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Abstract  Buruli ulcer is a neglected tropical skin disease caused by Mycobacterium ulcerans (MU) and is highly endemic 
in West Africa. The d isease infects the skin and subcutaneous tissues, resulting in indolent ulcers, with lesions appearing 
mainly  in  the limbs. If left  untreated BU may  lead to extensive soft tissue destruction, with inflammat ion extending to deep 
fascia if patient do not report early for treatment. The paper applied Autoregressive Integrated Moving Average (ARIMA) 
time series model to examine the dynamics of Buruli u lcer d ieases and also to make monthly three years forecasts. Monthly 
Buruli ulcer case data from 2005 to 2011 was obtained from Ashanti regional Disease Control Unit, Kumasi and analysed 
employing ARIMA. The results showed that in general, the trend o f Buru li u lcer disease peaked during 2006. The analysis 
revealed that ARIMA (1, 1, 1) was the best model for forecasting Buru li ulcer disease. The forecast showed that the disease 
will continue to spread at faster rate then the present situation unless sometime is done now. 

Keywords  Buruli u lcer, Autoregressive (AR), Moving Average (MA) and ARIMA  

 

1. Introduction 
Mycobacterium ulcerans (MU), a pathogenic bacterium 

that causes dermal ulcers known as “Buru li ulcer” (BU), is 
fast becoming a debilitating affliction in many countries 
worldwide. Buruli ulcer has emerged in recent times as an 
important cause of human morb idity around the world, part ly 
due to environmental changes. The incidence of BU is not 
limited  solely to tropical environments but it has also well 
been documented in both the subtropical and temperate 
regions[5]. Buruli u lcer has been reported in over 30 
countries mainly with tropical and subtropical climates but it 
may also occur in some countries where it has not yet been 
recognized such Burkina Faso and Guinea[1].  

Prevalence rates in endemic districts in Ghana are reported 
to be up to 150 per 100,000 persons[8]. Ghana is currently 
the most endemic Buruli u lcer nation after La Cote d’Ivoire. 
WHO[12] reported that out 50,076 cases of Buruli ulcer 
recorded around the world, Africa tops the list of the 
most-affected region with Cote d’Ivoire leading the rate with 
a population of 2,697 patients and Ghana follows the trend 
with 1,048 recorded cases. In addition, Ashanti region has 
the highest forest-resource in Ghana also has the highest 
number of reported cases of the disease[8]. 

MU is  the th ird  most  mycobacterial in fect ion  after  
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Tuberculosis (TB) and leprosy, and is the most poorly 
understood of these three diseases[2]. The disease infects the 
skin and subcutaneous tissues, resulting in indolent ulcers, 
with lesions appearing main ly in the limbs. If left untreated 
BU may  lead to extensive soft tissue destruction, with 
inflammat ion extending to deep fascia if patient do not report 
early for treatment[3] Consequently, complications may 
include contractual deformit ies, long term disability such as 
restriction of joint movement as well as the obvious cosmetic 
problem. Early d iagnosis and treatment are vital in 
preventing such disabilities. In Ghana for example, the 
disease seems to affect  mostly impoverished inhabitants in 
remote and rural areas; children are the most vulnerable, 
accounting for about 70% of the cases[4].  

The incidence of infection has increased dramatically over 
the past decade, even after considering improved reporting 
rates, largely as a consequence of environmental changes[8]. 
The large number of cases and the complications currently 
associated with the disease as well as the its long-term 
socio-economic impact could have a substantial effect on the 
rural economy. The long-term socioeconomic impact of 
Buruli ulcer on the rural economy could be substantial. In 
Ghana, the average cost of treatment per patient is estimated 
to be US $783[4]. Inadequate knowledge of the diseases has 
more often resulted in significant delays in the diagnosis and 
treatment of these cases.  

Time series has been employed extensively in the 
assessment of health science[9]. In the area of health science 
research, there is usually  an obvious time lag between 
response and explanatory variable[10]. In this regard, some 
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studies deal with this by examin ing models with 
simultaneous mult iple lags of the explanatory variab le[11]. 

