
American Journal of Systems Science 2013, 2(1): 8-12
DOI: 10.5923/j.ajss.20130201.02

An Effective Data Placement Methodology for Data
Dominant Applications Employing ASIP

Srilatha C1,*, Guru Rao C V2, Prabhu G Benakop3

1Department of ECE, ASTRA, Hyderabad, India-500008, India
2Department of CSE, SR Engineering College, Warangal, India-506015, India

3Department of ECE & Principal, ATRI, Hyderabad, India-500039, India

Abstract Any embedded system contains both on-chip and off-chip memory modules with different access times. During
system integration, the decision to map crit ical data on to faster memories is crucial. In order to obtain good performance
targeting less amounts of memory, the data buffers of the application need to be p laced carefu lly in different types of memory.
This data placement problem is addressed with the help of a data dominated embedded application.

Keywords Memory, Cache, DSP

1. Introduction
Embedded applications are highly performance critical.

One of the most critical step in embedded application
development flow is system integration, where all the
software modules are integrated and mapped to a given
target memory architecture. This step has a large
performance implication depending on how the memory
architecture is used. The memory architecture of embedded
DSPs is heterogeneous and contains memories of different
types. For example, an embedded system may contain
on-chip and off-ch ip memory modules with different access
times, single and dual ported memory, and multip le memory
banks to support many simultaneous accesses. During
system integration, the decision to map critical data on to
faster memories and map non critical data in to slower
memories is made. In order to obtain good performance and
a reduction in memory stalls, the data buffers of the
application need to be placed carefully in different types of
memory. Th is is known as the data placement problem.

The hardware des igners take the log ical me mory
arch itectu re specificat ion as input and design phys ical
memory architecture. Th is process is referred as memory
allocation in the literature[1]. Each o f the logical memories is
constructed with one or more memory modules taken from a
Semiconductor vendor memory lib rary . For example, a
logical memory bank of 16KBX16 can be constructed with
four 4KBX16 or eight 2KB X16 or eight 4KBX8 or sixteen
1KBX16 memory units. Each of these options, for different

* Corresponding author:
deepuaurora@yahoo.com (Srilatha C)
Published online at http://journal.sapub.org/ajss
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

process technology and different memory unit organization
results in different performance, area and energy
consumption trade-offs. Hence the memory allocation
process is performed with the objective to reduce the
memory area in terms of silicon gates, and energy
consumption. The memory allocation problem in general is
NP-Complete.

Earlier approaches for the data layout step typically use
logical memory architecture as input and as a consequence
power consumption data for the memory banks is not
available. By considering the physical memory architecture,
the data layout method proposed in this chapter can optimize
for power as well. Also, a common design assumption in
earlier design approaches is that, for data layout, the power
and performance are non-conflicting object ives and
therefore optimizing performance will also result in lower
power. However we show that this assumption in general is
not valid for all classes of memory architectures. Specifically,
we here show that for DSPs memory architectures, power
and performance are conflicting objectives and there is a
significant trade-off (up to 70%) possible. Hence this factor
needs to be carefully factored in the data layout method to
choose an optimal power-performance point in the design
space.

2. Previous Work
Many authors have addressed this data placement problem

and mapping of logical memory into physical memory.[2]
Presented an interference graph based approach for
partitioning variab les that are simultaneously accessed in
different on chip memory banks.[3] Presented an efficient
data partitioning approach for data arrays on limited-memory
embedded systems. They perform compile time part itioning

 American Journal of Systems Science 2013, 2(1): 8-12 9

of data segments based on the data access frequency. In[4] a
data partitioning technique is presented that places data into
on-chip SRAM and data cache with the objective of
maximizing perfo rmance. Based on the life times and access
frequencies of array variables, the most conflict ing arrays are
identified and placed in scratch pad RAM to reduce the
conflict misses in the data cache. In dynamic data layout[5],
on-chip SPRAM is reused by overlaying many data variables
to the same address. Thus, two addresses are assigned to a
variable at compile time, namely, load address and run
address. In[6], the authors present a heuristic algorithm to
efficiently partit ion the data to avoid parallel conflicts in
DSP applicat ions. Their objective is to partition the data into
multip le chunks of same size so that they can fit in memory
architecture with unifo rm bank sizes. Th is approach works
well if we consider only performance as an objective. Our
work addresses the problem of reducing the memory stalls
by efficient data partitioning within the on chip scratch pad
RAM itself. Also our work addresses the data layout for DSP
applications, where resolving self and parallel conflicts by
efficient partitioning of data variab les is very critical for
achieving real-time performance.

