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Abstract  For a given data set it may be required  to discover if a change has been occurred. This is can be conducted using 
change-point analysis. Let X1, X2, …,Xn be independent randomvariab les with respective continuous distribution functions F1, 
F2, …, Fn such that Fi(0)=0 for all i.We consider the problem of testing the null hypothesis that F1= F2= …= Fn against the 
alternative of r-changes in the distribution functions of this sequence at unknown times 1<[nτ1]<[nτ2]< …. <[nτr]<n,  
where[ y] is the integer part of y. We study the asymptotic theory of change-point processes which are defined in terms of the 
empirical process. We propose and study new weighted non-parametric change-point test statistics for a possible change in 
distribution function of a data set. 
Keywords  Change Point Problem, EmpiricalProcesses, Kiefer Process, Limit Theorems, Monte Carlo Simulation  

 

1. Introduction 
In many applications it is necessary to discover if a data 

set comes from a single d istribution or there is a change in 
the distribution function. The change-point inference is an 
effective and powerfu l statistical tool for determining if and 
when a change in  a set of data has occurred. Let  X1, 
X2, …,Xn,be independent random variables with continuous 
distribution functions (DF) F1, F2, …, Fn, respectively such 
that Fi(0)=0for all i. We are interested in testing the null 
hypothesis of no change 

𝐻𝐻𝑜𝑜 : 𝐹𝐹1 = 𝐹𝐹2 = ⋯ = 𝐹𝐹𝑛𝑛 = 𝐹𝐹,             (1) 
where F is unknown against the alternative of at most 
r-changes (AMRC), 

𝐻𝐻1
(𝑟𝑟)

: 𝐹𝐹𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧𝐺𝐺1,                    𝑖𝑖 ≤ [𝑛𝑛𝜏𝜏1]

𝐺𝐺2  ,    [𝑛𝑛𝜏𝜏1] < 𝑖𝑖 < [𝑛𝑛𝜏𝜏2]
.          .
.          .

.            .
𝐺𝐺𝑟𝑟 +1,     [𝑛𝑛𝜏𝜏𝑟𝑟 ] < 𝑖𝑖 ≤ 𝑛𝑛,

�       (2) 

where 𝑟𝑟 ≥ 1  is specified, the d istribution functions 
𝐺𝐺𝑖𝑖 , 𝑖𝑖 = 1,… , 𝑟𝑟 + 1  and the change-point positions 𝜏𝜏𝑖𝑖 , 𝑖𝑖 =
1, … , 𝑟𝑟 are unknown 𝐺𝐺𝑖𝑖 ≠ 𝐺𝐺𝑖𝑖 +1, 𝑖𝑖 = 1, … ,𝑟𝑟 .  Note that[𝜏𝜏 ] 
denotes the integer part of 𝜏𝜏. 

The aim of this article is to introduce weighted 
non-parametric tests for distributional change in a data set. 
The asymptotic distributions of these test statistics are 
derived. These tests also can be applied to the mean change 
ina data set. 
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The paper is organized as follows. In Section 2 we will 
consider the above multip le change-point problem in the 
case of at most two change-points (AMTC), i.e. r=2. In 
Section 3 we generalize the AMTC results to the case of 
𝑟𝑟 ≥ 2. The proposed new change-point test statistics are 
presented in Sect ion 4. A lso, the asymptotic distributions of 
the proposed test statistics are derived in Sect ion 4. In 
Section 5, we propose new test statistics for the case of at 
most one change point. We study the applicability o f the 
proposed tests through a Monte Carlo study in section 6. 

2. The Case of at Most Two Change 
Points (AMTC) 

In this section we treat the case of at most 2-changes 
(AMTC), i.e. testing 𝐻𝐻0  of (1) against the alternative of (2), 
when r = 2. 

Many authors have discussed the change-point problem, 
testing (detection), and estimation using both Bayesian and 
non-Bayesian approaches. Most of the work done in the 
change-point analysis is concerned with the case of at most 
one change (AMOC). Csörgő and Horváth[1] gave avery 
excellent and extensive treatment and  review for the related 
work. Forthe AMTC, recent works are done by[2,3]. They 
propose weighted CUSUM tests for the multip le changes in 
the variance of a sequence of independent random variables. 
By using the general form of U-statistic, they studied some 
CUSUM test statistics for the AMTC in variance. Hawkins[4] 
developed a dynamic program to test for a multip le change 
point in the parameters of the general exponential family 
using repeated maximum likelihood algorithm. His 
algorithm, involves the application of the at most one 
change-point maximum likelihood detector for every 
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segmented group of data available. 
Syzsykowicz[5]studied weighted approximat ions for 

various versions of the empirical processes under the null 
and continuous alternatives of the AMOC. She approximated 
these processes by appropriate Gaussian processes. 

Let the smoothed two-parameter empirical p rocess be 
given by 
∝𝑛𝑛 (𝑠𝑠 , 𝑡𝑡) = 1

√𝑛𝑛
∑ {𝐼𝐼[𝐹𝐹(𝑋𝑋𝑖𝑖 ) ≤ 𝑠𝑠] − 𝑠𝑠},   0 ≤ 𝑠𝑠, 𝑡𝑡 ≤ 1.[(𝑛𝑛+1)𝑡𝑡]

𝑖𝑖 =1 (3) 
Let  𝑡𝑡 = (𝑡𝑡1, 𝑡𝑡2), where 0 ≤ 𝑡𝑡1 ≤ 𝑡𝑡2 < 1.  For 0 ≤ 𝑡𝑡1 ≤

𝑡𝑡2 < 1, 0 ≤ 𝑠𝑠 ≤ 1, 𝑛𝑛 ≥ 1, define  

𝛽𝛽𝑛𝑛 �𝑠𝑠 , 𝑡𝑡� = �1 −
[(𝑛𝑛 + 1)𝑡𝑡1]

𝑛𝑛� � 𝛼𝛼𝑛𝑛 (𝑠𝑠 , 𝑡𝑡2) + 
[(𝑛𝑛 + 1)𝑡𝑡2]

𝑛𝑛� {𝛼𝛼𝑛𝑛 (𝑠𝑠 , 𝑡𝑡1) − 𝛼𝛼𝑛𝑛 (𝑠𝑠 , 1)},      (4) 
and 

� �𝑠𝑠, 𝑡𝑡�
𝑛𝑛

= 

{(1 − 𝑡𝑡1)𝐾𝐾(𝑠𝑠 , 𝑛𝑛𝑡𝑡2) + 𝑡𝑡2𝐾𝐾(𝑠𝑠 , 𝑛𝑛𝑡𝑡1) − 𝑡𝑡2𝐾𝐾(𝑠𝑠 , 𝑛𝑛)}/√𝑛𝑛,  (5) 
where {𝐾𝐾(𝑠𝑠 , 𝑦𝑦); 0 ≤ 𝑠𝑠 ≤ 1, 0 ≤ 𝑦𝑦 < ∞} is a  Kiefer process, 
i.e., a mean zero two-parameters Gaussian process with  

