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Abstract  In this paper, we consider the problem of b lind image separation by taking advantage of the sparse 
representation of the hyperspectral images in the DCT-domain. Blind Source Separation (BSS) is an important field of 
research in signal and image processing. These images are produced by sensors which provide hundreds of narrow and 
adjacent spectral bands. The idea behind t ransform domain  is that we can restructure the signal/image values to give 
transform coefficients more easily to separate. This work describes a novel approach based on Second-Order Separat ion by 
Frequency-Decomposition, termed SOSFD. This technique uses joint information from second-order statistics and 
sparseness decomposition. Furthermore, the proposed approach has the added advantages of the DCT and second-order 
statistics in order to select the optimum data informat ion. In fact, representing the hyperspectral images in well suited 
database functions allows a good distinction of various types of objects. Results show the contribution of this new approach 
for the hyperspectral image analysis and prove the performance of the SOSFD algorithm for hyperspectral image 
classification. On the opposite of the original images that are represented according to correlated axes, the source images 
extracted from the proposed approach are represented according to mutually independent axes that allow a more efficient 
representation of information contained in  each image. Then, each source can represent specifically certain themes by 
exploit ing the link between the frequency-distribution and structural composition of the image. Th is application is of 
utmost importance in the classification process and could increase the reliability of the analysis and the interpretation of the 
hyperspectral images. 

Keywords  Blind Source Separation, Hyperspectral Images, Frequency-Decomposition, Sparseness-decomposition, and 
DCT-domain  

1. Introduction 
A fundamental problem in remote sensing discipline, as 

well as in  many other app licat ions (b iomedical signals, 
teleco mmun icat ion ,  etc …),  is  to  f ind  a  s u itab le 
representation of multivariate-observed data to extract the 
useful informat ion within the observed data[1]. Given that, 
this informat ion is subject of several perturbations, it is in 
general, not d irectly  accessible. The main aims of this work 
are; firstly , to ident ify the transfer function o f linking 
signals o f in terest (sources ) to the observat ions, and 
secondly  to  resto re the valuab le in format ion[2]. To 
overcome these problems, we develop an  approach based 
on the Blind Source Separat ion (BSS) which  describes 
techniques that aim at separating signals if no informat ion is 
available about the original sources[3]. This technique is an 
important field of research in signal and image processing. 
It was introduced and formulated by Bernard Ans, Jeanny 
Herault  and Christian Jutten[4, 5] since the 80’s, and it  
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raises now great interest. This situation is common to 
communicat ion signals[6, 7], b iomedical signals[8, 9] and 
astrophysical data analysis[10, 11]. Recently, this technique 
is adapted to remote sensing (mult ispectral and 
hyperspectral imaging) to obtain more accurate 
representation of the geological and vegetative ground 
surfaces[12, 13]. In fact, the large dimension of 
hyperspectral images needs and the heterogeneity of ground 
surfaces need to use various methods to describe image 
features. 

In order to solve the problem of source separation, we 
seek to maximize the statistical independence between the 
different components of the estimated sources. An 
alternative approach to the BSS problem is to assume that 
the sources have a sparse expansion with respect to some 
basis (or dictionary)[14]. Briefly, a signal is said to be 
sparse according to a g iven basis if most of h is entries (or 
elements) have no significant amplitudes. To take 
advantage of hyperspectral images, we propose to exp lore a 
novel approach based on source separation in a 
frequency-domain. Thus, independence and sparsity which 
are the main hypotheses of all the source separation 
techniques are not required for the source images 
themselves, but rather for their spectra[14, 15]. The 
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proposed approach has the added advantages of the DCT 
and second-order statistics. The first exploits the  
inter-pixel correlation and the second exploits the 
inter-band redundancies. Both theoretical and algorithmic 
comparisons between separation in the spatial and 
DCT-domain  are given. Thus, we associate statistical 
methods of BSS to different classification techniques to 
achieve a better result fo r the classificat ion of hyperspectral 
data. This work is reached by employing Second-Order 
Separation by Frequency-Decomposition. Termed SOSFD, 
this technique uses joint information from second-order 
statistics and sparseness decomposition. In this regard, this 
paper is organized as follows: First, we present a 
formulat ion of the problem of BSS and we clarify the 
related theoretical elements. Second, we establish the 
frequency-based approach on hyperspectral data. Finally, 
we study the results to show the contribution of this new 
approach on hyperspectral images and we prove the 
performance of the SOSFD algorithm. 