Forecasting Buruli ulcer incidence in Ashanti region by 
applying time series models would provide vital information 
for the region. This study aimed at developing time series 
models to forecast the monthly Buruli u lcer incidence in 
Ashanti region of Ghana based on reported incidence 
available from 2005-2011. This forecast offers the potential 
for improved contingency planning of public health 
intervention in Ashanti region. 

2. Materials Method  
Ashanti region is centrally positioned in the middle belt of 

Ghana. It  lies between  longitudes 0.150W and 2.250W and 
latitude 5.500N and 7.460N. Th is region is divided into 27 
districts. Kumasi metropolis only account for almost 
one-third of the entire region population[7]. The city is 
located in the south-central part of the country, about 250km  
by road northwest of Accra, the capital  city of Ghana. 

Kumasi lies at the intersection of latitude 6.040N and 
longitude 1.280W, covering an area of about 220 km2. This 
metropolis is the most populous district in the region. It has a 
population nearly 2 million[7] which account for more than 
one-third of the entire population in the region. Kumasi has 
attracted such a large population because of it is most 
commercialized city in the region and also it is centrally 
located as far as the entire country is concern. The city has so 
many satellite market but traders prefer to sell in the night 
where the city largest lorry  park is located. People ab ility to 
eat and rest is now the thing of the past creating many card iac 
health related issues in the metropolis 
Data Sources 

In order to achieve the stated objective, we collected data 
on hypertension disease from regional Disease Control Units 
(DCU) in the Kumasi metropolis recorded monthly basis 
from 2005 to 2011. The data were model employing 
Autoregressive Integrated Moving Average (ARIMA) 
stochastic model made known by Box-Jenkins[6].  

 

 
Figure 1.  Map of Ashanti region of Ghana indicating District names 
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A given ARIMA ( , , )p d q is expressed as a combination 
of Autoregressive ( )AR  which indicates that there is a 
relationship between present and past values, a random value 
and a Moving Average model which indicates that the 
present value has an association with the past residuals.  

The ARIMA process can be explained as : 
( )( ) ( )d

t tQ y Q eφ µ φ∆ − =  
where  

ty =Buruli ulcer cases 

µ = the mean of d
ty∆ , 

1( ) 1 ... p
pQ Q Qφ φ φ= − − −  

1( ) 1 ... q
qQ Q Qφ θ θ= − − − −  

iφ =The thi  autoregressive parameter 

iθ = The thi  moving average parameter 
,p q and q  represent the autoregressive, moving 

average and differenced order parameter of the process 
respectively. ∆  and Q represent the difference backward 
shift operators respectively. We examine the three steps that 
involves in the estimation of the model. They are 
identification, estimation  of parameters and diagnostic 
checking. 

Identi fication step: deal with use of the techniques to 
obtain the values of ,p q and q . The values are computed 
using Autocorrelation function (AFC) and Part ial 
Autocorrelation function (PACF).  

In any given ARIMA ( , , )p d q process, the theoretical 
PACF has non-zero  partial autocorrelation at  lags 1,2,..., p  
and has zero partial autocorrelation at lags 1,2,..., p  and 
zero  autocorrelation at all lags. We accept the non-zero lags 
of the sample PACF and ACF as the p and q parameters.  

The non stationary series data is passed through 
differencing to make the series stationary. The order of d  
is determined by the number of time a data is differenced. 
We express stationary data  0d =  and ARMA ( , , )p d q  

is put as ( , )p q . 
Es timation of parameters: involve the tentative models 

selected parameters. 
Diagnostic checking: the estimated model has to pass 

some test to ensure that it adequate represents the series. The 
diagnostic check are done on the residuals to see if they are 
randomly  and normally  distributed. In  this regards, the 
Anderson-Darling test for normality was applied. The ACF 
and PACF plot of the residuals were looked at to check if the 
residuals are white noise. The correlat ion matrix of the 
estimated parameters was tested to check if any of the 
parameters are correlated so that such variables can be done 
away with. The Ljung-Box Q statistics was used to check the 
overall adequacy of the model. The test statistics is expressed 
as : 

