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Abstract  Any embedded system contains both on-chip and off-chip memory modules with different access times. During 
system integration, the decision to map crit ical data on to faster memories is crucial. In order to obtain good performance 
targeting less amounts of memory, the data buffers of the application need to be p laced carefu lly  in  different types of memory. 
This data placement problem is addressed with the help of a data dominated embedded application.  
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1. Introduction 
Embedded applications are highly performance critical. 

One of the most critical step in embedded application 
development flow is system integration, where all the 
software modules are integrated and mapped to a given 
target memory architecture. This step has a large 
performance implication depending on how the memory 
architecture is used. The memory architecture of embedded 
DSPs is heterogeneous and contains memories of different 
types. For example, an embedded system may contain 
on-chip and off-ch ip memory modules with different access 
times, single and dual ported memory, and multip le memory 
banks to support many simultaneous accesses. During 
system integration, the decision to map critical data on to 
faster memories and map non critical data in to slower 
memories is made. In order to obtain good performance and 
a reduction in memory stalls, the data buffers of the 
application need to be placed carefully in different types of 
memory. Th is is known as the data placement problem.  

The hardware des igners  take the log ical me mory 
arch itectu re specificat ion  as  input  and  design  phys ical 
memory architecture. Th is process is referred as memory 
allocation in the literature[1]. Each o f the logical memories is 
constructed with one or more memory modules taken from a 
Semiconductor vendor memory lib rary . For example, a 
logical memory bank of 16KBX16 can be constructed with 
four 4KBX16 or eight 2KB X16 or eight 4KBX8 or sixteen 
1KBX16 memory units. Each of these options, for different  
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process technology and different memory unit organization 
results in different  performance, area and energy 
consumption trade-offs. Hence the memory allocation 
process is performed with the objective to reduce the 
memory area in terms of silicon gates, and energy 
consumption. The memory allocation problem in general is 
NP-Complete.  

Earlier approaches for the data layout step typically use 
logical memory architecture as input and as a consequence 
power consumption data for the memory banks is not 
available. By considering the physical memory architecture, 
the data layout method proposed in this chapter can optimize 
for power as well. Also, a common design assumption in 
earlier design approaches is that, for data layout, the power 
and performance are non-conflicting object ives and 
therefore optimizing performance will also result in lower 
power. However we show that this assumption in general is 
not valid for all classes of memory  architectures. Specifically, 
we here show that for DSPs memory architectures, power 
and performance are conflicting objectives and there is a 
significant trade-off (up to 70%) possible. Hence this factor 
needs to be carefully factored in the data layout method to 
choose an optimal power-performance point in the design 
space. 

2. Previous Work 
Many authors have addressed this data placement problem 

and mapping of logical memory into physical memory.[2] 
Presented an interference graph based approach for 
partitioning variab les that are simultaneously accessed in 
different on chip memory banks.[3] Presented an efficient 
data partitioning approach for data arrays on limited-memory 
embedded systems. They perform compile time part itioning 
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of data segments based on the data access frequency. In[4] a 
data partitioning technique is presented that places data into 
on-chip SRAM and data cache with the objective of 
maximizing perfo rmance. Based on the life times and access 
frequencies of array variables, the most conflict ing arrays are 
identified and placed in scratch pad RAM to reduce the 
conflict misses in the data cache. In dynamic data layout[5], 
on-chip SPRAM is reused by overlaying many data variables 
to the same address. Thus, two addresses are assigned to a 
variable at compile time, namely, load address and run 
address. In[6], the authors present a heuristic algorithm to 
efficiently partit ion the data to avoid parallel conflicts in 
DSP applicat ions. Their objective is to partition the data into 
multip le chunks of same size so that they can fit in memory 
architecture with unifo rm bank sizes. Th is approach works 
well if we consider only performance as an objective. Our 
work addresses the problem of reducing the memory stalls 
by efficient data partitioning within the on chip scratch pad 
RAM itself. Also our work addresses the data layout for DSP 
applications, where resolving self and parallel conflicts by 
efficient partitioning of data variab les is very critical for 
achieving real-time performance.  