2. Background 
2.1. Source Separation Principle 

The source separation method can be applied to 
hyperspectral imaging to separate the components and make 
them statistically independent. This method is the most 
appropriate for our study, since the observation images show 
a strong correlation between them. The principle of source 
separation technique consists in the ext raction of unknown 
source signals from their instantaneous linear mixtures by 
using a min imum of prior informat ion: The mixture should 
be “blindly” processed[7, 16-18]. So, we describe this 
technique from m random processes or observations, noted 
{x[k]} kϵN=[x1[k]…xm[k]]T that result from a linear mixture of 
n random processes or sources, noted {s[k]} (s[k] 
=[s1[k]…sn[k]]T). The general configuration of sources 
separation is shown in Figure 1. 

 
Figure 1.  General configuration of source separation 

In recent years, great part researches work in BSS relevant 
source separation assuming a linear mixing application A. 
For a linear mixing convolution MIMO (Multip le 
Input-Multiple Output) is described in  the following 
equation: 

[ ] ( )[ ] [ ] [ ] [ ] [ ],
l

x k A s k b k A l s k l b k
∈Ν

= ⊗ + = − +∑           (1) 

in which A[l] refers to (m×n) linear filters and ⊗ refers to 

convolution operator. Instantaneous mixing is a part icular 
case of convolutive mixture[19]. By hypothesis, A is the 
linear transformation  between sources and observations. 
Indeed, signals received by sensors can be modeled by the 
source signals in the following general form 

[ ] ( [ ]) [ ] [ ] [ ],x k A s k b k As k b k= + = +               (2) 
where x[k] is a  m×T noisy instantaneous observed signals, s[k] 
is a n×T source signals, (b[k] =[b1[k]…bm[k]]T) is a m×T 
additive noise corrupting the observation images and A is a 
m×n mixing application. BSS technique consists of finding 
an application G known as a separator, such that: 
y[k]=G(x[k]). Furthermore, the separator G is an n×m matrix 
and y[k] is an estimate of s[k] to a trivial matrix o f the form Λ  
Π which Λ and Π are respectively diagonal and permutation 
matrix, such that: 

[ ] [ ] [ ].y k Gx k s k= = Λ Π                   (3) 
To ensure that the problem of BSS is well posed, the 

hypothesis that is generally accepted is that the sources s[k] 
kϵN, are statistically independents[20-24]. The realism of this 
assumption in a number of real-world problems is obviously 
fully justified. But, a d ifficulty arises when the mixing 
matrix A is unknown, so how can we invert a matrix that is 
unknown? That it leads to determining Â-1, an estimate of the 
inverse of the mixing matrix A-1. Observations will be 
transferred to the system that perfo rms Â-1 to infer an 
estimate of the sources (Figure 2). This gives: 

1 1ˆ ˆ ˆ .y A x A As s s− −= = = ≈                   (4) 

 
Figure 2.  Classical approach for linear mixing 

In the BSS approach, the instantaneous linear mixing  
hypothesis has and continues to stimulate a great interest, 
both in terms of application and methodology[2]. Nowadays, 
we have number of BSS tools which prove performers in 
theory, but it remains to study their behaviour in practical 
situations such as in remote sensing domain[25, 26]. 
Therefore we emphasize, in this work, on the method of 
source separation using second-order statistics for 
hyperspectral images to obtain more accurate representation 
of the ground surfaces. 

2.2. Source Separation Methods 

In the beginning of 80s, research in the domain of BSS has 
been initiated by Bernard Ans, Jeanny Hérault and Christian 
Jutten in the modelling of decoding movement in 
vertebrate’s problem. The authors proposed an approach to 
separate sources based on neural networks[27, 28]. Since this 
work, many BSS algorithms have been developed[4, 5]. We 
will p resent, in this section, some methods of blind source 
separation such as SOBI, JADE and fastICA. 

• SOBI (Second-Order Blind Identificat ion, Belouchrani 
and al. 1997) exp loits not one but several covariance 
matrices of the observations. The authors show that after 
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whitening observations, a joint diagonalizat ion criterion was 
used to estimate the mixing matrix[18]. 

• JADE (Joint Approximate Diagonalization of      
Eigen-matrices, Cardoso and Souloumiac 1993) presents an 
algebraic solution to the maximization of contrast based on 
the fourth order cumulants[29-31]. 

• FastICA (Fast Independent Component Analysis, 
Hyvärinen and Oja 1997) explo its the principle of 
neguentropy approximated by  the absolute value of kurtosis 
of the estimated sources[32, 33]. 