1 2 2

1
( 2) ( )

m

n k n r
k

P m m m k r χ−
−

=
= + − ≈∑  

where  
2

kr = the residuals autocorrelation at lag k  
m = the number of residuals 
n = the number of time lags included in the test. 
In any instance, when the ρ -value associated with the Q 

is large the model is said to be adequate, otherwise the whole 
estimation process has to be begin again so that the most 
adequate model is 

3. Results and Discussions 

 
Figure 2.  Observed Prevalence of Buruli ulcer cases from JAN, 2005 to DEC, 2001 
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Figure 2 above shows the pattern of monthly Buruli ulcer cases recorded in the Ashanti Region of Ghana between January, 
2005 and December, 2011. 

We observe random fluctuations with maximum peak in 2006 (i.e . during November), which recorded a total of 181 ulcer 
cases. The minimum recorded figure also occurred in that year in  the month of April. A lso, the pattern of the monthly  data 
looks trend stationary from 2007 to 2011. 

Furthermore, the data is then decomposed to make more evident the existence/ non-existence of the various components of 
the series. This is shown in Figure 2 below. 

 
Figure 3.  Decomposition of the Buruli ulcer series 

After decomposition, it is observed clearly that the data exhib its no systematic linear trend but the existence of seasonality 
is suggested. This is because the pattern displayed in Figure 3 could be as a result of the irregular component in the time 
series. 

Table 1.  Summary Statistics of Buruli Ulcer data 

Minimum 1st Quartile Median Mean 3rd Quartile Standard 
deviation Maximum 

42.00 72.75 86.50 86.63 101.20 20.65131 181.00 

From table 1, we observed that the minimum number of Buruli u lcer cases recorded is 42, which occurred in April, 
2006.The maximum number recorded is 181 which also occurred in November, 2006. 

The average number of Buru li ulcer cases is approximately equal to the median number of Buruli u lcer cases recorded 
throughout the period. This may indicate some symmetric behaviour of the Buruli ulcer distribution. In order to achieve 
stationarity, the observed data looks trend non-stationary for certain period, we d ifferenced it to remove that little element of 
trend. After the first order differencing, the Buruli u lcer data series now assumes the pattern below; 
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Figure 4.  Pattern of First  Differenced Buruli ulcer Data 

From Figure 4 above, it can be seen that the differenced 
series looks stationary for all periods, as the observations 
seem to beat about a mean  of zero. Testing Stationarity of 
Differenced Data, we performed the Kwiatkowski-Phillips-
Schmidt-Sh in (KPSS) test on the difference data series. The 
results obtained for the test were KPSS Level = 0.0362, 
Truncation lag parameter = 2 and p-value = 0.1.  

Therefore, at an α (alpha) 5% level of significance, we fail 
to reject the Null hypothesis that the difference series is trend 
or level stationary since the p-value (0.1) > 0.05, and hence 
conclude that the series is indeed trend stationary. 

We examined seasonlaity by testing that if there is 
significant seasonality, the autocorrelat ion plot should show 
significant spikes at lags equal to the period of the series. For 
example, for monthly data, if there is a seasonality effect, we 
would expect  to see significant peaks at lag 12, 24, 36, and so 
on (although the intensity may decrease the further out we 
go). 

From Figure 5 below, it can be seen from the sample ACF 
that lags 12 and 24 lie within the significant bounds, hence 
showing no significant peaks. The sample ACF therefore 
shows no obvious pattern of seasonality. Also, since the data 
series was differenced once to attain stationarity, we can 
therefore conclude that our data is non-seasonal. This is 
because for non-seasonal data, at  most a first order 
differencing is usually sufficient to attain apparent 
stationarity. 