𝐸𝐸(𝐾𝐾(𝑠𝑠1,𝑦𝑦1 )𝐾𝐾(𝑠𝑠2,𝑦𝑦2 )) = (𝑠𝑠1 ∧ 𝑠𝑠2 − 𝑠𝑠1𝑠𝑠2)(𝑦𝑦1 ∧ 𝑦𝑦2 ).  (6) 
The following result follows from Theorem 8.2.1 of[5]. 
Theorem 1. 
Assume that 𝐻𝐻0  of Eq. (1) holds true. Then, there exists a 

Kiefer process K(.,.) such that as 𝑛𝑛 → ∞ , 

sup
0≤𝑠𝑠≤1

sup
0<𝑡𝑡1≤𝑡𝑡2<1

  �𝛽𝛽𝑛𝑛 (𝑠𝑠, 𝑡𝑡) − � (𝑠𝑠, 𝑡𝑡)
𝑛𝑛

� = 𝑜𝑜𝑝𝑝 (1), 

where𝛽𝛽𝑛𝑛 (. , . ) is as in Eq. (4) and 𝜋𝜋𝑛𝑛 (. , . ) is as in Eq. (5). 
Let ∝𝑛𝑛 (. , . ) be as in Eq. (3) and 𝛽𝛽𝑛𝑛 (𝑠𝑠 , 𝑡𝑡) be as in Eq. (4). 

Define 

𝐴𝐴𝑛𝑛 (𝑠𝑠 , 𝑦𝑦) = �∝𝑛𝑛 (𝑠𝑠 , 𝑦𝑦) −
[(𝑛𝑛 +1)𝑦𝑦 ]

𝑛𝑛
∝𝑛𝑛 (𝑠𝑠 , 1)�.    (7) 

Note that  

𝛽𝛽𝑛𝑛 �𝑠𝑠, 𝑡𝑡� = �1 −
[(𝑛𝑛 + 1)]𝑡𝑡1]

𝑛𝑛
� 𝐴𝐴𝑛𝑛 (𝑠𝑠 , 𝑡𝑡2) 

+
[(𝑛𝑛 + 1)𝑡𝑡2]

𝑛𝑛
𝐴𝐴𝑛𝑛 (𝑠𝑠 , 𝑡𝑡1). 

Let Q be the class of positive functions on (0,1), which are 
non-decreasing in a neighbourhood of zero and 
non-increasing in the neighbourhood of one. A function q 
defined on (0, 1) is called positive if inf𝛿𝛿 ≤𝑡𝑡 ≤1−𝛿𝛿 𝑞𝑞(𝑡𝑡) >
0, ∀𝛿𝛿∈0,12.  

Let 𝑞𝑞1, 𝑞𝑞2 ∈ 𝑄𝑄, the AMTC weighted-process, 𝛽𝛽𝑛𝑛
𝑤𝑤 (. , . ) is 

defined as  
𝛽𝛽𝑛𝑛

𝑤𝑤 (𝑠𝑠 , 𝑡𝑡) = �1 − [(𝑛𝑛+1) 𝑡𝑡1]
𝑛𝑛

� 𝐴𝐴𝑛𝑛 (𝑠𝑠 ,𝑡𝑡2)
𝑞𝑞2 (𝑡𝑡2)

+ �[(𝑛𝑛+1) 𝑡𝑡2]
𝑛𝑛

� 𝐴𝐴𝑛𝑛 (𝑠𝑠 ,𝑡𝑡1)
𝑞𝑞1 (𝑡𝑡1)

. (8) 

Let K(.,.) be a Kiefer process. Define  

Γ𝑛𝑛 (𝑠𝑠 , 𝑡𝑡) =
𝐾𝐾(𝑠𝑠, 𝑛𝑛𝑡𝑡) − 𝑡𝑡𝐾𝐾(𝑠𝑠 , 𝑛𝑛)

√𝑛𝑛
,            0 ≤ 𝑠𝑠 , 𝑡𝑡, ≤ 1 

and 
Γ𝑛𝑛

𝑤𝑤 �𝑠𝑠 ,𝑡𝑡� = (1 − 𝑡𝑡1) Γ𝑛𝑛 (𝑠𝑠 ,𝑡𝑡2)

𝑞𝑞2 (𝑡𝑡2) + 𝑡𝑡2
Γ𝑛𝑛 (𝑠𝑠,𝑡𝑡1)

𝑞𝑞1(𝑡𝑡1 )
.     (9) 

Note that 
Γ𝑛𝑛 (𝑠𝑠 , 𝑡𝑡) ≜ Γ(𝑠𝑠 , 𝑡𝑡) = 𝐾𝐾(𝑠𝑠 , 𝑡𝑡) − 𝑡𝑡𝐾𝐾(𝑠𝑠 , 1) ≜  

𝐵𝐵1(𝑠𝑠)𝐵𝐵2(𝑡𝑡),    0 ≤ 𝑠𝑠 , 𝑡𝑡 ≤ 1,      (10) 
where 𝐵𝐵1(. )  and 𝐵𝐵2(. )  are two independent Brownian 
bridge. 

Now we g ive the main theorem of this section. 
Theorem 2. 

Under 𝐻𝐻𝑜𝑜  of (1), there exists a Kiefer process K(.,.) such 
that as 𝑛𝑛 → ∞, 

1. if for i=1,2 

lim
𝑡𝑡 ↓0

𝑡𝑡(1 − 𝑡𝑡) log log�(𝑡𝑡(1 − 𝑡𝑡))−1/2�
𝑞𝑞𝑖𝑖(𝑡𝑡)

= 0, 

and 
 

lim
𝑡𝑡↑0

𝑡𝑡(1 − 𝑡𝑡) 𝑙𝑙𝑜𝑜𝑙𝑙 𝑙𝑙𝑜𝑜𝑙𝑙�(𝑡𝑡(1 − 𝑡𝑡))−1 /2�
𝑞𝑞𝑖𝑖(𝑡𝑡)

= 0, 

then 
sup

0≤𝑠𝑠≤1
sup

0 ≤𝑡𝑡1,𝑡𝑡2<1
�𝛽𝛽𝑛𝑛

𝑤𝑤 �𝑠𝑠 , 𝑡𝑡� − 𝛤𝛤𝑛𝑛
𝑤𝑤 �𝑠𝑠 , 𝑡𝑡�� = 𝑜𝑜𝑝𝑝 (1)  

2. if for i=1,2 

lim
𝑡𝑡 ↓0

𝑡𝑡(1 − 𝑡𝑡) log log�(𝑡𝑡(1 − 𝑡𝑡))−1/2�
𝑞𝑞𝑖𝑖(𝑡𝑡)

< ∞ , 

lim
𝑡𝑡↑1

𝑡𝑡(1 − 𝑡𝑡) log log ��𝑡𝑡(1 − 𝑡𝑡)�−1
2 �

𝑞𝑞𝑖𝑖(𝑡𝑡) < ∞ , 

then 
sup

0≤𝑠𝑠≤1
 sup

0 ≤𝑡𝑡1,𝑡𝑡2<1
 �𝛽𝛽𝑛𝑛

𝑤𝑤 �𝑠𝑠, 𝑡𝑡� − 𝛤𝛤𝑛𝑛
𝑤𝑤 �𝑠𝑠, 𝑡𝑡�� = 𝑂𝑂𝑝𝑝 (1) 

and 
sup

0≤𝑠𝑠≤1
 sup

0 ≤𝑡𝑡1,𝑡𝑡2<1
�𝛽𝛽𝑛𝑛

𝑤𝑤 �𝑠𝑠 , 𝑡𝑡��
𝐷𝐷
→ sup

0≤𝑠𝑠≤1
 sup

0≤𝑡𝑡1,𝑡𝑡2<1
�Γ𝑛𝑛

𝑤𝑤 �𝑠𝑠, 𝑡𝑡��. 