Hyperspectral data[34-36] can be modelled in the form of 
instantaneous physical mixtures. The required sources have a 
physical orig in and their mixing coefficients are the 
unknown proportions. The intrinsic content of the sources is 
temporally or spatially correlated, moreover the mixtures 
exhibit localized spectral info rmation. Th is description 
affects the choice of the algorithm. 

Therefore, one can use the second-order statistics which 
consider the spatial or temporal correlation[18, 37], by 
applying the following SOBI algorithm which is well 
adapted to this situation and provides robust solution for 
sources separation. In addition, data such as hyperspectral 
images suggested further development derived from SOBI 
with mixing  the second-order statistics and an orthogonal 
inverse transformation like DCT. Th is study will be largely 
explained in the following sections. 

3. Second-Order Separation Approach 
The Second-Order Blind  Identification (SOBI) is one of 

the well known second-order based approach to calculate the 
separating matrix. Therefore, we can assert that the 
separation is complete when the estimated sources are as 
spatially independent as possible. Accordingly, the 
separation task is achieved in  two  steps; the first step consists 
of whitening the signal of observation by applying a 
whitening matrix. The second step is to apply the joint 
diagonalization of several covariance matrices of whitened 
signal vector[20, 37-40]. 

3.1. Whitening 

This step consists of “whitening” the observed signal x[n]. 
This is achieved by multip lying x[n ] by an  n×m whitening 
matrix W which satisfies  

*( ) ( ) (0) (0)

,

H H H H
x s

H H

E Wx t x t W WR W WAR A W

WAA W I

  = = 

= =

           (5) 

where H denotes the conjugate transpose and RS(0)=I. 
Being a linear t ransformat ion, the whitening step is 

performed to decorrelate and enforce a unit variance of 
variables of the vector x[n]. Consequently, through the 
whitening procedure, we only need to estimate the unitary 
mixing matrix WA=U, with U is an n×n matrix instead of 
estimating an m×n mixing matrix parameters. The matrix A  
can be taken as 

#A W U= .                   (6) 

So 
*( ) ( ) (0)

,

H H
x
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  = 

= = =

        (7) 

where, # denotes the moore-penrose pseudo-inverse. 

3.2. Joint Diagonalization 

The whitening operation as described in the previous 
section consists in finding an affine transformat ion that 
associate to x[k] a vector process whose covariance matrix is 
identity. Therefore, the new system (z (t)) guarantees a 
unitary mixing matrix as fo llow 

( ) ( ) ( )z t WAs t Us t= = .                  (8) 
And W can be estimated from the covariance matrix of the 

signal x (init ial process). In fact, the covariance matrix is 
diagonalizable by U, and certifying its existence: 

1 2[ ( ), ( ), , ( )] ,

H H

H
n

z x sR WR W UR U

Udiag Uρ τ ρ τ ρ τ

= =

= 

            (9) 

where ρi(τ)=E[Si(t+τ)Si
*(τ)] is the auto-covariance of si and 

diag[.] is the diagonal matrix formed by the elements of its 
argument. Thereafter, the question is how we can find the 
matrix U from the diagonalizat ion of the covariance of the 
whitened process at a given delay τ ? 

The favourable solution that overcomes this problem is 
equivalent to diagonalizing jo intly several covariance 
matrices with several delays which increases the robustness 
of the separation. Then the estimate of the sources will be 
possible after the estimat ion of the matrix U. 

In this manner, the source separation technique using 
second-order statistics is achieved using statistical 
informat ion availab le on sources at any time lag. 

4. Sparsity Representation 
Recently, the sparse representation of signals and images 

is a problem that has been drawing considerable attention 
and widely studied in many recent applications like in 
remote sensing. In this paper, we propose a novel structure of 
such a database for representing image content in order to 
select the optimum data information. In fact, representing the 
hyperspectral images in well suited database functions 
allows a good distinction of various types of objects. In this 
paper, we apply a new source separation algorithm which  is 
based on sparse representation of real hyperspectral data and 
show that choosing an appropriate basis is a  key step towards 
a good sparse decomposition to improve the hyperspectral 
data analysis[14, 41]. So, we exp lore in this work the sparse 
decomposition of hyperspectral data by using DCT and we 
will exp lore the effect of sparse basis on dataset. Using the 
sparseness assumption, the following method illustrates the 
use of the mixing structure in order to estimate the mixing 
matrix[42-44]. 