3. Proposed Approach
Initially, the application's data is grouped in to logical

sections. This is done to reduce the number of indiv idual
items and there by reduce the complexity. This step is
important as once the data is grouped into a section, the
section can only be assigned a single location and all the data
variables inside a section will be p laced contiguously starting
from the given memory address. Also the order of data
placement within a section can be random and may not affect
the performance. Note that, a section cannot have both code
and data. There is a trade-off in combining different
variables into a section. If too many data variables are
combined into one section, then the flexibility of placement
in memory gets negatively impacted. On the other hand, if
each of the data variable is mapped into one section then
there are too many sections to handle and thus increasing the
data layout complexity. In pract ice, however an embedded
development engineer makes a jud icious choice of mapping
a set of data variables into a section. Typically, each of the
large data arrays are mapped into an individual section, and
all data scalar variables belonging to a module are mapped
into a section. Note that this process is performed manually.
Once the grouping of data into sections are done, the code is
compiled and executed in a cycle accurate software
simulator. From the software simulator profile data (access
frequency) of data sections are obtained. In addition, the
simulator generates a conflict matrix that represents the
parallel and self conflicts. Parallel conflicts refers to
simultaneous accesses of two different data sections while
self conflicts refers to simultaneous accesses of same data
sections.

Consider the following code:

For (i=0; i<n, i++)
y[i] = b [i] + a[i] * a[i-1]
In this code segment data sections a and b need to be

accessed together and therefore represent a parallel conflict.
Accesses to a[i] and a[i-1] refer to a self conflict. If these
arrays (a,b) is placed in d ifferent memory banks or memory
bank with multiple ports then these accesses can be made
concurrently without incurring additional stall cycles.
However, note that the data array (a) which has a self conflict
must be placed in a memory bank with mult iple ports to
avoid additional stall cycles. The conflict relations among
data sections is represented by an nXn matrix, where n is the
number of data sections. The (i; j)th element represents the
conflict or concurrent accesses between data section i and j.
The diagonal elements represent self conflicts. The conflict
matrix is symmetric.

As an example, consider an application with 4 data
sections: a, b, c and d. A conflict matrix is shown below,
where the indices i and j are ordered as a, b, c and d. Section
a conflicts with itself and sections b and d. In this matrix,
more specifically, a conflicts with itself 100 times, while it
conflicts with b and d 40 and 2000 t imes respectively. The
sums of all the conflicts for data sections a, b, c, and d are
2140, 540, 650 and 2050 respectively. Hence the sorted order
of the data sections in terms of total conflicts is a, d, c , b.

Data section sizes, access frequency of data sections,

conflict matrix and the memory arch itecture are given as
inputs to data layout. The objective of data layout is to
efficiently use the memory arch itecture by placing the most
critical data section in on-chip RAM and reduce
bank-conflicts by placing conflicting data in different
memory banks. Data layout assigns memory addresses for all
the data sections.

Consider a memory arch itecture M with m on-chip
SARAM memory banks, n on-chip DARAM memory banks,
and an off-chip memory. The size of each o f the on-chip
memory bank and the off-chip memory is fixed. The access
time for the on-chip memory banks is one cycle, while that
for the off-chip memory is l cycles. Given an application
with d sections, the simultaneous access requirement of
multip le arrays is captured by means of a two d imensional
matrix C where Cij represents the number of t imes data
sections i and j are accessed together in the same cycle in the
execution of the entire program. We do not consider more
than two simultaneous accesses, as the embedded core
typically supports up to two accesses in a single cycle. If data
sections i and j are p laced in two d ifferent memory banks,
then these conflicting accesses can be satisfied
simultaneously without incurring stall cycles. Cii represents
the number of t imes two accesses to data section I are made
in the same cycle. Self-conflict ing data sections need to be