Proof of Theorem 2 (Sketch) 
First we can easily notice that  

𝐴𝐴𝑛𝑛 (𝑠𝑠 , 𝑡𝑡𝑖𝑖) ≔ 𝛼𝛼𝑛𝑛� (𝑠𝑠, 𝑡𝑡𝑖𝑖 ), 0 ≤ 𝑠𝑠 , 𝑡𝑡𝑖𝑖 ≤ 1, 𝑖𝑖 = 1,2  (11) 
where the right-hand side is the two-time parameter 
empirical process of[5]. 

Second if we put 𝑞𝑞𝑖𝑖(𝑡𝑡𝑖𝑖) = 1, 𝑖𝑖 = 1,2 in (6.1.13) of[5], we 
get as 𝑛𝑛 → ∞ 

sup0 ≤𝑡𝑡𝑖𝑖≤1 �𝑡𝑡𝑖𝑖 −
[(𝑛𝑛+1)𝑡𝑡𝑖𝑖 ]

𝑛𝑛
� = 𝑜𝑜(1) .      (12) 

Using the defin ition of the processes of Eq. (8) and Eq . (9), 
the statements of Eq. (11), Eq. (12) and Theorem 8.3.1 o f[5], 
we complete the proof of th is theorem. 

Now, let 𝛽𝛽𝑛𝑛
𝑤𝑤 �. , . �  be the process defined in Eq. (8), then 

by Theorem (2) and the relations in Eq. (9) and Eq. (10), we 
have  

𝛽𝛽𝑛𝑛
𝑤𝑤 �𝑠𝑠, 𝑡𝑡�

𝐷𝐷
→ Γ𝑛𝑛

𝑤𝑤 �𝑠𝑠, 𝑡𝑡�, 
where 

𝛽𝛽𝑛𝑛
𝑤𝑤 �𝑠𝑠, 𝑡𝑡� = 𝐵𝐵1(𝑠𝑠) �

(1−𝑡𝑡1)𝐵𝐵2 (𝑡𝑡2)

𝑞𝑞2 (𝑡𝑡2) + 𝑡𝑡2 𝐵𝐵2 (𝑡𝑡1)

𝑞𝑞1 (𝑡𝑡1) �,   (13) 
and 𝐵𝐵𝑖𝑖(. ), 𝑖𝑖 = 1,2 are as in Eq. (10). 

As in Pouliot[3], we may use the one weight function 
𝑤𝑤�𝑡𝑡� = 𝑞𝑞1(𝑡𝑡1)+𝑞𝑞2(𝑡𝑡2 )

2
, 0 < 𝑡𝑡1 ≤ 𝑡𝑡2 < 1, 

for the whole process. It is very easy to see that Theorem 2 
remains true under the one-weight function 𝑤𝑤�. �. In this 
case the corresponding limiting process of Eq. (13) becomes 

Γ𝑤𝑤 �𝑠𝑠 , 𝑡𝑡� =
1

𝑤𝑤�𝑡𝑡�
𝐵𝐵1(𝑠𝑠) 𝐵𝐵2

∗�𝑡𝑡�, 

where 
𝐵𝐵2

∗�𝑡𝑡� = (1 − 𝑡𝑡1)𝐵𝐵2(𝑡𝑡2) + 𝑡𝑡2𝐵𝐵2 (𝑡𝑡1), 
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and 𝐵𝐵𝑖𝑖(. ), 𝑖𝑖 = 1,2  are independent Brownian bridge. It is 
clear that Γ𝑤𝑤 �𝑠𝑠, 𝑡𝑡� is a mean zero Gaussian process with 
covariance function 

𝐶𝐶 �𝑠𝑠 ,𝑡𝑡 , 𝑦𝑦� = 𝐸𝐸 �Γ𝑤𝑤 �𝑠𝑠1,𝑡𝑡�Γ𝑤𝑤 �𝑠𝑠2, 𝑦𝑦�� = 
1

𝑤𝑤�𝑡𝑡�𝑤𝑤 �𝑦𝑦�
(𝑠𝑠1 ∧ 𝑠𝑠2 − 𝑠𝑠1𝑠𝑠2)𝐶𝐶𝐵𝐵 �𝑡𝑡 , 𝑦𝑦�, 

where 

𝐶𝐶𝐵𝐵 �𝑡𝑡 , 𝑦𝑦� = (1 − 𝑡𝑡1)[(1 − 𝑟𝑟1)(𝑡𝑡2⋀𝑦𝑦2) + 𝑦𝑦2 (𝑡𝑡2⋀𝑦𝑦1 )] + 

𝑡𝑡2[(1 − 𝑟𝑟1)(𝑡𝑡1⋀𝑦𝑦2 ) + 𝑦𝑦2 (𝑡𝑡1⋀𝑦𝑦1)] − 𝑡𝑡2𝑦𝑦2 . 

3. The Case of at Most r Change Points 
(AMRC) 

We consider here the general case of 𝑟𝑟 ≥ 1. Following 
the definition of the change-point processes in (6.5) of 
Pouliot (2001), we define the weighted r-change point 
empirical process and its corresponding weighted Gaussian 
process as follows. Assume that 𝑞𝑞𝑗𝑗 (. ) ∈ 𝑄𝑄, 𝑗𝑗 = 1, … , 𝑟𝑟 , 
satisfy the two assumptions of part (1) of Theorem 2, we 
define the weighted r-time parameter empirical process 

𝑀𝑀𝑛𝑛
𝑤𝑤 �𝑠𝑠 , 𝑡𝑡� ≔

𝑛𝑛−3/2 �∑ ([(𝑛𝑛+1) 𝑡𝑡𝑚𝑚 +1]−[(𝑛𝑛+1)𝑡𝑡𝑚𝑚 −1 ])

𝑞𝑞𝑚𝑚 (𝑡𝑡𝑚𝑚 ) 𝐴𝐴𝑛𝑛 (𝑠𝑠 , 𝑡𝑡𝑚𝑚 ) + (1 −𝑟𝑟−1
𝑚𝑚 =1

𝑡𝑡𝑟𝑟−1)(1−𝑡𝑡𝑟𝑟)[(𝑛𝑛+1)𝑡𝑡𝑟𝑟]𝑞𝑞𝑟𝑟(𝑡𝑡𝑟𝑟)∝𝑛𝑛(𝑠𝑠,1),     (14) 

where 0 = 𝑡𝑡0 ≤ 𝑡𝑡1 ≤ 𝑡𝑡1 ≤ ⋯ ≤ 𝑡𝑡𝑟𝑟 ≤ 𝑡𝑡𝑟𝑟+1 = 1  and the 
processes 𝛼𝛼𝑛𝑛 (. , . ) and𝐴𝐴𝑛𝑛 (. , . ) are defined by Eq . (3) and Eq. 
(7) respectively. We also define the weighted r-time 
parameter limit ing Gaussian process as follows; 