We will define the model of sparse representation with a 
more formal way. Assuming a signal x is a vector in  a 
subspace of finite dimension x=[x[1],…, x[N ]]. x  is 
accurately sparse if most of its components are zero, i.e. its 
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support supp(x)={i/ 1 ≤ i ≤ N and x[i]≠0} become, if sparse, 
|supp(x) |=K << N  and the signal x  is said  K-sparse. In  most 
applications, the signal is sparse in an appropriate 
transformed domain but not in its original one, so x can be 
written in a suited basis D as follows: 

∑
∈

==
)(

][
α

ϕαα
 suppi

iiDx ,                 (10) 

where supp(α)=K << N and α[i] is the coefficient 
representing the contribution of the atom φi of the dictionary 
D in x. 

To estimate the sources, it is sufficient to find a 
representation in the form of a set of coefficients S such that s 
= SD where S is an unknown sparse matrix. In order to 
simplify the problem, BSS method based on sparsity explo its 
the matrix S that contains few coefficients significantly 
different from zero[45-47]. By combin ing the representation 
s = SD with the instantaneous mixing model x = As, we find: 

.ASDx =                   (11) 
The objective of BSS in the transform domain is to 

compute a new representation x=XD with X=AS following 
the structure of the chosen dictionary[47, 48]. 

5. Data and Processing Methods 
5.1. Data Description and Methodology 

In this work, we use the Compact Airborne 
Spectrographic Imager (CASI) data (Figure 3). The number 
of bands collected by CASI can be so great. Th is sensor can 
acquire up to 228 spectral bands between the wavelengths 
400 to 1000 nanometres[49]. The proposed method 
described in Figure 4, shows a methodology based on two 
source separation techniques to evaluate hyperspectral 
classification: The first is in special domain and the second in 
a transformed domain. The latter shows a good performance 
and should minimize the misclassification risk of dataset. 

To describe the source separation approach and to 
illustrate the corresponding results, we will use 9 observation 
images extracted from the CASI sensor, between the 
wavelengths 551.1 to 799.9 nanometres, by experts as the 
most pertinent to increase the reliability of the analysis of the 
study zone (Figure 5). 

 
Figure 3.  CASI composite image of three colours (RGB) 

 
Figure 4.  Methodology 

 
Figure 5.  CASI image in the 9 spectral bands 

5.1. Processing Methods  

5.1.1. Classical Source Separation 

 

Figure 6.  Sources in image-domain 
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The source separation method produces source images 
represented according to mutually  independent axes. 
Therefore, there is a decrease in the rate of correlation 
between the source images. At this level, the decorrelation is 
achieved in the spatial-domain by the SOBI (Second-Order 
Blind Identification) algorithm[13, 51]. Thus, a visual 
analysis shows the important contribution of the source 
separation method to discriminate natural themes compared 
to original images (Figure 6). However, some sources don’t 
have a physical sense and we cannot identify  for them a 
significant theme like source 2, source 3 and source 4. 

5.1.2. DCT-Domain Separation  

To provide a valid decomposition of the hyperspectral 
images, we adopt a blind and automated procedure that relies 
on an optimal decomposition of the image spectra. The 
frequency approach used in this work is implemented by 
mixing DCT and second-order statistics. Since DCT is a 
linear orthogonal transformation, it can be applied either on 
spatial or on spectral data[52]. The used criterion should 
provide independent information turned to d istinct spectra. 
The extracted independent components may lead to  a 
mean ingful data representation which permits to extract 
informat ion at a finer level of precision[53]. The positive 
effect of such transformat ion is the removal of redundancy 
between neighbouring pixels in the first stage and the 
discrimination between low and high frequency of bands in 
the second stage. 

In this paper, we use the source separation criterion in the 
frequency-domain[46, 54]. Therefore, the particularity of 
SOSFD approach is to implement  the DCT in order to extract 
independent spatial-frequency sources. The DCT explo its 
inter-pixel redundancies to turn into excellent decorrelation 
for most natural images. The frequency source separation 
method can be modelled by the following form 

( ) ( ) ( ) .T T T
dct dct dctX AS B= +                   (12) 

Hence, the source separation problem is transformed to 
the DCT-domain. The superscript (T) indicates that the 
related matrix is of T co lumns. Furthermore, DCT exhib its 
excellent energy compaction for highly correlated images 
such as hyperspectral images and because the noise produces 
DCT-coefficients that are close to zero at  a s maller 
frequency, we can model our frequency-based approach by a 
free noisy form 

( ') ( ') ,T T
dct dctX AS=                   (13) 

where Xdct (T’) is a m×T’ mat rix and Sdct 
(T’) is a n×T’ matrix 

with (T’) << (T). (T’) is chosen to give the most important 
coefficients. So, T' corresponds to coefficients with the 
largest energy of the transformed images. The separation 
complexity can be reduced by manipulating (T’) 
DCT-coefficients instead of (T) pixel values. 