3. Proposed Approach  
Initially, the application's data is grouped in to logical 

sections. This is done to reduce the number of indiv idual 
items and there by reduce the complexity. This step is 
important as once the data is grouped into a section, the 
section can only be assigned a single location and all the data 
variables inside a section will be p laced contiguously starting 
from the given memory address. Also the order of data 
placement within a section can be random and may not affect 
the performance. Note that, a section cannot have both code 
and data. There is a trade-off in combining different 
variables into a section. If too many data variables are 
combined into one section, then the flexibility of placement 
in memory gets negatively impacted. On  the other hand, if 
each of the data variable is mapped into one section then 
there are too many sections to handle and thus increasing the 
data layout complexity. In pract ice, however an  embedded 
development engineer makes a jud icious choice of mapping 
a set of data variables into a section. Typically, each of the 
large data arrays are mapped into an individual section, and 
all data scalar variables belonging to a module are mapped 
into a section. Note that this process is performed  manually. 
Once the grouping of data into sections are done, the code is 
compiled and executed in a cycle accurate software 
simulator. From the software simulator profile data (access 
frequency) of data sections are obtained. In addition, the 
simulator generates a conflict matrix that represents the 
parallel and self conflicts. Parallel conflicts refers to 
simultaneous accesses of two different data sections while 
self conflicts refers to simultaneous accesses of same data 
sections.  

Consider the following code: 

For (i=0; i<n, i++) 
y[i] = b [i] + a[i] * a[i-1]  
In this code segment data sections a and b need to  be 

accessed together and therefore represent a parallel conflict. 
Accesses to a[i] and a[i-1] refer to a self conflict. If these 
arrays (a,b) is placed in d ifferent memory banks or memory 
bank with multiple ports then these accesses can be made 
concurrently without incurring additional stall cycles. 
However, note that the data array  (a) which  has a self conflict 
must be placed  in  a memory bank with  mult iple ports to 
avoid additional stall cycles. The conflict relations among 
data sections is represented by an nXn matrix, where n is the 
number of data sections. The (i; j)th element represents the 
conflict  or concurrent accesses between data section i and j. 
The diagonal elements represent self conflicts. The conflict 
matrix is symmetric.  

As an example, consider an application with 4 data 
sections: a, b, c and d. A conflict matrix is shown below, 
where the indices i and j are ordered as a, b, c and d. Section 
a conflicts with itself and sections b and d. In this matrix, 
more specifically, a conflicts with itself 100 times, while it 
conflicts with b and d 40 and 2000 t imes respectively. The 
sums of all the conflicts for data sections a, b, c, and d are 
2140, 540, 650 and 2050 respectively. Hence the sorted order 
of the data sections in terms of total conflicts is a, d, c , b.  

 
Data section sizes, access frequency of data sections, 

conflict matrix and the memory arch itecture are given as 
inputs to data layout. The objective of data layout is to 
efficiently use the memory arch itecture by placing the most 
critical data section in on-chip  RAM and reduce 
bank-conflicts by placing conflicting data in  different 
memory banks. Data layout assigns memory addresses for all 
the data sections.  

Consider a memory  arch itecture M with m on-chip  
SARAM memory banks, n on-chip DARAM memory banks, 
and an off-chip memory. The size of each o f the on-chip 
memory bank and the off-chip memory is fixed. The access 
time for the on-chip memory banks is one cycle, while that 
for the off-chip memory is l cycles. Given an application 
with d sections, the simultaneous access requirement of 
multip le arrays is captured by means of a two d imensional 
matrix C where Cij represents the number of t imes data 
sections i and j are accessed together in the same cycle in the 
execution of the entire program. We do not consider more 
than two simultaneous accesses, as the embedded core 
typically supports up to two accesses in a single cycle. If data 
sections i and j are p laced in  two d ifferent memory banks, 
then these conflicting accesses can be satisfied 
simultaneously without incurring stall cycles. Cii represents 
the number of t imes two accesses to data section I are made 
in the same cycle. Self-conflict ing data sections need to be 
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placed in DARAM memory banks, if available, to avoid 
stalls. The objective of the data placement problem is to 
place the data sections in memory modules such that the 
following are minimized :   

