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Abstract Fora given datasetit may be required to discoverif a change has been occurred. This is can be conducted using
change-point analysis. Let X}, X5, ..., X, be independent randomvariab les with respective continuous distribution functions 7,
F,, ..., F, such that F;(0)=0 for all . We consider the problem of testing the null hypothesis that ;= F,= ...= F, against the
alternative of r-changes in the distribution functions of this sequence at unknown times 1<[nt|<[nT]< .... <[nT]<n,
where[ y] is the integer part of y. We study the asymptotic theory of change-point processes which are defined in terms of the
empirical process. We propose and study new weighted non-parametric change-point test statistics for a possible change in

distribution function of'a data set.
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1. Introduction

In many applications it is necessary to discover if a data
set comes from a single distribution or there is a change in
the distribution function. The change-point inference is an
effective and powerful statistical tool for determining if and
when a change in a set of data has occurred. Let X,
X, ....X, be independent random variables with continuous
distribution functions (DF) F, F,, ..., F,, respectively such
that F;0)=0for all i. We are interested in testing the null
hypothesis of no change

Hy:F, =F, =~ =F, =F, (1)
where F is unknown against the alternative of at most
r-changes (AMRC),

(G
|G,

F = S )

i < [n‘[l]
[nt,] < i< [nt,]

Hir):

kGr.H. [Tl’[r] <i<n,
where r =1 is specified, the distribution functions
G,i=1,..,vr+1 and the change-point positions 7;,i =
1,..,r are unknown G; # G;,¢,i = 1,..,r. Note that[7]
denotes the integer part of .

The aim of this article is to introduce weighted
non-parametric tests for distributional change in a data set.
The asymptotic distributions of these test statistics are
derived. These tests also can be applied to the mean change
ina data set.
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The paper is organized as follows. In Section 2 we will
consider the above multiple change-point problem in the
case of at most two change-points (AMTC), i.e. r=2. In
Section 3 we generalize the AMTC results to the case of
r = 2. The proposed new change-point test statistics are
presented in Section 4. Also, the asymptotic distributions of
the proposed test statistics are derived in Section 4. In
Section 5, we propose new test statistics for the case of at
most one change point. We study the applicability of the
proposed tests through a Monte Carlo study in section 6.

2. The Case of at Most Two Change
Points (AMTC)

In this section we treat the case of at most 2-changes
(AMTOQ), ie. testing H, of (1) against the alternative of (2),
when r = 2.

Many authors have discussed the change-point problem,
testing (detection), and estimation using both Bayesian and
non-Bayesian approaches. Most of the work done in the
change-point analysis is concerned with the case of at most
one change (AMOC). Csorgé and Horvath[1] gave avery
excellent and extensive treatment and review for the related
work. Forthe AMTC, recent works are done by[2,3]. They
propose weighted CUSUM tests for the multiple changes in
the variance of a sequence of independent random variables.
By using the general form of U-statistic, they studied some
CUSUM test statistics for the AMTC in variance. Hawkins[4]
developed a dynamic program to test for a multiple change
point in the parameters of the general exponential family
using repeated maximum likelihood algorithm. His
algorithm, involves the application of the at most one
change-point maximum likelihood detector for every
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segmented group of data available.

Syzsykowicz[5]studied weighted approximations for
various versions of the empirical processes under the null
and continuous alternatives ofthe AMOC. She appro ximated
these processes by appropriate Gaussian processes.

Let the smoothed two-parameter empirical process be
given by
o, (5,0 == ZIIF() < 5] - 8}, 0<56<1.0)

Let t = (ty,t,), where 0<¢t; <t, <1 For 0<¢; <
t, <1,0<s<1,n=>1, define

misd = {1~ o+ D6]) Y G +
[+ Vel o Gt —a, 0, @)
and
[]Go-
{(1 = tK (s, nty) + £,K(s,nty) — t,K(s,m)}/Vn, (5)

where {K(s,y);0 <s< 1,0 <y < o} is a Kiefer process,
i.e.,a mean zero two-parameters Gaussian process with
EK (s1,51)K (52,,)) = (51 A sy = 515)(y Ayp). (6)
The following result follows from Theorem 8.2.1 of[ 5].
Theorem 1.
Assume that Hy of Eq. (1) holds true. Then, there exists a
Kiefer process K{(.,.) such that as n — oo,

sp swp B0 -] [ 60| =0,
0<s<1 0<t1<t<1 n
wheref, (.,.) is as in Eq. (4) and m,(.,.) is as in Eq. (5).