10 Srilatha C et al.: An Effective Data Placement Methodology for Data Dominant Applications Employing ASIP

placed in DARAM memory banks, if available, to avoid
stalls. The objective of the data placement problem is to
place the data sections in memory modules such that the
following are minimized :

1. Number of memory stalls incurred due to conflicting
accesses of data sections placed in the same memory bank

2. Self-conflict ing accesses placed in SARAM banks
3. Number of off-chip memory accesses.
Genetic Algorithm For Data Placement
We formulate the data layout problem as a multi object ive

GA[30] to obtain a set of optimal design points. The multip le
objectives are min imizing memory stall cycles and memory
power. The logical memory architecture contains the number
of memory banks, memory bank sizes, memory bank types
(single- port, dual-port), and memory bank latencies. The
logical memory to physical memory map is obtained using a
greedy heuristic method which is explained in the following
section. The data placement problem is herewith addressed
as a Genetic Algorithm (GA). The data layout block takes the
application data and the logical memory architecture as input
and outputs a data placement. The cost of data placement in
terms of memory stalls is computed. To compute the
memory power, we use the physical memory architecture
and use the power per read/write obtained from the ASIC
memory library.

Based on the fitness function, the GA evolves by selecting
the fittest individuals (the data placements with the lowest
cost) to the next generation. To handle multip le objectives,
the fitness function is computed by ranking the
chromosomes based on the non-dominated criteria). This
process is repeated for a maximum number of generations
specified as a input parameter.

Mapping Logical Memory to Physical Memory
To get the memory power and area numbers, the logical

memories have to be mapped to physical memory modules
available in a ASIC memory library for a specī c
technology/process node. As mentioned earlier each of the
logical memory bank can be implemented physically in
many ways. For example, for a logical memory bank of
4K*16 b its can be formed with two physical memories of
size 2K*16 b its or four physical memories of size 2K*8 bits.
Di®erent approaches have been proposed for mapping
logical memory to physical memories. The memory mapping
problem in general is NP-Complete. However since the
logical memory architecture is already organized as multip le
memory banks; most of the mapping turns out to be a d irect
one to one mapping. In this chapter a simple greedy heuristic
is used to perform the mapping of logical to physical
memory with the objective of reducing silicon area. This is
achieved by firrst sorting the memory modules based on
area/byte and then by choosing the smallest area/byte
physical memory to form the required logical memory bank
size. Though this heuristic is very simple, it results in
efficient physical memory architecture.

Genetic Algorithm Formulation
To map the data layout problem to the GA framework, we

use the chromosomal representation, fitness computation,

selection function and genetic operators. For easy reference
and completeness, we briefly describe them in the following
sub-sections.

Chromosome Representation
For the data memory layout problem, each individual

chromosome represents a memory placement. A
chromosome is a vector of d elements, where d is the number
of data sections. Each element of a chromosome can take a
value in (0.. m), where 1..m represent on- chip logical
memory banks (including both SARAM and DARAM
memory banks) and 0 represents off-chip memory. For the
purpose of data layout it is sufficient to consider the logical
memory architecture from which the number of memory
stalls can be computed. However, for computing the power
consumption for a g iven placement done by data layout, the
corresponding physical memory architecture obtained from
our heuristic mapping algorithm, need to be considered.
Thus if element i of a chromosome has a value k , then the
data section is placed in memory bank k . Thus a chromosome
represents a memory placement for all data sections. Note
that a chromosome may not always represent a valid memory
placement, as the size of data sections placed in a memory
bank k may exceed the size of k . Such a chromosome is
marked as invalid and assigned a low fitness value.

Chromosome Selection and Generation
The strongest individuals in a population are used to

produce new off-springs. The selection of an individual
depends on its fitness, an individual with a higher fitness has
a higher probability of contributing one or more offspring to
the next generation. In every generation, from the P
individuals of the current generation, M new off springs are
generated, resulting in a total population of (P + M). From
this P fittest individuals survive to the next generation. The
remain ing M individuals are annihilated.