1. Number of memory stalls incurred due to conflicting 
accesses of data sections placed in the same memory bank  

2. Self-conflict ing accesses placed in SARAM banks  
3. Number of off-chip memory accesses.  
Genetic Algorithm For Data Placement 
We formulate the data layout problem as a multi object ive 

GA[30] to obtain a set of optimal design points. The multip le 
objectives are min imizing memory stall cycles and memory 
power. The logical memory architecture contains the number 
of memory banks, memory bank sizes, memory bank types 
(single- port, dual-port), and memory bank latencies. The 
logical memory to physical memory map is obtained using a 
greedy heuristic method which is explained in the following 
section. The data placement problem is herewith addressed 
as a Genetic Algorithm (GA). The data layout block takes the 
application data and the logical memory architecture as input 
and outputs a data placement. The cost of data placement in 
terms of memory stalls is computed. To compute the 
memory power, we use the physical memory  architecture 
and use the power per read/write obtained from the ASIC 
memory library.  

Based on the fitness function, the GA evolves by selecting 
the fittest individuals (the data placements with the lowest 
cost) to the next generation. To handle multip le objectives, 
the fitness function is computed by ranking the 
chromosomes based on the non-dominated criteria). This 
process is repeated for a maximum number of generations 
specified as a input parameter.  

Mapping Logical Memory to Physical Memory  
To get the memory power and area numbers, the logical 

memories have to be mapped to physical memory modules 
available in a ASIC memory library for a specī c 
technology/process node. As mentioned earlier each of the 
logical memory bank can be implemented physically in 
many ways. For example, for a logical memory bank of 
4K*16 b its can be formed with two physical memories of 
size 2K*16 b its or four physical memories of size 2K*8 bits. 
Di®erent approaches have been proposed for mapping 
logical memory to physical memories. The memory  mapping 
problem in general is NP-Complete. However since the 
logical memory architecture is already organized as multip le 
memory banks; most of the mapping turns out to be a d irect 
one to one mapping. In this chapter a simple greedy heuristic 
is used to perform the mapping of logical to physical 
memory with the objective of reducing silicon area. This is 
achieved by firrst sorting the memory modules based on 
area/byte and then by choosing the smallest area/byte 
physical memory to form the required logical memory  bank 
size. Though this heuristic is very simple, it results in 
efficient physical memory architecture.  

Genetic Algorithm Formulation 
To map the data layout problem to the GA framework, we 

use the chromosomal representation, fitness computation, 

selection function and genetic operators. For easy reference 
and completeness, we briefly describe them in the following 
sub-sections.  

Chromosome Representation  
For the data memory layout problem, each individual 

chromosome represents a memory placement. A 
chromosome is a vector of d elements, where d is the number 
of data sections. Each element of a chromosome can take a 
value in (0.. m), where 1..m represent on- chip logical 
memory banks (including both SARAM and DARAM 
memory banks) and 0 represents off-chip  memory. For the 
purpose of data layout it is sufficient to consider the logical 
memory architecture from which the number of memory 
stalls can be computed. However, for computing the power 
consumption for a g iven placement done by data layout, the 
corresponding physical memory architecture obtained from 
our heuristic mapping algorithm, need to be considered. 
Thus if element i of a chromosome has a value k , then the 
data section is placed in  memory  bank k . Thus a chromosome 
represents a memory placement for all data sections. Note 
that a chromosome may  not always represent a valid memory 
placement, as the size of data sections placed in a memory 
bank k may exceed  the size of k . Such a chromosome is 
marked as invalid and assigned a low fitness value.  