4. Model Identification 
In order to select the appropriate model and also make 

more accurate forecasts, we fitted several feasible ARIMA 
models to the observed data by making reference to the 
Sample A CF and Sample PACF (in Figure 4 above) of the 
difference data. Since the data was difference to attain 
stationarity (as shown by the KPSS Test), the fitted ARIMA 
models would be of order (p, d=1, q). 

From the correlogram in Figure 5, the sample ACF has 
only lag 1 and lag 18 exceeding the significant bound, with 
most lags dying down. Lag 18 is however ignored, because 
this may  be due to chance. After all, the probability of a spike 
being significant by chance is about one in thirty. 

Also the partial correlogram shows that the partial 
autocorrelations at lags 1 and 2 cuts the significant bounds 
consistently, with lag 10 also exceeding. However, lag 17 
just touches the bounds. The partial autocorrelations tails off 
after lag 17.  

From the foregoing analysis, the following ARIMA 
(Autoregressive integrated moving average) models are 
therefore plausible fo r the data series:  
• ARIMA(2,1,1)  
• ARIMA(2,1,0)  
• ARIMA(1,1,1)  
At this point we proceed to estimate and test the 
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parameters and as well investigate whether the residuals of 
the selected ARIMA models are normally distributed with 
mean zero and constant variance, and also whether there are 
no correlations between successive residuals (i.e. 
randomness of residuals).  

To check fo r correlat ions between successive residuals, 
we made use of a correlogram and also the Ljung-Box test to 
further ascertain the adequacy (randomness) of the model’s 
residual. 

Also to check whether the residuals are normally  
distributed with mean zero and constant variance, we made 
use of a normality quantile-quantile  plot  (q-q  plot) and a 
histogram. 

If the residuals are normally d istributed, the points on the 
normal quantile-quantile p lot should approximately be linear, 
with residual mean as the intercept and residual standard 
deviation as the slope whilst the shape of the histogram 
shows “a bell-like” shape. 

 
Figure 5.  Shows the Sample ACF (top) and Sample PACF (bottom) for the difference data 

•  ARIMA(2,1,1) 
Coefficients: 
           ar1          ar2          ma1 
         0.2159      0.0388       -0.9518 
s.e.     0.1258       0.1212        0.0770 
sigma^2 estimated as 411.9:  log likelihood=-368.56 
AIC=745.13   AICc=745.64   BIC=754.8  

ME RMSE MAE MPE MAPE MASE 

4.1157953 20.1730556 15.6844541 0.7132579 18.1703267 0.7564263 
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Figure 6.  ACF of ARIMA (2, 1, 1) Residuals 

Box-Ljung test: 
data:  model1$residuals 
X-squared = 38.3773, df = 30, p-value = 0.1403 
From Figure 5 above, the ACF of residuals shows that two (2) out of the 30 lags of the sample autocorrelations cuts the 

significant bounds with one other lag just touching. Also, most of the other lags seem to be dying down. 

 
Figure 7.  Shows the Histogram (left) and Normality plot (right) for the residuals of ARIMA (2, 1, 1) 
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This simply gives an indication of non-significant autocorrelation, since we would expect at most two (2) out of 30 sample 
autocorrelations to exceed the 95% significance bounds.  

Also, from the Ljung-box test above, the computed p-value (i.e. 0.1403) is greater than α (alpha) 5% level of significance. 
Hence from these deductions, we fail to reject  the null hypothesis that the series of residuals exh ibits no autocorrelation and 

conclude that there is insignificant evidence for non-zero autocorrelations in the residuals at all lags (i.e. the residuals are 
independently distributed). 

To check whether the residuals are normally distributed with mean zero  and constant variance, we make a normality plot 
and a histogram of the residuals. 