Fitness Function and Ranking
For each of the individuals corresponding to a data layout

the fitness function computes the power consumed by the
memory architecture (Mpow) and the performance in terms
of memory stall cycles (Mcyc). The number of memory stalls
incurred in a memory bank j can be computed by summing
the number of conflicts between pairs of data sections that
are kept in j. For each pair of the conflicting data sections, the
number of conflicts is given by the conflict matrix. Thus the
number of stalls in memory bank j is given by ∑Cx;y, for all
(x; y) such that data sections x and y are placed in memory
bank j. As DARAM banks support concurrent accesses,
DARAM bank conflicts Cx;y between data section x and y
placed in a DARAM bank, as well self conflicts Cx;x do not
incur any memory stalls. Note that our model assumes only
up to two concurrent accesses in any cycle. The total
memory stalls incurred in bank j can be computed by
multip lying the number of conflicts and the bank latency.
The total memory stalls for the complete memory
architecture is computed by summing all the memory stalls
incurred by all the indiv idual memory banks. Memory Power
corresponding to a chromosome is computed as follows.
Assume each logical memory bank j is mapped to a set of

 American Journal of Systems Science 2013, 2(1): 8-12 11

physical memory banks mj;1;mj;2; :::mj;n j . If Pj;k is the
power per read/write accesses of memory module mj;k and
AFi;j;k is the number of accesses to data section i that map to
physical memory bank mj;k , then the total power consumed
is given by

Note that AFi;j;k is 0 if data section i is either not mapped

to logical memory bank j, or if i not mapped to physical
memory bank k . Also, AFi;j;k and AFi;j;k` would both
account for an access to data section i that is mapped to
logical memory bank j, when j is implemented using multip le
banks k and k`. For example, logical memory bank of 2KX 16
implemented using two physical memory modules of size 2K
X8. Thus the total power Mpow for all the memory banks
including off-chip memory is given by

where AFi;o ff represents the number of access to off-chip
memory from data section i, and Poff is power per access for
off-chip memory. Once the memory cost and memory cycles
are computed for all the individuals in the population,
individuals are ranked according to the optimality conditions
on power consumption (Mpow) and performance in terms of
memory stall cycles (Mcyc). More specī cally, if (Ma
pow;Ma cyc) and (Mb pow;Mb cyc) are the memory power
and memory cycles of chromosome A and chromosome B, A
is ranked higher (i.e.,has a lower rank value) than B if

()
()

a b a b

a b a b

) ()

() ()

pow pow cyc cyc

cyc cyc pow pow

M M M M

M M M M

< ∧ ≤ ∨

< ∧ ≤

（

The ranking process in a multi-objective GA proceeds in
the non-dominated sorting manner. A ll non-dominated
individuals in the current population have a rank value 1 and
are flagged. Subsequently rank-2 individuals are identified
as the non-dominated solutions in the remaining population.
In this way all chromosomes in the population get a rank
value. Higher fitness values are assigned for rank-1
individuals as compared to rank-2 and so on. This fitness is
used for the selection probability. The individuals with
higher fitness gets a better chance of getting selected for
reproduction. To ensure solution diversity which is very
critical for getting a good distribution of solutions in the
optimal front, the fitness value is reduced for a chromosome
that has many neighboring solutions.

4. Implementation
For our experiments, the main inputs are the access

characteristics of the data sections. We need the sizes of the
data sections, access frequency of each of the data sections
and the conflict matrix. The access frequency and the

conflict matrix are obtained from a software profiler. Since
the DSP applicat ions typically have simple control flow, the
profile info rmation on the access characteristics does not
change very much from run to run.

Table 1. memory specifications

Memory module No. of banks Size
Dual access RAM 04 4096

Single access RAM 02 32786

For perfo rming the memory allocation step, we have used
TI's ASIC memory library. The area and power numbers are
obtained from the ASIC memory library. We consider a set
of 6 different logical memory architecture listed in Table 1.
We have used the Texas Instruments TMS320C55XX
processor for our experiments. This processor has three
16-bit memory read busses and two 16-b it memory write
busses and has the capability to read three 16-b it data and
write two 16-b it data in the same clock cycle. Note that the
total memory size is 72 Kwords and is large enough to fit
each of the instances of the application. We have used the
Texas Instruments Code Composer Studio V2.2 to run the
applications. Init ially the applications are compiled with the
CCS2.2 compiler with the default memory placement made
by the compiler.