Chromosome Selection and Generation  
The strongest individuals in a population are used to 

produce new off-springs. The selection of an individual 
depends on its fitness, an individual with a higher fitness has 
a higher probability of contributing one or more offspring to 
the next generation. In every generation, from the P 
individuals of the current generation, M new off springs are 
generated, resulting in a total population of (P + M). From 
this P fittest individuals survive to the next generation. The 
remain ing M individuals are annihilated.  

Fitness Function and Ranking  
For each of the individuals corresponding to a data layout 

the fitness function computes the power consumed by the 
memory architecture (Mpow) and the performance in terms 
of memory stall cycles (Mcyc). The number of memory stalls 
incurred in a memory bank j can be computed by summing 
the number of conflicts between pairs of data sections that 
are kept in  j. For each pair of the conflicting data sections, the 
number of conflicts is given by the conflict matrix. Thus the 
number of stalls in memory bank j is given by ∑Cx;y, for all 
(x; y) such that data sections x and y are placed in memory 
bank j. As DARAM banks support concurrent accesses, 
DARAM bank conflicts Cx;y between data section x and y 
placed in a DARAM bank, as well self conflicts Cx;x do not 
incur any memory stalls. Note that our model assumes only 
up to two concurrent accesses in any cycle. The total 
memory stalls incurred in bank j can  be computed by 
multip lying the number of conflicts and the bank latency. 
The total memory  stalls for the complete memory 
architecture is computed by summing all the memory stalls 
incurred by all the indiv idual memory banks. Memory Power 
corresponding to a chromosome is computed as follows. 
Assume each logical memory  bank j is mapped to a set of 
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physical memory  banks mj;1;mj;2; :::mj;n j . If Pj;k is the 
power per read/write accesses of memory module mj;k and 
AFi;j;k is the number of accesses to data section i that map to 
physical memory bank mj;k , then the total power consumed 
is given by  

 
Note that AFi;j;k is 0 if data section i is either not mapped 

to logical memory bank j, or if i  not mapped to physical 
memory bank k . Also, AFi;j;k and AFi;j;k` would both 
account for an access to data section i that is mapped to 
logical memory bank j, when j is implemented using multip le 
banks k and k`. For example, logical memory bank of 2KX 16 
implemented using two physical memory modules of size 2K 
X8. Thus the total power Mpow for all the memory banks 
including off-chip memory is given by  

 
where AFi;o ff represents the number of access to off-chip 
memory from data section i, and Poff is power per access for 
off-chip memory. Once the memory cost and memory cycles 
are computed for all the individuals in the population, 
individuals are ranked according to the optimality conditions 
on power consumption (Mpow) and performance in terms of 
memory stall cycles (Mcyc). More specī cally, if (Ma 
pow;Ma cyc) and (Mb pow;Mb cyc) are the memory power 
and memory cycles of chromosome A and chromosome B, A 
is ranked higher (i.e.,has a lower rank value) than B if  
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The ranking process in a multi-objective GA proceeds in 
the non-dominated sorting manner. A ll non-dominated 
individuals in the current population have a rank value 1 and 
are flagged. Subsequently rank-2 individuals are identified 
as the non-dominated solutions in the remaining population. 
In this way all chromosomes in the population get a rank 
value. Higher fitness values are assigned for rank-1 
individuals as compared to rank-2 and so on. This fitness is 
used for the selection probability. The individuals with 
higher fitness gets a better chance of getting selected for 
reproduction. To ensure solution diversity which is very 
critical for getting a good distribution of solutions in the 
optimal front, the fitness value is reduced for a chromosome 
that has many neighboring solutions. 