Let «, (.,.) beasinEq.(3)and £, (s,t) be as in Eq. (4).
Define

4,69 = (2, 630 -2 o ). (@)
Note that ( )
pls0=(1- )

n+ 1t
JL%lAMQQl
Let Q be the class of positive functions on (0,1), which are
non-decreasing in a neighbourhood of zero and
non-increasing in the neighbourhood of one. A function ¢
defined on (0, 1) is called positive ifinfs_, o;_5q(&) >
0, Voeo,12.

Let q4,q, € Q, the AMTC weighted-process, B (.,.) is
defined as
w _ _ [+D ] Ansit) [(n+1D) 2]\ 4 (s,61)
B (S 0 = (1 n ) q2 (t2) +( n ) q1(t1) ®)
Let K(.,.) be a Kiefer process. Define
[ (s p) = K(s,nt) — tK(s,n) 0 1
s,t , <s,t<
" Vn
and ) )
w _ pls,ty Iy (st1)
1—‘n (S'E) - (1 1) o (t ) 2 a1(t1) . (9)
Note that
[,(s,t) 2T(6,0) =K, ) —tK(s,1) 2
B,(s)B,(t), 0<s,t<1, (10)

where B;(.) and B,(.) are two independent Brownian
bridge.
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Now we give the main theorem of this section.
Theorem 2.

Under H, of (1), there exists a Kiefer process K(.,.) such
thatas n — oo,

1. if for i=1,2
t(1 — ©) loglog{(t(1 — ))~1/2}
lim =0,
t40 q;(®)
and

t(1 — t) log log{(t(1 — ©))~1/2}

i 2:© =0
then
sup sup 18(5.0) — 1 (5,0] = 0,
0<s<10<tq,tp<1
2. if for i=1,2
t(l —t) loglog{(t(l —t)” 1/2}
lim < 0,
tl0 q:(t)
t(1—1t) loglog{(t(l -t) }
lim < o,
t11 q;@®)
then
sup  sup |BY(s,t) - ¥ (s,t)| = 0,()
0<s<1 0<tq,tp<1
and
D
sup  sup |BW(s,t)[—>sup  sup [0¥(st)l.

0<s<1 0<tq,tp<l

Proof of Theorem 2 (Sketch)
First we can easily notice that
A, (s, t) =a(s,t), 0<s,t;,<1,i=1,2 (11)
where the right-hand side is the two-time parameter
empirical process of[5].
Second if we put q;(t;) =1,i = 1,2 in (6.1.13) of[ 5], we
getas n — oo

0<s<1 0<tq,tp<1

SUPg < e [t — o). (12

Using the definition of the processes of Eq. (8)and Eq. (9),

the statements of Eq. (11), Eq. (12) and Theorem 8.3.1 of[ 5],
we complete the proof ofthis theorem.

Now, let Y (.,:) be the process defined in Eq. (8), then

by Theorem (2) and the relations in Eq. (9) and Eq. (10), we
have

[(h+D¢;]
n

B (s,t) ST (s.1),

where

B (s,t) = By (o) {miaee) 4 (13)

a2 (¢2)
and B;(.),i = 1,2 areas in Eq. (10).
As in Pouliot[3], we may use the one weight function
w(t) = M 0<t, St, <1,
for the whole process. It is very easy to see that Theorem 2
remains true under the one-weight function W(:). In this
case the corresponding lirmtmg process of Eq. (13) becomes

(s, t) = e )Bl(s)Bz(t)

B;(t) = (1 — t)B,(t,) +t,B,(t,),

ty By (tl)}
q1 (tl)

where
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and B;(.),i =1,2 are independent Brownian bridge. It is
clear that FW(S,E)iS a mean zero Gaussian process with
covariance function

C(sty)=E{r(s.0r (s0y)} =
1

————(s; Asy; —515,)Cp (L, y),

W(E)W (X) ¢ (t X)

where
¢ (ty) =@ = LA = 1) (GAY) + 3, (A1 +
t,[(1 — )t Ay,) + v, (E Ay =ty

3. The Case of at Most r Change Points
(AMRC)

We consider here the general case of r = 1. Following
the definition of the change-point processes in (6.5) of
Pouliot (2001), we define the weighted r-change point
empirical process and its corresponding weighted Gaussian
process as follows. Assume that q]-(.) €Q,j=1,..,r,
satisfy the two assumptions of part (1) of Theorem 2, we
define the weighted r-time parameter empirical process