Λ𝑛𝑛
𝑤𝑤 �𝑠𝑠, 𝑡𝑡�: = ∑ �(𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚−1) 𝐾𝐾∗(𝑠𝑠,𝑛𝑛𝑡𝑡𝑚𝑚 )

√𝑛𝑛
�+𝑟𝑟−1

𝑚𝑚=1

1−𝑡𝑡𝑟𝑟−11−𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑞𝑞𝑟𝑟(𝑡𝑡𝑟𝑟)𝐾𝐾(𝑠𝑠,𝑛𝑛)𝑛𝑛,         (15) 

where K(.,.) is the Kiefer process of Eq. (6) and  
𝐾𝐾∗ (𝑠𝑠 ,𝑛𝑛𝑡𝑡) = 𝐾𝐾(𝑠𝑠 , 𝑛𝑛𝑡𝑡) − 𝑡𝑡𝐾𝐾(𝑠𝑠 , 𝑛𝑛), 0 ≤ 𝑠𝑠 , 𝑡𝑡 ≤ 1. 

Now, following the steps of the proof of Theorem 2, we 
can state the general weighted-sup metric approximation for 
the r-time parameter empirical process of Eq. (14). 
Theorem 3. 

Under the null hypothesis 𝐻𝐻0  of (1), there exists a Kiefer 
process K(.,.) such that with the sequence of processes 
𝑀𝑀𝑛𝑛

𝑤𝑤 (. , . ) and ∧𝑛𝑛
𝑤𝑤 (. , . ) of (14) and (15) respectively, we 

have as𝑛𝑛 → ∞ 
sup

0≤𝑠𝑠≤1
sup

0<𝑡𝑡1 ≤𝑡𝑡2≤⋯≤𝑡𝑡𝑟𝑟 <1
�𝑀𝑀𝑛𝑛

𝑤𝑤 (𝑠𝑠, 𝑡𝑡) − 𝛬𝛬𝑛𝑛
𝑤𝑤 (𝑠𝑠, 𝑡𝑡)� = 𝑜𝑜𝑝𝑝 (1). 

Under the conditions of Theorem 3, we obtain  

sup
0≤𝑠𝑠≤1

sup
0<𝑡𝑡1≤𝑡𝑡2≤⋯≤𝑡𝑡𝑟𝑟<1

�𝑀𝑀𝑛𝑛
𝑤𝑤 �𝑠𝑠, 𝑡𝑡�|

𝐷𝐷
→ |𝛬𝛬 

𝑤𝑤 (𝑠𝑠, 𝑡𝑡)� , 

where 𝛬𝛬 
𝑤𝑤 (𝑠𝑠, . ) is the process in Eq. (15) when n=1. 

4. The Proposed AMRC Test Statistics 

To introduce our proposed mult iple change-point test 
statistics, we need the following integrated processes. Let 
𝛼𝛼𝑛𝑛 (. , . ) be the smoothed two-parameters empirical process 
defined by Eq. (3).Then integrating over 0 ≤ 𝑠𝑠 ≤ 1, we get 
𝛼𝛼𝑛𝑛

∗ (𝑡𝑡) = ∫ 𝛼𝛼𝑛𝑛 (𝑠𝑠 , 𝑡𝑡)𝑑𝑑𝑠𝑠 =  1
√𝑛𝑛

�[(𝑛𝑛+1)𝑡𝑡 ]
2

− ∑ 𝐹𝐹(𝑋𝑋𝑖𝑖 )[(𝑛𝑛+1) 𝑡𝑡]
𝑖𝑖 =1 �1

0 (16) 
and define the integrated empirical process difference of Eq. 
(4) as; 

𝐴𝐴𝑛𝑛
∗ (𝑡𝑡𝑖𝑖) = 𝛼𝛼𝑛𝑛

∗ (𝑡𝑡𝑖𝑖) − [(𝑛𝑛+1)𝑡𝑡𝑖𝑖 ]
𝑛𝑛

𝛼𝛼𝑛𝑛
∗ (1),      𝑖𝑖 = 1,2, … . , 𝑟𝑟 . (17) 

The generalized test statistics’ integrated processes in the 
case of 𝑟𝑟 ≥ 1,  AMRC, and 𝑡𝑡 = (𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑟𝑟 , 𝑡𝑡𝑟𝑟+1),  such 
that 0 = 𝑡𝑡0 < 𝑡𝑡1 ≤ ⋯ ≤ 𝑡𝑡𝑟𝑟 < 𝑡𝑡𝑟𝑟+1 = 1 are g iven by 

𝑀𝑀𝑛𝑛
∗ �𝑡𝑡� = � 𝑀𝑀𝑛𝑛 �𝑠𝑠 , 𝑡𝑡�𝑑𝑑𝑠𝑠

1

0
 

= 𝑛𝑛−3
2 � � ([(𝑛𝑛 + 1)𝑡𝑡𝑚𝑚 +1] − [(𝑛𝑛 + 1)𝑡𝑡𝑚𝑚−1])𝐴𝐴𝑛𝑛

∗ (𝑡𝑡𝑚𝑚 )
𝑟𝑟−1

𝑚𝑚 =1
+ (1 − [(𝑛𝑛 + 1)𝑡𝑡𝑟𝑟 −1]) (1 − [(𝑛𝑛 + 1)𝑡𝑡𝑟𝑟 ])

× ([(𝑛𝑛 + 1)𝑡𝑡𝑟𝑟 ])𝛼𝛼𝑛𝑛
∗ (1)� 

where 𝛼𝛼𝑛𝑛
∗ (.) is defined by Eq. (16) and its corresponding 

limit ing Gaussian process is  

Λ∗�𝑡𝑡� =  � Λ�𝑠𝑠, 𝑡𝑡�𝑑𝑑𝑠𝑠
1

0
 

                         = � 𝐵𝐵1(𝑠𝑠)𝑑𝑑𝑠𝑠 � (𝑡𝑡𝑚𝑚 +1 − 𝑡𝑡𝑚𝑚 −1)𝐵𝐵2(𝑡𝑡𝑚𝑚 ),
𝑟𝑟

𝑚𝑚 =1

1

0
 

where Λ(. , . ) is defined by Eq. (15) and B(.) is a standard 
Brownian bridge defined on the same probability space. 

Next, we define the weighted processes 𝑀𝑀𝑛𝑛
𝑤𝑤 (. )and Λ  

𝑤𝑤 (. ), 
that are needed to construct the AMRC test statistics. 

For 𝑡𝑡 = (𝑡𝑡0, 𝑡𝑡1,… , 𝑡𝑡𝑟𝑟 ,𝑡𝑡𝑟𝑟 +1),  such that 0 = 𝑡𝑡0 < 𝑡𝑡1 ≤
⋯ ≤ 𝑡𝑡𝑟𝑟 < 𝑡𝑡𝑟𝑟+1 = 1 , we define the following weighted 
processes. 