4. Implementation  
For our experiments, the main  inputs are the access 

characteristics of the data sections. We need the sizes of the 
data sections, access frequency of each of the data sections 
and the conflict matrix. The access frequency and the 

conflict matrix are obtained from a software profiler. Since 
the DSP applicat ions typically have simple control flow, the 
profile info rmation on the access characteristics does not 
change very much from run to run. 

Table 1.  memory specifications 

Memory module No. of banks Size 
Dual access RAM 04 4096 

Single access RAM 02 32786 

For perfo rming the memory allocation step, we have used 
TI's ASIC memory library. The area and power numbers are 
obtained from the ASIC memory library. We consider a set 
of 6 different logical memory architecture listed in Table 1. 
We have used the Texas Instruments TMS320C55XX 
processor for our experiments. This processor has three 
16-bit  memory  read busses and two 16-b it memory write 
busses and has the capability to read three 16-b it data and 
write two 16-b it data in the same clock cycle. Note that the 
total memory  size is 72 Kwords and is large enough to fit 
each of the instances of the application. We have used the 
Texas Instruments Code Composer Studio V2.2 to run the 
applications. Init ially the applications are compiled with the 
CCS2.2 compiler with the default memory placement made 
by the compiler.  

Table 2.  various memory architectures 

 

The architectures A1 to A5 are sorted based on physical 
memory area in descending order. Architectures A1 to A5 
are selected such that the memory configuration in terms of 
multip le memory banks and the bank types (SARAM and 
DARAM) is varied. In all of these configurations, the data 
width is 16-bit in both the logical architecture and physical 
memory banks. From the table it can be observed that the 
memory area increases with the DARAM size and the 
number o f banks. A1 has the highest number of memory 
banks with largest DARAM size; hence A1 consumes the 
largest area. A2 and A3 has the same DARAM size but the 
SARAM configuration is different. A3 and A4 present a 
non-uniform bank size based SARAM architecture. 
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Non-uniform bank size based architectures allows the usage 
of memory banks with multip le sizes and hence presents 
opportunities to optimize memory area and power 
consumption. Larger memory banks optimizes area, whereas 
smaller memory banks reduces power consumption. A5 has 
the least number of memory banks and uses larger memories 
with a reduced memory area. In summary, we would  expect 
architecture A1 to perform very well in  terms of performance 
because of its large DARAM memory and architecture A4 to 
perform better in terms of power consumption because of its 
lesser DARAM size and the presence of non-uniform bank 
sizes. Note that the architecture A4 has more memory area 
than A5 even though it has only half of the A5's DARAM. 
This is due to the higher number of banks in A4.  

5. Results  
The Voice Encoder application for the 5 d ifferent 

architectures A1-A5.  

 

The solution points of A1 are clearly superior here, mainly  
in terms of performance. Observe that the solution points of 
the architectures A1, A2 and A4 dominate some of the 
power-performance regions in the data layout space. 
Solutions of A1 dominate the high performance space, 
solutions of A2 and A4 dominate the middle space both in 
performance and power, and again solutions of A2 
dominates the low power-performance region. From the 
results, it can be deduced that for voice encoder, DARAM 
and multiple memory banks both are equally critical. With 
only a small increase in area compared to A5, A3 achieves 
much better performance than A5. This is due to the higher 

number of banks in A3 that resolves more parallel conflicts. 
Typically, hand optimized assembly code will try to explo it 
the DSP architectures by using multip le simultaneous 
accesses and self accesses.  

6. Conclusions 
In this chapter we presented a Data placement approach 

for physical memory architecture. We demonstrated that 
there is significant trade-off up to 60% between power and 
performance. For a given memory architecture, the 
placement of data sections is crucial to the performance of 
the system. Badly placed data can result in a large number of 
memory stalls. We consider a memory architecture that 
consists of on- chip single-access RAM with multip le 
memory banks, on ch ip Dual-access RAM, and external 
RAM. We analyze the applicat ion for data conflicts and 
create a matrix representation of the conflict informat ion. 
The Genetic algorithm is utilized for the performance and 
power minimization.  
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