Then, to ensure the identificat ion of the sources and to 
improve the statistical efficiency, we estimate the dominant 
independent orientation from only the most significant 
DCT-coefficients (Figure 7). In fact, we adopt in our work an 

algorithm of independent component analysis in the 
frequency-domain. 

 

Figure 7.  Transformed domain 2D-DCT of hyperspectral image 

5.1.3. Algorithm Implementation: SOSFD Algorithm 

The frequency-separation criterion is based on the 
following steps: 

• Determining the threshold from the histogram obtained 
by computing K  which is the mean  of all coefficients of a 
homogeneous DCT basis 

2

1...9
( )i

i
K X

=
= ∑                   (14) 

The normalized histogram defined in the set of {0, (T)-1} 
in[0, 1], present the proportion of samples in K. So, we can 
set the number of iteration and the threshold (T’). The 
operation (T’)=(T’)+1) is recursively until convergence 
(Figure 4). 

• Reducing the number of parameters to be estimated by 
whitening the observed process Xdct (T). So, the step of 
whitening is based on the covariance matrix and it is done by 
eigenvalue decomposition which is equivalent to Principal 
Components Analysis (PCA). This process consists of 
whitening Xdct (T), the signal of observation by applying a 
whitening matrix W. 

( ') ( ') .T T
dct dctZ WX=                   (15) 

The whitened process Zdct 
(T) still obeys a linear model 

given by 
( ') ( ') ( ') ,T T T
dct dct dctZ WAS US= =               (16) 

where U is a  n×n unitary  matrix. Hence, instead of estimating 
the m×n mixing matrix parameters, we only need to estimate 
the unitary mixing matrix which contains only n×(n-1)/2 
degrees of freedom 

• Determining the unitary factor U from a unitary 
diagonalization of a whitened covariance matrix Rdct (ν) for 
any frequency shift ν ≠ 0. 

( ) ( )

( ) ( )( ) ,

H

H H
Zdct Xdct

Sdct

R WR W

WA R WA UDU

ν ν

ν

=

= =
       (17) 

where D is a diagonal matrix. 
• The existence of a frequency shiftν, such that RZdct (ν) 

yields the relevant parameters, is directly  linked to the 
existence of distinct eigenvalues of RZdct (ν). To increase the 
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statistical efficiency of the estimation, we can consider a 
joint d iagonalization of several covariance matrices RZdct 
(νi)1<i<n for n different frequency shifts (νi)1<i<n. From the 
spectral theorem, we can jointly  diagonalize the set of 
covariance matrices by a un itary matrix V  that is essentially 
equal to U[19]. This leads to minimize the following joint 
diagonality (Jd) criterion.  

2

1...
1...

arg min( ( ( ), ))

arg min( ( ( ( ) ) ).

dctd

H
Zdct k ij

i j n
k n

ZV J R V

V R V

ν

ν
≠ =
=

=

= ∑
       (18) 

Then the source coefficients in the DCT-domain  are 
estimated as is styled. 

.H
dct dctS V WX=                (19) 

And then, by the inverse DCT-transform, we determine an 
estimate of the source matrix Ŝ and an estimate Â o f the 
mixing matrix A  such as 

#
.A W V

∧
=                     (20) 

6. Experimental Results and Evaluations 
First, we illustrate the benefit of the blind source 

separation in the DCT-domain by comparing the 
performance of SOSFD approach with the classical 
second-order source separation that performs in the 
spatial-domain[18]. 

6.1. Joint Diagonalization Performance 

The performance measure used to judge the quality of the 
separation is the Joint Diagonalizat ion (JD) criterion defined 
by the relation (18). In Figure 8, the JD criterion is plotted in 
decibels against sample size. The DCT-domain curve shows 
a performance gain  reaching 5dB compared  to the image 
domain  curve. A  sketch of the proof of the efficiency of the 
Joint diagonality criterion, when applied in the DCT-domain 
rather than in the original spatial-domain, is given in 
following section. 

 
Figure 8.  JD criterion evaluation 

6.2. Power S pectral Density Evaluation 

In this section, we illustrate the performance of our 

approach on hyperspectral data, which are known to be 
sparse in the DCT-domain. At  the beginning, we consider the 
hyperspectral observations. Before processing, we show the 
power spectral density of these images (Figure 10-a). This 
figure illustrates the huge correlation between the power 
spectral densities of the hyperspectral images. 