My (s,8) =
_3/2 {Zr 1 ([(n+1)tm+1] [(n+1)tm 1])A (S t )+ (1_

m (tm )
7—1)(1- 17')[(723- ) e gr(er)«n(s, 1), (14)
the

where 0=t <t; <t;<--<t. <t.,;=1 and

processes a,(.,.) and4, (.,.) aredefined by Eq. (3) and Eq.

(7) respectively. We also define the weighted r-time
parameter limiting Gaussian process as follows;
-1 K*(sntpy)
A (s, t): =2y {(tm+1 —tm-1) Tm} +
1=2tr=11=trtrgr(tr) A(s,n7)7n, (15)

where K(.,.) is the Kiefer process of Eq. (6) and
K*(s,nt) = K(s,nt) —tK(s,n), 0<s,t<1.

Now, following the steps of the proof of Theorem 2, we
can state the general weighted-sup metric approximation for
the r-time parameter empirical process of Eq. (14).
Theorem 3.

Under the null hypothesis H, of (1), there exists a Kiefer
process K(.,.) such that with the sequence of processes
My (.,.) and AY (.,.) of (14) and (15) respectively, we
have asn — oo

sup sup MY (s,0)— A% (s, )| = 0, (D).

0<5<1 0<ty <t <<t <1
Under the conditions of Theorem 3, we obtain

sup sup |MW(s t)| —> |AY (s, t)|

0<s<1 0<t1<t2< <t,<1
where A% (s,.) is the process in Eq. (15) when n=1.

4. The Proposed AMRC Test Statistics

159

To introduce our proposed multiple change-point test
statistics, we need the following integrated processes. Let
a,(.,.) be the smoothed two-parameters empirical process
defined by Eq (3).Then mtegra(tmg)over 0<s<1, weget

[(n+1)t] € +1)t
G = fy a,6,0ds = ={FE - Ex) 16)
and define the integrated empirical process dlfference of Eq.
(4) as;

AL() = a; () —@a;(l), i=12...r (17)

The generalized test statistics’ integrated processes in the
case of ¥ =1, AMRC, and t = (ty,t, .., t,,t, 1), such
that 0 =t;, <t; < <t, <t 1 =1aregivenby

= [ W (s,0)ds

- %{Z([(n+1)tm+1] [+ Dt DA: ()
+ A -[n+Dt,_, DA -[(n+ Dt, D
x ([(n + l)tr])a,’;(l)}

where a (.) is defined by Eq. (16) and its corresponding
limiting Gaussian process is

A (o) = j A(s, ¢)ds

1
= J‘ B1 (S)dS Z (tm+1 - tm
0 m=1

where A(.,.) is defined by Eq. (15) and B(.) is a standard
Brownian bridge defined on the same probability space.
Next, we define the weighted processes M, (.)and A" (.),
that are needed to construct the AMRC test statistics.
For t= (ty,ty,.,t,,t,41), such that 0=¢, <t; <
<t <t =1, we define the following weighted

processes.
M: (t) _ { r-1 ([(nH)tm;rl](t[(r;“)tm_l])A* (tm)+

1 -[n+Det,_, DA - [+ D¢, D x

(I+De, D,
ar (&) an(l)}

_1)B,(t,),

(13)
and

A () = J By(s)ds T, %Bz(t ), (19)

where a, (.) and A4;(.) are given by Eq. (16) and Eq. (17)
respectively and g; ()eQ,j=12,..,r are the weight
functions of Theorem 3.1
Theorem 4.

Let B(.) be a Brownian bridge and assume that H, of (1)
holds. Then as n - o

ORYHO)
where t = (ty,ty,..,t.,t, 1), such that 0 =1ty <t, <
<Lt <ty =1 and My () and A:{’(;) are the

processes given by (18) and (19) respectively.