𝑀𝑀𝑛𝑛
∗ �𝑡𝑡� = 𝑛𝑛−3

2 �∑ ([(𝑛𝑛+1) 𝑡𝑡𝑚𝑚 +1]−[(𝑛𝑛+1)𝑡𝑡𝑚𝑚 −1 ])

𝑞𝑞𝑚𝑚 (𝑡𝑡𝑚𝑚 )
𝑟𝑟−1
𝑚𝑚 =1

� 𝐴𝐴𝑛𝑛
∗ (𝑡𝑡𝑚𝑚 )+ 

(1 − [(𝑛𝑛 + 1)𝑡𝑡𝑟𝑟−1])(1 − [(𝑛𝑛 + 1)𝑡𝑡𝑟𝑟 ]) × 
([(𝑛𝑛+1)𝑡𝑡𝑟𝑟 ])

𝑞𝑞𝑟𝑟 (𝑡𝑡𝑟𝑟 ) 𝛼𝛼𝑛𝑛
∗ (1) � }              (18) 

and 

Λ 
𝑤𝑤 �𝑡𝑡� ≔ ∫ 𝐵𝐵1(𝑠𝑠)𝑑𝑑𝑠𝑠

1
0 ∑ (𝑡𝑡𝑚𝑚 +1 −𝑡𝑡𝑚𝑚 −1)

𝑞𝑞𝑚𝑚 (𝑡𝑡𝑚𝑚 )
𝐵𝐵2(𝑡𝑡𝑚𝑚 ),𝑟𝑟

𝑚𝑚 =1   (19)  

where 𝛼𝛼𝑛𝑛
∗ (.) and 𝐴𝐴𝑛𝑛

∗ (. ) are given by Eq. (16) and Eq. (17) 
respectively and 𝑞𝑞𝑗𝑗 (. ) ∈ 𝑄𝑄 , 𝑗𝑗 = 1,2,… , 𝑟𝑟  are the weight 
functions of Theorem 3.1  
Theorem 4. 

Let B(.) be a Brownian bridge and assume that 𝐻𝐻𝑜𝑜  of (1) 
holds. Then as 𝑛𝑛 → ∞ 

𝑀𝑀𝑛𝑛
𝑤𝑤 �𝑡𝑡�

𝐷𝐷
→ 𝛬𝛬𝑛𝑛

𝑤𝑤 �𝑡𝑡�, 
where 𝑡𝑡 = (𝑡𝑡0, 𝑡𝑡1,… , 𝑡𝑡𝑟𝑟 ,𝑡𝑡𝑟𝑟 +1),  such that 0 = 𝑡𝑡0 < 𝑡𝑡1 ≤
⋯ ≤ 𝑡𝑡𝑟𝑟 < 𝑡𝑡𝑟𝑟+1 = 1  and 𝑀𝑀𝑛𝑛

𝑤𝑤 �. �  and 𝛬𝛬𝑛𝑛
𝑤𝑤 �. �  are the 

processes given by (18) and (19) respectively. 
The proof of this theorem can be deducted easily from that 

of Theorem 3. 
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Corollary 1. 
By the continuous Mapping Theorem and for 𝑟𝑟 ≥ 1, we 

have  
𝑇𝑇𝑛𝑛1 (𝑟𝑟) = sup

𝑡𝑡
�𝑀𝑀𝑛𝑛

𝑤𝑤 (𝑡𝑡)�
𝐷𝐷
→ sup

𝑡𝑡
�𝛬𝛬𝑤𝑤 (𝑡𝑡)� = 𝑇𝑇1 

and 

𝑇𝑇𝑛𝑛2 (𝑟𝑟) = � … ��𝑀𝑀𝑛𝑛
𝑤𝑤 �𝑡𝑡��

2
= � …  ��𝛬𝛬𝑛𝑛

𝑤𝑤 �𝑡𝑡��
2

 

𝑡𝑡

 

𝑡𝑡
 

The asymptotic distribution of 𝑇𝑇𝑛𝑛1(𝑟𝑟) and 𝑇𝑇𝑛𝑛2(𝑟𝑟) are, up  
to our knowledge, are unknown. For this reason we present 
the special case; at most one change point test statistics. Then 
we study the applicability of the proposed teststhrough a 
Monte Carlo simulation study. 

5. The at Most One Change (AMOC) 
Test Statistics 

First, we present the two-weight function test statistics for 
the CDF on change-point change. 

For 0 ≤ 𝑦𝑦 ≤ 1, consider the following weight functions; 
𝑊𝑊1 (𝑦𝑦) = 𝑦𝑦(1 − 𝑦𝑦),                (20) 

and 
𝑊𝑊2 (𝑦𝑦) = 𝑦𝑦(1 − 𝑦𝑦) log �log � 1

𝑦𝑦(1 −𝑦𝑦)
��.       (21) 

Let 𝛼𝛼𝑛𝑛� (. ) is the empirical counterpart of the process in 
Eq. (16), defined by replacing the CDF, F(.), by its sample 
one 𝐹𝐹𝑛𝑛 (. ). We define the test process {𝐴𝐴𝑛𝑛 (𝑘𝑘);   1 ≤ 𝑘𝑘 ≤ 𝑛𝑛}, 
by 

𝐴𝐴𝑛𝑛� (𝑘𝑘) ≔ 𝛼𝛼𝑛𝑛� (𝑘𝑘) −
𝑘𝑘
𝑛𝑛

𝛼𝛼𝑛𝑛� (𝑛𝑛) , =  

                      − 1
√𝑛𝑛

�∑ 𝐹𝐹𝑛𝑛 (𝑋𝑋𝑖𝑖 ) − 𝑘𝑘
𝑛𝑛

∑ 𝐹𝐹𝑛𝑛 (𝑋𝑋𝑖𝑖 )𝑛𝑛
𝑖𝑖 =1

𝑘𝑘
𝑖𝑖 =1 �        (22) 

where 𝐹𝐹𝑛𝑛 (𝑡𝑡) = 1
𝑛𝑛

∑ 𝐼𝐼(𝑋𝑋𝑖𝑖 ≤ 𝑡𝑡),   𝑡𝑡 ∈ 𝑅𝑅,𝑛𝑛
𝑖𝑖 =1  is the sample 

empirical distribution function. The above test process is the 
natural candidate in case of testing for a change in the CDF 
of a sequence of independent random variables. 