These spectral densities show a large number of spectral 
components with very weak amplitude. This reduces the 
calculus complexity when dealing with source separation in 
the DCT-domain. 

In (Figure 10-b), the source power spectral densities look 
more separated using second-order statistics in the 
spatial-domain. 

The data resulting from the new source separation 
approach are presented in Figure 9. We can  note a more 
effective discriminat ion between the different classes. The 
later are represented more clearly  by maximizing the contrast 
between them, which can improve the accuracy o f the 
classification process. 

 
Figure 9.  Resulting data after source separation method 

In fact, this new approach produces source images 
represented according to independent axes that will therefore 
permit an important decrease of the correlation between the 
extracted sources and allow a more efficient representation 
of info rmation contained in each image. Then, each source 
can represent specifically certain themes. Let us note that the 
DCT is a linear transform that is used to represent the 
frequency-content of image data in terms of amplitude or 
energy. This transformation is studied to establish the link 
between the frequency-distribution and structural 
composition of the image. The decomposition of data by the 
DCT employs information contours of low frequency, 
midrange and high frequencies to energy at the edges. 
Consequently in comparison to Figure 10-a, the sources 
resulting from the new approach (Figure 10-c) are physically 
more meaningful; they maintain  the spectral properties of the 
data while gaining the edge informat ion. 

The effect of our approach is also seen from the power 
spectral densities of the DCT-components. The 
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corresponding sources are then identified reliably due to the 
distinct differences in their power spectra. 

It is interesting to note that the most important spectral 
components of the new sources (Figure 10-d) are 
accumulated in the same frequency-range 0-15 Hz of 
original images (Figure 10-a); as opposed to the power 
spectra of the spatial-domain sources (Figure 10-b), which 
are ranging  in  a larger frequency-domain. Th is figure 
describes the source energy distributions according to the 
frequency-domain. 

 

Figure 10.  Power spectral density of (a) the observation components, (b) 
the spatial-domain sources components, (c) the DCT-domain source 
components and (d) The mean power spectra of the original bands, 
spatial-domain sources and DCT-domain sources 

Classical BSS is a mathematical or statistical method, so 
that the physical sense of BSS is not obvious. We are simply 
attempting to make the estimated sources independent. 
Subsequently, the DCT-decomposition of images provides a 
physical understanding of frequency-domain BSS. 

When applied in the DCT-domain, second-order statistics 
permit  to group and separate the different spectra around 
each dominant frequency. This permits to give a physical 
sense to each generated source. The result of Figure 10-d is 
in excellent agreement with the previous results. The mean 
power spectrum of the DCT-domain source is in  correlation 
with the mean  power spectra of the original bands which 
enhances the physical interpretability of these sources 
(Figure 10-d). However, the mean power spectral of the 
sources in spatial domain (Figure 10-d) is spreading in  a 
larger frequency-field part icularly in the high 
frequency-field. Indeed, even if the hyperspectral data does 
not physically verify the independence test, BSS can find 
directions in  which the components are independent. The 
estimated directions are less Gaussian thus most asymmetric, 
which can improve the image classification. In fact, the BSS 
as mathematical approach better characterizes the 
relationship between components that are actually almost 

non-orthogonal. The large high frequency-power spectral 
values don’t guarantee the physical interpretability; this led 
to three non significant extracted sources, like the source 2, 3 
and 4 of the Figure 6. 

6.3. Classification Method Evaluation 

In order to evaluate the performance of the proposed 
approach, we use a traditional supervised method, which is 
the Maximum Likelihood (ML) classifier[55]. The ML 
classifier is a spectral parametric classifier that characterizes 
the pattern of each class in terms of its pdf, the form of which 
is assumed to be known in advance. The pdfs are usually 
multivariate Gaussian functions so the only need to estimate 
the mean vector and the covariance matrix. The estimation 
accuracy of the ML method is generally h igh. This method 
allows designing an optimal classifier to make availab le a 
statistical model which giv ing description of the 
observations x∈X and the hidden state c ∈C. This statistical 
model must be estimated from the training set 

{ }1 1 2 2 ˆ( , ), ( , ), , ( , ) ( , ),m mx c x c x c p x c⇒         (21) 
with ˆ ( , )p x c is the estimated distribution of conditional 

probability. The estimation of the jo int probability ),( cxp  
is the goal of this step, according to the information existing 
in the training set. The observed data are given as 

{ } { }1 1 2 2 1 2( , ), ( , ), ( , ) , , ,m m mD x c x c x c z z z= =      (22) 
for supervised learning. The latter method is categorized on 
the use of the input and target samples in order to estimate a 
mapping from the input to the output based on a probabilistic 
model. 