From the p lot in  Figure 7, the h istogram of the residuals displayed above gives an indication of a symmetric distribution, 
thus it shape looks “bell-like” and certainly  better fo r the fitted model. The QQ-normal plot for the residuals also throws more 
light on this since most of the residuals do not deviate that much from the line of best fit and it distribution looks 
approximately  linear. Hence, from Figure 7, it  is p lausible that the fo recast errors are normally  distributed with mean  zero  and 
constant variance.  
•  ARMA(2,1,0 ) 
Coefficients: 
              ar1         ar2 
          -0.5395     -0.2960 
s.e.       0.1056      0.1053 
 
sigma^2 estimated as 478.2:  log likelihood=-374.02 
AIC=754.04   AICc=754.34   BIC=761.29 

ME RMSE MAE MPE MAPE MASE 

1.2418997 21.7382887 17.1459795 -2.555538 20.1824961 0.8269124 

 
Figure 8.  ACF of ARIMA (2,1 ,0) Residuals 

Box-Ljung test: 
data:  model2$resid 
X-squared = 54.9378, df = 30, p-value = 0.003608 
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From Figure 8 above, the ACF of residuals shows that five (5) out of the 30 lags of the sample autocorrelations exceed the 
significant bounds, with other lags getting closer enough to the significant bound. 

This simply gives an indication of significant autocorrelation, since we would expect at least five (5) out of 30 sample 
autocorrelations to exceed the 95% significance bounds.  

Also, from the Ljung-box test above, the computed p-value (i.e. 0.003608) is less than α (alpha) 5% level of significance. 
Hence from these deductions, we reject the null hypothesis that the series of residuals exh ibits no autocorrelation and 
conclude that there is significant evidence for non-zero  autocorrelations in  the residuals at all lags (i.e. the residuals are 
dependently distributed). 

To check whether the residuals are normally distributed with mean zero  and constant variance, we make a normality plot 
and a histogram of the residuals. 

 
Figure 9.  Shows the Histogram (left) and Normality plot (right) for the residuals of ARIMA (2, 1, 0) 

From the p lot in  Figure 9, the h istogram of the residuals displayed above gives an indication of a symmetric distribution, 
thus it shape looks “bell-like” and certainly better for the fitted model.  

The QQ-normal plot fo r the residuals also throws more light on this since most of the residuals do not deviate that much 
from the line of best fit and it d istribution looks approximately  linear. Hence, from Figure 8, it  is p lausible that the forecast 
errors are normally distributed with mean zero and constant variance. 
•  ARMA(1,1,1 ) 
Coefficients: 
              ar1        ma1 
           0.2144     -0.9429 
s.e.       0.1286      0.0770 
 
sigma^2 estimated as 412.7:  log likelihood=-368.61 
AIC=743.23   AICc=743.53   BIC=750.48 

ME RMSE MAE MPE MAPE MASE 

3.9732548 20.1943965 15.6318251 0.5422392 18.1336553 0.7538881 
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Figure 10.  ACF of ARIMA (1, 1, 1) Residuals 

 
Figure 11.  Shows the Histogram (left) and Normality plot (right) for the residuals of ARIMA (1, 1, 1) 
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Box-Ljung test: 
data:  model3$resid 
X-squared = 37.5867, df = 30, p-value = 0.1607 
From Figure 9 above, the ACF of residuals shows that two 

(2) out of the 30 lags exceed the significant bounds, with just 
one lag getting closer enough to the bounds. Also, majority 
of the lags dies down. 

This simply g ives an indication of little autocorrelation, 
since we would expect at most two (2) out of 30 sample 
autocorrelations to exceed the 95% significance bounds.  

Furthermore, the p-value for the Ljung-Box test computed 
above is 0.1607, indicating that there is little evidence for 
non-zero autocorrelations in the residuals for lags 1-30.  

Hence from these deductions, we fail to reject  the null 
hypothesis that the series of residuals exhibits no 
autocorrelation and conclude that there is insignificant 
evidence for non-zero autocorrelat ions in the residuals at all 
lags (i.e . the residuals are independently distributed). 

To check whether the residuals are normally distributed 
with mean zero and constant variance, we make a normality 
plot and a histogram of the residuals. 

From the plot in figure 11, the histogram of the residuals 
shown above gives an indication of a symmetric distribution, 
thus it shape looks “bell-like” and certainly better for the 
fitted model. The QQ-normal plot  for the residuals also 
throws more light on this since most of its residuals do not 
deviate that much from the line of best fit and it distribution 
looks approximately linear. 