Let 𝐼𝐼𝑛𝑛
(1) (𝑎𝑎, 𝑏𝑏) = (𝑛𝑛𝑎𝑎, 𝑛𝑛𝑏𝑏)  and 𝐼𝐼𝑛𝑛

(2) (𝑎𝑎, 𝑏𝑏) = [1, 𝑛𝑛𝑎𝑎] ∪
[𝑛𝑛𝑏𝑏, 𝑛𝑛)where (a, b) = (0.071033…, 0.928966…), see[3]. 
Now, we propose the following AMOC test statistics; 

𝑇𝑇1 (𝑛𝑛) ≔ max1≤𝑘𝑘≤𝑛𝑛�𝐴𝐴𝑛𝑛� (𝑘𝑘)�,           (23) 

𝑇𝑇2(𝑛𝑛) ≔ max
1≤𝑘𝑘≤𝑛𝑛

|𝐴𝐴𝑛𝑛� (𝑘𝑘)|

�𝑊𝑊2(𝑘𝑘 )
𝑛𝑛

�
1/2            (24) 

𝑇𝑇3(𝑛𝑛) ≔  max1≤𝑘𝑘≤𝑛𝑛

⎩
⎪
⎨

⎪
⎧ �𝐴𝐴𝑛𝑛� (𝑘𝑘)�𝑘𝑘 ∈ 𝐼𝐼𝑛𝑛

(1)(𝑎𝑎, 𝑏𝑏)
  

|𝐴𝐴𝑛𝑛� (𝑘𝑘)|

�𝑊𝑊2�𝑘𝑘
𝑛𝑛

��
1
2

, 𝑘𝑘 ∈ 𝐼𝐼𝑛𝑛
(2)(𝑎𝑎, 𝑏𝑏),

�    (25) 

𝑇𝑇4(𝑛𝑛) ≔  

⎩
⎪
⎨

⎪
⎧

|𝐴𝐴�𝑛𝑛 (𝑘𝑘)|

�𝑊𝑊1(𝑘𝑘
2)�

1/2 𝑘𝑘 ∈ 𝐼𝐼𝑛𝑛
(1)(𝑎𝑎, 𝑏𝑏)

   
|𝐴𝐴�𝑛𝑛(𝑘𝑘)|

�𝑊𝑊2(𝑘𝑘
2)�

1/2 𝑘𝑘 ∈ 𝐼𝐼𝑛𝑛
(2) (𝑎𝑎, 𝑏𝑏),

�          (26) 

𝑇𝑇5(𝑛𝑛) ≔  1
𝑛𝑛

�∑ ���̂�𝐴𝑛𝑛 (𝑘𝑘)��
2

𝐼𝐼𝑛𝑛
(1) (𝑎𝑎 ,𝑏𝑏) + ∑ � |𝐴𝐴�𝑛𝑛 (𝑘𝑘)|

�𝑊𝑊2(𝑘𝑘
2

)�
1/2 �

2

𝐼𝐼𝑛𝑛
(2)(𝑎𝑎 ,𝑏𝑏) �(27) 

and 
𝑇𝑇6(𝑛𝑛) ≔

 1
𝑛𝑛

�∑ � |𝐴𝐴�𝑛𝑛 (𝑘𝑘 )|

�𝑊𝑊1 (𝑘𝑘
2)�

1/2�
2

𝐼𝐼𝑛𝑛
(1)(𝑎𝑎 ,𝑏𝑏 ) + ∑ � |𝐴𝐴�𝑛𝑛 (𝑘𝑘 )|

�𝑊𝑊2 (𝑘𝑘
2)�

1/2�
2

𝐼𝐼𝑛𝑛
(2)(𝑎𝑎 ,𝑏𝑏 )

� (28) 

where 𝑊𝑊1 (. ), 𝑊𝑊2 (. )and 𝐴𝐴𝑛𝑛 (. )are given by Eq. (20), Eq. (21)  
and Eq. (22) respectively. 

Note that the first four test statistics are CDF change point 
versions analogues to Pouliot (2001). The last two 𝑇𝑇5 (𝑛𝑛) 
and 𝑇𝑇6(𝑛𝑛)  are new proposed test statistics. The limiting  
distributions of the above test statistics are unknown in 
literature. Thus we conduct a Monte Carlo  study to 
determine the performance of these test statistics. 

6. Estimated Critical Values and Powers 
The crit ical values of the proposed tests in (23)-(28) have 

been evaluated via simulat ion. Also, the power of the 
proposed tests have been estimated. These estimation tasks 
are conducted using three simulation studies. 

6.1. Simulation 1  

The aim of this simulation is two-folds. First, to estimate 
the critical values of each test at different sample sizes under 
different distributions.Second, to show that the critical 
values are stable. The upper 5% critical values for each test  
of the six tests given in (23)-(28) have been obtained via 
simulation study. A sample of each d istribution has been 
simulated. The sample sizes are fixed  at 15, 20, 25, 30, 40, 50, 
100, 200, 500, and  1000. The underlying  distributions are the 
normal d istribution, the chi-square distribution, the 
exponential distribution and the uniform d istribution. Each 
test value is evaluated for each sample. Th is process is 
replicated 10000 t imes. Then, each test values are sorted and 
the upper 95% percentile is obtained. 

The simulation results are displayed in  Table 1 and Table 
2. The other distributions crit ical values have a similar 
behaviour. From these results we can notice that the second 
test has a higher critical values followed by the third test, for 
all the four distributions. The fifth test has the lowest critical 
values across all the four distributions. The critical values of 
the first, fourth and sixth tests are close. 

Generally, the crit ical values of all tests starts at a higher 
(lower) levelfor s maller sample size;  n = 15, but they 
converge reasonably as the sample size increase, see the 
table 1. This convergence appears from a sample size as 
large as 100. 
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Table 1.  The estimated upper 5% critical values of the normal and chi-square distributions 

The normal distribution 
n T1 T2 T3 T4 T5 T6 

15 0.3443 1.1783 0.4780 0.4780 0.1933 0.3217 
20 0.3522 1.1863 0.4617 0.4617 0.1390 0.2935 
25 0.3600 1.2215 0.5721 0.4507 0.1782 0.3201 
30 0.3651 1.2331 0.6035 0.4425 0.1803 0.3223 
40 0.3656 1.2359 0.6135 0.4089 0.1732 0.3141 
50 0.3649 1.2360 0.6432 0.4057 0.1881 0.3364 

100 0.3765 1.2787 0.6900 0.3860 0.1877 0.3336 
200 0.3797 1.2810 0.7243 0.3667 0.1870 0.3328 
500 0.3847 1.3049 0.7571 0.3517 0.1909 0.3343 
1000 0.3900 1.3170 0.7738 0.3415 0.1880 0.3376 

The chi-square distribution 
n T1 T2 T3 T4 T5 T6 

15 0.3443 1.1783 0.4780 0.4780 0.3182 0.1933 
20 0.3578 1.2161 0.4617 0.4617 0.1402 0.2890 
25 0.3600 1.2143 0.5721 0.4507 0.1753 0.3197 
30 0.3621 1.2290 0.6035 0.4425 0.1801 0.3274 
40 0.3676 1.2500 0.6014 0.4089 0.1710 0.3161 
50 0.3719 1.2585 0.6432 0.4057 0.1973 0.3410 

100 0.3735 1.2633 0.6900 0.3860 0.1878 0.3343 
200 0.3811 1.2933 0.7243 0.3706 0.1853 0.3420 
500 0.3863 1.3113 0.7514 0.3517 0.1889 0.3335 
1000 0.3890 1.3065 0.7647 0.3429 0.1855 0.3361 

Table 2.  The estimated upper 5% critical values of the exponential and uniform distributions 

The exponential distribution 
n T1 T2 T3 T4 T5 T6 

15 0.3443 1.1783 0.4780 0.4780 0.1920 0.3253 
20 0.3578 1.2129 0.4617 0.4617 0.1381 0.2913 
25 0.3600 1.2105 0.5721 0.4507 0.1771 0.3195 
30 0.3621 1.2290 0.6035 0.4425 0.1810 0.3252 
40 0.3656 1.2486 0.6014 0.4089 0.1692 0.3235 
50 0.3705 1.2585 0.6494 0.4057 0.1924 0.3289 