For the likelihood function, we use a parameterized 
density ( / )p z θ  for modelling a set of data D. In 
assumption to be drawn independently from ( / )p z θ , the 
likelihood function can be modelled in the following form 

1
( / ) ( / ).

m

t
t

p D p zθ θ
=

= ∏                 (23) 

Subsequently, we can find the most advantageous values 
for the parameters by estimating the ML function from the 
training data by maximizing the log-likelihood function 

1

1

( ) log ( ; ) log ( / )

log ( / ).

m

t
t

m

t
t

L p D p z

p z

θ θ θ

θ

=

=

= =

=

∏

∑

        (24) 

In fact, the ML finds a parameter 
MLθ̂ available to best 

explaining the examples by 
ˆ arg max ( ).ML L

θ
θ θ=                   (25) 

This can be obtained under finding the stationary points 

1

( / )( ) 1 0
( / )

m
t

tt

p zL
p z

θθ
θ θ θ=

∂∂
= =

∂ ∂∑           (26) 

Characterized by mean and covariance, the Gaussian 
distribution has simple analytical properties. It is needed to 
estimate two parameters θ1 and θ2 which are respectively the 
mean vector value and variance value 
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θ µ
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2 2
2 1

1

1ˆ ( ) .
m

ML ML t ML
t

z
m

θ σ θ
=

= = −∑         (28) 

Before starting the discussion of results, we must define 
the terms for evaluating our results. Firstly, we identify the 
confusion matrix as erro r matrix which d isplays the degree 
of misclassification among classes. In fact, the quality of the 
classification is expressed by the number of p ixels correctly 
identified in the total for the studied area. The confusion 
matrix is a  square matrix of size equal to the number of 
classes and whose elements represent the number of well 
assigned pixels of each ground truth according to the 
corresponding classes. Among the indicators of relative 
accuracy, we cite the Omission Error (OE) and the 
Commission Error (CE) by 

;ij

il

X
OE i j

X
= ≠∑                   (29) 

and 

;ij

cj

X
CE i j

X
= ≠∑                   (30) 

with Xij, Xil and Xcj are respectively the elements of the 
confusion matrix, the sum of row elements and the sum of 
column elements of the confusion matrix. From there, a 
global measure representing the average rate of correct 
classification can be obtained such as the Kappa coefficient 
K 

1 1

2

1

.
,

.

C C

ii

C

M M

P D il cj
i i

M

P il cj
i

N X X X
K

N X X

= =

=

−
=

−

∑ ∑

∑

             (31) 

with NP, Mc and XDii 
are respectively the total number of data 

pixels, the total number of existing classes and the diagonal 
elements of the confusion matrix. In this work, we used the 
classification Error Rate (ER) to test the performance of the 
classification. Th is indicator is obtained by 

1 .ER K= −                     (32) 
Figure 11 provides the classification result fo r init ial 

bands (Figure 11-a), sources in the spatial-domain (Figure 
11-b) and sources in the DCT-domain (Figure 11-c). This 
classification was done using sixteen input classes identified 
from a ground truth chosen by experts who are familiar with 
the terrain. 

The ER is of 14.54%, 12.14% and 11.97% respectively for 
the initial bands, the spatial-domain sources and 
DCT-domain sources. 

In this context, it is crucial to highlight the value and the 
potential of the SOSFD algorithm by applying it to another 
data set. 

Then, the proposed approach is applied to other 
hyperspectral Mapper (Hymap) data (Figure 12). This sensor 
can acquire 126 spectral bands between the wavelengths 438 
to 2483 nanometres[50]. Figure 13 provides the 

classification results for init ial bands (Figure 13-a), sources 
in the spatial-domain (Figure 13-b) and sources in the 
DCT-domain  (Figure 13-c). The ER is of 24.88%, 19.24% 
and 17.15% for the in itial bands, the spatial-domain sources 
and DCT-domain sources respectively. 

      (a) 

 
    (b) 

 
     (c) 

 
Figure 11.  Classification results for (a) initial bands; ER=14.54%, (b) 
spatial-domain sources; ER=12.14% and (c) DCT-domain sources; 
ER=11.97% 

 
Figure 12.  Hymap composite image of three colours (RGB) 
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               (a) 

 
               (b) 

 
                (c) 

 
Figure 13.  Classification results for (a) initial bands; ER=24.88%, (b) 
spatial-domain sources; ER=19.24% and (c) DCT-domain sources; 
ER=17.15% 

These experiment results show that the sources generated 
in the DCT-domain p resent the lowest classification ER and 
can provide a reliable tool for hyperspectral image 
classification. 