Hence, from Figure 10, it  is p lausible that the forecast 
errors are normally distributed with mean zero  and constant 
variance. 

5. Model Selection 
In order to select the most appropriate model for our data, 

we compare all competing models and select the one with the 
minimum AIC (Akaike Information Criterion value) and 
Residual Variance. From the diagnostic checks above, since 
ARIMA (2, 1, 0) failed to satisfy the assumption of 
non-autocorrelation, it fails to stand as a possible competing 
model. 

Table 2.  Akaike Information Criterion for the possible Models 

Model 
Akaike 

Information 
Criterion (AIC) 

Residual Variance 

ARIMA(2,1,1) 745.13 411.9 
ARIMA(1,1,1) 743.23 412.7 

From table 2 above, it is clear that ARIMA (1, 1, 1) model 
is the best model for forecasting since its AIC and residual 
variance values are better than that of the other competing 
model.  

Therefore, the chosen model for the Buru li ulcer data 
series is of the form;  
𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡−1 = 𝜑𝜑1(𝑌𝑌𝑡𝑡−1 − 𝑌𝑌𝑡𝑡−2) + 𝑒𝑒𝑡𝑡 − 𝜃𝜃1𝑒𝑒𝑡𝑡−1  

 𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡−1 = 0.2144   (𝑌𝑌𝑡𝑡−1 − 𝑌𝑌𝑡𝑡−2) + 𝑒𝑒𝑡𝑡+0.9429𝑒𝑒𝑡𝑡−1 
OR 
𝑌𝑌𝑡𝑡 = (1 + 𝜑𝜑1)𝑌𝑌𝑡𝑡−1 − 𝜑𝜑1𝑌𝑌𝑡𝑡−2 + 𝑒𝑒𝑡𝑡 − 𝜃𝜃1 𝑒𝑒𝑡𝑡−1   
𝑌𝑌𝑡𝑡 = 1.2144𝑌𝑌𝑡𝑡−1 − 0.2144  𝑌𝑌𝑡𝑡−2+0.9429𝑒𝑒𝑡𝑡−1 + 𝑒𝑒𝑡𝑡   
This indicates that the fitted model is a linear combination 

of both previous Buruli Ulcer values and previous forecast 
error. 

 
Figure 12.  The forecasted Buruli ulcer values are shown by the blue line, whilst  the orange and yellow shaded areas show 80% and 95% prediction 
intervals respectively 
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6. Forecasting  
We also make forecast using the most adequate fitted 

model for the next three years. Below is the graph of the 
forecasts. 

The forecasted values and standard errors are given in 
table 3 and 4 below respectively: 

Table 3.  Forecasted Buruli Ulcer Values Using ARIMA (1, 1, 1) 

 Jan Feb Mar Apr May Jun Jul Aug 

2012 99 95 94 94 95 95 95 95 

2013 96 96 96 96 97 97 97 97 

2014 98 98 98 99 99 99 99 99 

 

 Sep Oct Nov Dec 
2012 95 95 96 96 
2013 97 97 98 98 
2014 99 100 100 100 

        Sep      Oct      Nov      Dec 

7. Conclussions 
The study revealed the random fluctuations with 

maximum peak in 2006 which occurred during November 
and the min imum recorded also in that same  year in the 
month of April. Again, the pattern of the monthly data 
looked trend stationary from 2007 to 2011. The best model 
was achieved based on various diagnosis, selection and 
evaluation criterion on ARIMA (1,1,1). The forecast shows 
an increasing tend in the spread of Buruli ulcer disease in 
Ashanti region of Ghana which is worrying situation for 
Ghana. 

In order to reduce the spread of the disease government 
should intensify the education on the disease especially in 
the rural areas for early reporting to health facilit ies. There 
should be alternative livelihood in most of the communities 
where the environment is seriously disturbed such as mining 
and many others. 
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