100 0.3740 1.2681 0.6901 0.3860 0.1879 0.3389 
200 0.3794 1.2869 0.7271 0.3667 0.1860 0.3299 
500 0.3853 1.3076 0.7657 0.3503 0.1902 0.3330 
1000 0.3924 1.3276 0.7837 0.3429 0.1922 0.3439 

The uniform distribution 
n T1 T2 T3 T4 T5 T6 

15 0.3443 1.2002 0.4780 0.4780 0.1928 0.3257 
20 0.3578 1.2161 0.4617 0.4617 0.1398 0.2883 
25 0.3600 1.2306 0.5721 0.4507 0.1793 0.3129 
30 0.3621 1.2246 0.6035 0.4425 0.1814 0.3251 
40 0.3656 1.2362 0.6135 0.4310 0.1733 0.3213 
50 0.3691 1.2470 0.6432 0.4057 0.1915 0.3406 

100 0.3770 1.2804 0.6979 0.3860 0.1887 0.3294 
200 0.3774 1.2803 0.7269 0.3667 0.1877 0.3359 
500 0.3839 1.2997 0.7515 0.3517 0.1872 0.3350 
1000 0.3864 1.3092 0.7705 0.3429 0.1874 0.3514 
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6.2. Simulation 2  

The aim of this simulation study is to estimate the power 
of the tests (23) - (28) assuming there is one change point in 
the mean. A sample of fixed size is generated fromeach 
distribution. The sample sizes are fixed at  20, 50, and 100 
units, to cover small, moderate and large sample size. The 
samples are generated from the normal d istribution, the 
chi-square distribution, the exponential distribution and the 
uniform d istribution. The change point positions are fixed at 
the first tail (15%n) of the sample and in the middle (50%n) 
of the sample. Different change shifts have been used, 
namely ∆= 0.5, ∆= 1.0 and ∆= 1.5. The replications number 
is 10000. The percentage of times the test statistic exceeds 
the estimated crit ical values is reported for each change, test 
statistic, and sample size. The results are displayed in  Table 3 
and Table 4. 

The simulation results show that the estimated power of 
each test undereach distribution increase as the change 
position moves to the middle of the sample. The estimated 
powers of all tests increase as the change shift increases and 
the sample size increases. 

From the results we can see that the fourth test has the 
highest powerfollowed by the sixth test for all distributions 
in the different settings. The third test has the lowest power 
in the different setting. The estimated powers of the first and 
the second tests are comparable in the different settings. The 
powers under the uniform distribution has the highest values, 
whereas the lowest powers are under the chi-square 
distribution. This is not surprising because any change in the 
mean of the uniform random variab le affect the distribution 
boundaries too. However, the chi-square distribution will 
change its shape very slowly with such minor location 
changes.  

Table 3.  The estimated powers of the normal and chi-square distributions (change in the mean) 

The normal distribution 
n Δ position T1 T2 T3 T4 T5 T6 

20 0.5 0.15 6.3 6.7 0.4 66.4 6.6 7.0 
  0.50 14.6 15.9 1.7 71.4 8.4 12.7 
 1.0 0.15 9.2 9.2 0.6 78.8 10.4 13.1 
  0.50 44.6 47.7 10.5 90.0 19.4 38.6 
 1.5 0.15 13.9 13.6 1.0 90.5 15.2 21.1 
  0.50 79.6 82.1 35.3 98.6 38.1 69.7 

50 0.5 0.15 10.8 10.7 6.8 92.9 7.7 11.9 
  0.50 33.7 35.1 7.1 95.9 13.2 26.0 
 1.0 0.15 30.6 27.9 15.4 98.8 20.2 35.6 
  0.50 87.0 88.5 18.1 99.8 41.9 76.7 
 1.5 0.15 63.7 58.6 31.5 99.9 40.1 67.3 
  0.50 99.8 99.8 60.5 100.0 78.9 98.5 

100 0.5 0.15 16.0 14.8 14.2 98.0 16.3 21.6 
  0.50 59.1 60.7 10.9 99.3 24.7 49.3 
 1.0 0.15 57.8 52.9 45.7 99.9 53.3 69.1 
  0.50 99.3 99.4 56.2 100.0 81.3 97.8 
 1.5 0.15 94.7 92.6 81.9 100.0 87.0 95.8 
  0.50 100.0 100.0 98.8 100.0 99.6 100.0 

The chi-square distribution 
n Δ position T1 T2 T3 T4 T5 T6 

20 0.5 0.15 4.3 4.4 0.2 61.6 4.9 5.4 
  0.50 4.7 5.1 0.3 61.8 5.1 5.2 
 1.0 0.15 4.9 5.1 0.3 63.0 5.7 6.3 
  0.50 6.8 7.2 0.7 63.2 5.6 7.3 
 1.5 0.15 4.8 5.0 0.3 64.1 6.3 6.9 
  0.50 9.4 9.9 1.1 67.0 6.5 9.5 

50 0.5 0.15 5.5 5.4 5.5 89.0 4.5 5.1 
  0.50 6.3 6.4 5.0 89.0 4.6 5.7 
 1.0 0.15 5.8 5.5 5.3 89.7 5.6 6.7 
  0.50 10.7 11.2 4.8 90.8 6.1 9.4 
 1.5 0.15 7.8 7.4 6.8 91.9 7.0 9.4 
  0.50 18.7 19.5 5.8 92.7 7.9 14.9 

100 0.5 0.15 5.8 5.7 5.8 94.4 6.6 6.0 
  0.50 8.1 8.1 5.4 94.3 6.6 7.5 
 1.0 0.15 7.5 7.4 7.9 95.6 8.9 8.9 
  0.50 18.5 19.3 6.3 96.4 10.0 15.7 
 1.5 0.15 10.9 10.4 11.1 96.7 12.6 14.4 
  0.50 35.4 37.0 8.3 98.0 15.5 28.5 
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Table 4.  The estimated powers of the exponential and the uniform distributions (change in the mean) 

The exponential distribution 
n Δ position T1 T2 T3 T4 T5 T6 

20 0.5 0.15 6.9 7.0 0.5 72.6 10.1 12.4 
  0.50 25.5 27.2 4.5 80.9 12.5 24.4 
 1.0 0.15 11.1 10.7 0.8 82.8 16.2 22.2 
  0.50 62.2 65.5 24.0 95.6 29.0 56.4 
 1.5 0.15 13.7 13.4 1.2 90.6 20.5 31.1 
  0.50 85.8 88.0 49.3 99.4 46.2 80.3 

50 0.5 0.15 18.3 16.2 16.7 96.8 19.2 25.9 
  0.50 60.0 61.2 9.8 98.4 24.8 50.9 
 1.0 0.15 46.9 42.3 36.3 99.5 41.9 57.1 
  0.50 96.7 97.2 35.3 100.0 65.9 93.3 
 1.5 0.15 71.5 65.8 54.0 99.9 61.4 77.6 
  0.50 100.0 100.0 76.5 100.0 90.6 99.6 