7. Conclusions 
This study confirms the potential of the DCT-transform 

for some image-t reatments. In this paper, we present a novel 
approach to separate hyperspectral data in the 
spectral-domain. Indeed, the hyperspectral images present a 
strong correlat ion which affects the extraction of significant 
informat ion linked to ground truth. The joint application of 
the source separation method and the DCT-t ransform allows 
a more efficient representation of the spectral data and 
increase the reliability of the analysis of these images. The 
sources resulting from the new source separation approach 
are then identified reliab ly due to the distinct differences in 
their power spectra. The main conclusion to be drawn from 
this research study is that the application of the second-order 
source separation approach in the DCT-domain reduces the 
classification ER of the hyperspectral images. The use of a 
supervised classification shows that the sources generated in 
the DCT-domain present the lowest classification error and 
the more decorrelation between image themes. The ER is of 
14.54%, 12.14% and 11.97% respectively for the init ial 
bands, the spatial-domain sources and DCT-domain sources. 
By apply ing the SOSFD algorithm to another data set, the 
ER is of 24.88%, 19.24% and 17.15% for the in itial bands, 
the spatial-domain sources and DCT-domain sources 
respectively.  

To take advantage from the new representation of 
hyperspectral data, we propose a novel classification 
approach based on using Binary Part ition Trees (BPT). The 
BPT is obtained by iteratively merg ing regions and provided 
a combined and hierarchical representation of the image in a 
tree structure of regions. The proposed strategy incorporates 
spatial info rmation with spectral informat ion by jointly  using 
the adjacency information. Indeed, this methodology is 
based on the consideration of spatial attributes in the model 
and region merging criterion. 

Appendix 
In this section we prove the efficiency of the Joint 

diagonality criterion when applied in the DCT-domain rather 
than in the original spatial-domain. 

The source separation problem in the DCT-domain  
consists of searching m × n mat rix A, such that the Sdct

(T’) 
components are as independent as possible. Thus, the 
independence assumption is not required for the source 
signals S but for their DCT-coefficients, which is more 
plausible thanks to the sparse property of the 
DCT-coefficients. Thanks to the last property, most columns 
of Sdct

(T’) contain at most one significant term, so we have 

[ ]( )( ') ( ')
, 0,...,0,1,0,...0 ,TT T

dct l dctS S=            (33) 

with the number 1 at the l_th position. 
The source covariance matrices in the spatial and 

DCT-domain, for any frequency shift νk, can take the 
following form 

( )S k S SR D Rν δ= +                  (34) 
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( ) ,kSdct Sdct SdctR D Rν δ= +            (35) 
where D is composed from the diagonal elements of the 
covariance matrix and δ R=R(νk)-D. 

Then, from (33) we can have the following inequality 
2 2

1 , 1 ,
( ) ( ) .ij S iji j n i j nSdctR Rδ δ= = = =≤∑ ∑  (36) 

Thanks to the diagonal structure of D, we can write  
2 2

1 1( ) ( )ij S S iji j n i j nSdct SdctD R D Rδ δ
= ≠ = = ≠ =

+ ≤ +∑ ∑   (37) 

and 
2 2

1 1( ( )) ( ( )) .k ij S k iji j n i j nSdctR R kν ν= ≠ = = ≠ =≤ ∀∑ ∑   (38) 

Because the inequality (38) is unchanged up to 
permutation and scalar factor, we can have for any k 

2

1

2

1

(( ) ( )( ) )

(( ) ( )( ) )

H
k iji j n

H
S k iji j n

SdctPD R PD

PD R PD

ν

ν

= ≠ =

= ≠ =

≤

       

∑

∑
        (39) 

where P is a permutation matrix and D is a diagonal matrix. 
So that, there exists a unitary matrix V that is essentially  

equal to U such that 
2

1

1

(( ) ( )( ))

(( ) ( )( )) ,

H H
Sdct k iji j n

H H
S k iji j n

V U R U V

V U R U V

ν

ν

= ≠ =

= ≠ =

≤

     

∑
∑

     (40) 

Then, we obtain 
2

1
1...

2

1
1...

( ( ) )

( ( ) )

H
Zdct k iji j n

k p

H
Z k iji j n

k p

V R V

V R V

ν

ν

= ≠ =
=

= ≠ =
=

≤

     

∑

∑         
(41) 

The form (41) proves the efficiency of the Joint 
diagonality criterion when applied in the DCT-domain rather 
than in the original spatial-domain. 
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