Table 2. various memory architectures

The architectures A1 to A5 are sorted based on physical
memory area in descending order. Architectures A1 to A5
are selected such that the memory configuration in terms of
multip le memory banks and the bank types (SARAM and
DARAM) is varied. In all of these configurations, the data
width is 16-bit in both the logical architecture and physical
memory banks. From the table it can be observed that the
memory area increases with the DARAM size and the
number o f banks. A1 has the highest number of memory
banks with largest DARAM size; hence A1 consumes the
largest area. A2 and A3 has the same DARAM size but the
SARAM configuration is different. A3 and A4 present a
non-uniform bank size based SARAM architecture.

12 Srilatha C et al.: An Effective Data Placement Methodology for Data Dominant Applications Employing ASIP

Non-uniform bank size based architectures allows the usage
of memory banks with multip le sizes and hence presents
opportunities to optimize memory area and power
consumption. Larger memory banks optimizes area, whereas
smaller memory banks reduces power consumption. A5 has
the least number of memory banks and uses larger memories
with a reduced memory area. In summary, we would expect
architecture A1 to perform very well in terms of performance
because of its large DARAM memory and architecture A4 to
perform better in terms of power consumption because of its
lesser DARAM size and the presence of non-uniform bank
sizes. Note that the architecture A4 has more memory area
than A5 even though it has only half of the A5's DARAM.
This is due to the higher number of banks in A4.

5. Results
The Voice Encoder application for the 5 d ifferent

architectures A1-A5.

The solution points of A1 are clearly superior here, mainly
in terms of performance. Observe that the solution points of
the architectures A1, A2 and A4 dominate some of the
power-performance regions in the data layout space.
Solutions of A1 dominate the high performance space,
solutions of A2 and A4 dominate the middle space both in
performance and power, and again solutions of A2
dominates the low power-performance region. From the
results, it can be deduced that for voice encoder, DARAM
and multiple memory banks both are equally critical. With
only a small increase in area compared to A5, A3 achieves
much better performance than A5. This is due to the higher

number of banks in A3 that resolves more parallel conflicts.
Typically, hand optimized assembly code will try to explo it
the DSP architectures by using multip le simultaneous
accesses and self accesses.

6. Conclusions
In this chapter we presented a Data placement approach

for physical memory architecture. We demonstrated that
there is significant trade-off up to 60% between power and
performance. For a given memory architecture, the
placement of data sections is crucial to the performance of
the system. Badly placed data can result in a large number of
memory stalls. We consider a memory architecture that
consists of on- chip single-access RAM with multip le
memory banks, on ch ip Dual-access RAM, and external
RAM. We analyze the applicat ion for data conflicts and
create a matrix representation of the conflict informat ion.
The Genetic algorithm is utilized for the performance and
power minimization.

REFERENCES
[1] P. K. Jha and N. D. Dutt. Library mapping for memories. In

EuroDesign, 1997.

[2] R. Leupers and D. Kotte. Variable partitioning for dual
memory bank DSPs. In International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Salt
Lake City (USA), May 2001.

[3] A. Sundaram and S. Pande. An e±cient data partitioning
method for limited memory embedded systems. In ACM
SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems (in conjunction with PLDI '98), pages
205{218, 1998.

[4] P. R. Panda, N. D. Dutt, and A. Nicolau. On-chip vs. o®-chip
memory: The data partitioning problem in embedded
processor-based systems. ACM Trans. Design Automation of
Electronic Systems, 5(3):682{704, July 2000.

[5] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic
allocation for scratch-pad memory using compile-time
decisions. ACM Tracsactions in Embedded Computing
Systems, 5:1{33, 2005.

[6] M. Ko and S. S. Bhattacharyya. Data partitioning for DSP
software synthesis. In Proceedings of the International
Workshop on Software and Compilers for Embedded
Processors, September 2003.