100 0.5 0.15 34.0 31.6 33.2 99.5 34.5 42.1 
  0.50 89.2 9.1 23.5 100.0 49.4 80.2 
 1.0 0.15 19.7 77.1 11.0 100.0 71.6 83.4 
  0.50 100.0 100.0 88.6 100.0 96.3 99.9 
 1.5 0.15 96.2 95.2 86.6 100.0 90.1 96.5 
  0.50 100.0 100.0 99.8 100.0 100.0 100.0 

The uniform distribution 
n Δ position T1 T2 T3 T4 T5 T6 

20 0.5 0.15 13.2 12.2 1.0 93.4 16.7 25.0 
  0.50 85.3 87.2 43.2 99.7 42.2 77.8 
 1.0 0.15 21.4 19.4 1.7 100.0 28.1 48.2 
  0.50 100.0 100.0 100.0 100.0 81.1 100.0 
 1.5 0.15 21.4 19.5 1.7 100.0 28.4 48.8 
  0.50 100.0 100.0 100.0 100.0 81.7 100.0 

50 0.5 0.15 69.7 63.8 32.8 100.0 45.4 73.3 
  0.50 99.9 100.0 73.2 100.0 85.9 99.4 
 1.0 0.15 100.0 100.0 98.5 100.0 96.6 100.0 
  0.50 100.0 100.0 100.0 100.0 100.0 100.0 
 1.5 0.15 100.0 100.0 98.2 100.0 96.3 100.0 
  0.50 100.0 100.0 100.0 100.0 100.0 100.0 

100 0.5 0.15 98.2 97.0 86.0 100.0 92.9 98.3 
  0.50 100.0 100.0 99.7 100.0 99.9 100.0 
 1.0 0.15 100.0 100.0 100.0 100.0 100.0 100.0 
  0.50 100.0 100.0 100.0 100.0 100.0 100.0 
 1.5 0.15 100.0 100.0 100.0 100.0 100.0 100.0 
  0.50 100.0 100.0 100.0 100.0 100.0 100.0 

 

6.3. Simulation 3  

The aim of this simulation is to estimate the power of the 
proposed testassuming that there is change point in the 
distribution rather than only the distribution mean. A 
sub-sample is simulated from a g iven distribution augmented 
by another sub-sample of another distribution. This means 
that there is a change in d istribution. The change positions 
are the first 15% point of the sample and the middle of the 
sample. The sample sizes are fixed at  n = 20, n = 50 and n= 
100. Four d ifferent distributions have been used; namely the 
normal d istribution, the chi-square distribution, the 
exponential distribution and the uniform d istribution. The 
results in Table 6 show the estimated power of the tests for 
the normal d istribution against the other three distributions 
(the chi-square distribution, the exponential distribution and 
the uniform distribution). Also, the table shows the estimated 
power of the tests assuming the chi-square distribution 

against the exponential and the uniform distribution in 
addition to the exponential distribution against the uniform 
distribution. 

From the results we can  notice that the fourth test has the 
highest powerfollowed by the sixth  test. Generally, the third 
test has the lowest estimated powers. The highestpowers are 
obtained for the chi-square distribution against the rest of the 
distributions. 

7. Discussion and Conclusions 
In this paper we presented new non-parametric weighted 

type test statisticsfor a change in the cumulative distribution 
function of a set of data. These proposed test statistics are 
based on the empirical processes. The asymptotic 
distributions of these test statistics are unknown and 
intractable to be studied theoretically. 
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We conducted a simulation study to estimate the crit ical 
values and powersof the proposed tests in the at most one 
change point. Our weighted proposed tests have good 
performance in all settings; different distributions, different 

sample sizes and different change positions. The difficulty of 
tracing the limiting distributions of the proposed weighted 
test statistics encouragethe search for a simple new weighted 
test statistics. 

Table 5.  The estimated powers of a distribution change 

The normal distribution against the chi-square distribution 
n position T1 T2 T3 T4 T5 T6 

20 0.15 25.3 22.3 1.9 100.0 28.2 47.0 
 0.50 100.0 100.0 100.0 100.0 80.8 100.0 

50 0.15 100.0 100.0 98.0 100.0 95.7 100.0 
 0.50 100.0 100.0 100.0 100.0 100.0 100.0 

100 0.15 100.0 100.0 100.0 100.0 100.0 100.0 
 0.50 100.0 100.0 100.0 100.0 100.0 100.0 

The normal distribution against the exponential distribution 
n position T1 T2 T3 T4 T5 T6 

20 0.15 9.4 9.4 0.5 78.0 12.9 16.2 
 0.50 46.6 49.7 11.3 91.0 20.6 38.8 

50 0.15 33.0 30.3 24.1 98.4 26.6 39.0 
 0.50 88.0 89.1 19.8 99.7 41.8 76.4 

100 0.15 57.6 53.4 50.4 99.9 53.0 66.6 
 0.50 99.4 99.5 57.3 100.0 82.2 97.6 

The normal distribution against the uniform distribution 
n position T1 T2 T3 T4 T5 T6 

20 0.15 7.7 7.4 0.4 71.9 13.1 14.2 
 0.50 27.5 29.1 5.6 80.0 11.5 22.5 

50 0.15 19.8 18.6 21.8 97.7 21.9 27.1 
 0.50 55.4 57.0 9.9 98.2 20.2 44.1 

100 0.15 31.3 29.0 38.4 99.4 34.7 41.0 
 0.50 82.9 83.8 21.7 99.8 44.7 73.5 

The chi-square distribution against the exponential distribution 
n position T1 T2 T3 T4 T5 T6 

20 0.15 20.8 18.6 1.3 100.0 26.7 48.3 
 0.50 100.0 100.0 99.9 100.0 79.1 100.0 

50 0.15 100.0 100.0 94.7 100.0 94.1 100.0 
 0.50 100.0 100.0 100.0 100.0 100.0 100.0 

100 0.15 100.0 100.0 100.0 100.0 100.0 100.0 
 0.50 100.0 100.0 100.0 100.0 100.0 100.0 

The chi-square distribution against the uniform distribution 
n position T1 T2 T3 T4 T5 T6 

20 0.15 21.1 18.8 1.6 100.0 26.9 48.0 
 0.50 100.0 100.0 100.0 100.0 78.9 100.0 

50 0.15 100.0 100.0 98.2 100.0 95.0 100.0 
 0.50 100.0 100.0 100.0 100.0 100.0 100.0 

100 0.15 100.0 100.0 100.0 100.0 100.0 100.0 
 0.50 100.0 100.0 100.0 100.0 100.0 100.0 

The exponential distribution against the uniform distribution 
n position T1 T2 T3 T4 T5 T6 

20 0.15 5.7 6.0 0.4 67.6 9.8 9.6 
 0.50 13.3 14.6 1.8 72.2 7.9 13.6 

50 0.15 11.0 9.8 12.8 94.9 14.2 16.4 
 0.50 31.0 31.9 7.0 95.0 12.4 25.0 

100 0.15 16.7 15.3 22.1 98.3 20.8 23.4 
 0.50 55.2 57.1 11.3 99.0 23.0 44.4 
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