative binomial variate
values. A moment’s reflection on the construction of the
algorithm convinces us that more computations are required
for the condition “if(key<=a[p])” (step 3) than for the con-
dition “if(key>a[p])”. In other words, the case of equality
resulting in ties is attached with the less than type (<) op-
erator where more computations are taking place. This
increases the average sorting time. In contrast, for Binomial
inputs, it was observed that y decreases for increasing p up to
0.5 and then increases for increasing p. This is because as p
gets away from 0.5, either the lower values of the variate
(p<0.5) or the higher values of the variate (p>0.5) are more
likely resulting in more ties. With reference to k, sorting time
decreases with increasing k because increasing k reduces the
ties!

Although this is a study on parameterized complexity, we
examined whether the average case O(nolgn) complexity is
robust over negative binomial inputs. Surprisingly, it is not
and the results are supporting the worst case O(n2) com-
plexity even for the average case. It is important to mention
here that the quick sort O(nlogn) complexity has been re-
cently challenged for non-uniform inputs[11]. K sort is only
a variation of Quick sort.

Remark: Average case complexity under the universal
distribution equals worst case complexity[12].

4. Conclusions and Suggestions for
Future Work

Our second case study on three-cube factorial experiments
conducted on K-sort again reveal that the negative binomial
parameters alongwith the input size singularly and interac-
tively have significant effect on the average sorting time
which increases with increasing p but decreases with in-
creasing k. The algorithm supports the worst case complex-
ity even in the average case for negative binomial inputs.
Thus what holds for uniform inputs may not in general hold
for non uniform inputs placing the robustness of average
complexity as a challenging research problem. Some recent
works in this direction have shown that the ideal bound for
average case complexity is a statistical bound that is weight
based and takes all operations collectively rather than
mathematical bounds that are count based and operation
specific. The problem with the count based mathematical
bounds is that in average case we need to know the pivotal
operation before applying mathematical expectation on it

y = 3E-11x2 - 2E-07x + 0.010
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50000 100000 150000 200000 250000

T
im

e(
in

 S
ec

)

n

time

time

多项式 (time)Poly (Time)

4 Soubhik Chakraborty et al.: K Sort Revisited for Negative Binomial Inputs

and, moreover, the probability distribution over which ex-
pectation is taken has to be realistic over the problem domain.
We refer the reader to[13,14]. See also[15] for a general
overview on parameterized complexity.

REFERENCES
[1] Downey, Rod G.; Fellows, MichaelR.(1999).Parameterized

Complexity, Springer

[2] Sundararajan, K. K., Pal, M., Chakraborty, S. and Mahanti,
K-sort: A new sorting algorithm that beats Heap sort for n ≤
70 lakhs!, arXiv:1107.3622v1 [cs.DS]

[3] Sundararajan , K. K., Chakraborty, S., A New Sorting Algo-
rithm, Applied Mathematics and Computation, Vol. 188(1),
2007, p. 1037-1041

[4] Sundararajan, K. K., Pal, M., Chakraborty, S., Pal, B., and
Mahanti, N.C., An Empirical Study on K-Sort for Binomial
Inputs, International Journal of Mathematical Archive, Vol.
2(8), 2011, 1274-1278

[5] Fisher, R. A., The Arrangements of Field Experiments,
Journal of the of the Ministry Agriculture of Great Britain,
Vol. 33, (1926), p. 503-513

[6] Fisher, R. A. The Design of Experiments, Macmillan Pub. Co.,
9th ed., (1971)

[7] http://www.iasri.res.in/ebook/EB_SMAR/e-book_pdf%20fil
es/Manual%20III/5-Factorial-Expts.pdf

[8] Box, G. E., Hunter,W.G., Hunter, J.S., Statistics for Experi-
menters: Design, Innovation, and Discovery, 2nd Edition,
Wiley, (2005)

[9] Fang, K. T., Li, R., Sudjianto, A.: Design and Modeling of
Computer Experiments Chapman and Hall (2006)

[10] Chakraborty, S. and Sourabh, S. K., A Computer Experiment
Oriented Approach to Algorithmic Complexity, Lambert
Academic Publishing, 2010

[11] Sourabh, S.K. and Chakraborty, S.: How robust is quicksort
average complexity? arXiv:0811.4376v1 [cs.DS]

[12] M. Li, M. and Vitanyi, P. M. B., Average case complexity
under the universal distribution equals worst case complexity,
Inf. Proc. Lett., 42, no. 3, 1992, 145-149

[13] S. K. Sourabh and S. Chakraborty, Empirical Study on the
Robustness of Average Complexity & Parameterized Com-
plexity Measure for Heapsort Algorithm, International Jour-
nal of Computational Cognition, Vol. 7, No. 4, 2009, 1-11

[14] Sourabh and S. Chakraborty, Empirical Study on the Average
Time Complexity of ShellSort Algorithm: Historical pers-
pective, Robusness and Parameterized Complexity, Interna-
tional Journal of Mathematical Modeling, Simulation and
Applications, Vol. 3(2), 2010

[15] http://en.wikipedia.org/wiki/Parameterized_complexity

http://en.wikipedia.org/w/index.php?title=Rod_Downey&action=edit&redlink=1
http://en.wikipedia.org/wiki/Michael_Fellows
http://www.springer.com/sgw/cda/frontpage/0,11855,5-0-22-1519914-0,00.html?referer=www.springer.de%2Fcgi-bin%2Fsearch_book.pl%3Fisbn%3D0-387-94883-X
http://www.springer.com/sgw/cda/frontpage/0,11855,5-0-22-1519914-0,00.html?referer=www.springer.de%2Fcgi-bin%2Fsearch_book.pl%3Fisbn%3D0-387-94883-X
http://www.springer.com/sgw/cda/frontpage/0,11855,5-0-22-1519914-0,00.html?referer=www.springer.de%2Fcgi-bin%2Fsearch_book.pl%3Fisbn%3D0-387-94883-X
http://www.iasri.res.in/ebook/EB_SMAR/e-book_pdf%20files/Manual%20III/5-
http://www.iasri.res.in/ebook/EB_SMAR/e-book_pdf%20files/Manual%20III/5-
http://arxiv.org/abs/0811.4376v1

	1. Introduction
	1.2. K-sort[2]

	2. Empirical Results
	3. Discussion
	4. Conclusions and Suggestions for Future Work