The proof of this theorem can be deducted easily fromthat
of Theorem 3.
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Corollary 1.
By the continuous Mapping Theorem and for r =2 1, we
have

D
T,; @) = sup|M¥ ()| > sup|a¥(t)| = T}
t t

2@ =] F =] . i ©r

The asymptotic distribution of T,;(r) and T,,(r) are,up
to our knowledge, are unknown. For this reason we present
the special case; at most one change point test statistics. Then
we study the applicability of the proposed teststhrough a
Monte Carlo simulation study.

and

5. The at Most One Change (AMOC)
Test Statistics

First, we present the two-weight function test statistics for

the CDF on change-point change.
For 0 < y < 1, consider the following weight functions;
w,(y) = y(1 —y), (20)

1
w,(y) =yQ —y)log{log [y(1—y)]}' (21)
Let @, (.) is the empirical counterpart of the process in
Eq. (16), defined by replacing the CDF, F(.), by its sample
one E, (.). We define the test process {4, (k); 1<k < n},
by

and

A, (k) = @, (k) —Ed;(n).z
- {2 E () - Sx B o) 22)
where E,(t) = ;Z}Ll I(X; <t), teR, is the sample

empirical distribution function. The above test process is the
natural candidate in case of testing for a change in the CDF
ofa sequence of independent random variables.

Let 17(11) (a,b) = (na,nb) and 17(12) (a,b) = [1,nal U
[nb,n)where (a, b) = (0.071033..., 0.928966...), see[3].
Now, we propose the following AMOC test statistics;

i (n) = max; < <,| 4, (K), (23)
|4, ()
T,(n) = e <”W (24)
(14, 0|k e 17 (a,b)
T3(n) = maXlskSn4 IAn(k)I " E1(2)( b, (25)
UWZ O
I{ |4, (k)| kEI(l)( b)
= | 26)
n
' | 14 ®] ke 1P (a,b)
w2 &) "
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|4, (k)|

2
Ts(n) = [Z W, b)(|A (k)|) +2 1D(a,b) <[ ]1/2> ](27)

and
T, (n) =

2 2
1 14, () |4, ()
=12 — | + 2 e @ — (28)
m @[ &) @\ [y &)

where W; (.), W, (.)and 4, (.)are given by Eq. (20), Eq. (21)
and Eq. (22) respectively.

Note that the first four test statistics are CDF change point
versions analogues to Pouliot (2001). The last two T5(n)
and Ty;(n) are new proposed test statistics. The limiting
distributions of the above test statistics are unknown in
literature. Thus we conduct a Monte Carlo study to
determine the performance of these test statistics.

6. Estimated Critical Values and Powers

The critical values of the proposed tests in (23)-(28) have
been evaluated via simulation. Also, the power of the
proposed tests have been estimated. These estimation tasks
are conducted using three simulation studies.

6.1. Simulation 1

The aim of this simulation is two-folds. First, to estimate
the critical values of each test at different sample sizes under
different distributions.Second, to show that the critical
values are stable. The upper 5% critical values for each test
of the six tests given in (23)-(28) have been obtained via
simulation study. A sample of each distribution has been
simulated. The sample sizes are fixed at 15, 20, 25, 30, 40, 50,
100, 200, 500,and 1000. The underlying distributions are the
normal distribution, the chi-square distribution, the
exponential distribution and the uniform distribution. Each
test value is evaluated for each sample. This process is
replicated 10000 times. Then, each test values are sorted and
the upper 95% percentile is obtained.

The simulation results are displayed in Table 1 and Table
2. The other distributions critical values have a similar
behaviour. From these results we can notice that the second
test has a higher critical values followed by the third test, for
all the four distributions. The fifth test has the lowest critical
values across all the four distributions. The critical values of
the first, fourth and sixth tests are close.

Generally, the critical values of all tests starts at a higher
(lower) levelfor smaller sample size; n = 15, but they
converge reasonably as the sample size increase, see the
table 1. This convergence appears from a sample size as
large as 100.



American Journal of M athematics and Statistics 2013, 3(3): 157-165

Table 1. The estimated upper 5% critical values of the normal and chi-square distributions

The normal distribution
n Tl 72 73 T4 75 76
15 03443 1.1783 04780 04780 0.1933 03217
20 03522 1.1863 04617 04617 0.1390 02935
25 0.3600 12215 0.5721 04507 0.1782 0.3201
30 03651 12331 0.6035 04425 0.1803 03223
40 0.3656 12359 0.6135 04089 0.1732 03141
50 0.3649 1.2360 0.6432 04057 0.1881 03364
100 03765 12787 0.6900 0.3860 0.1877 03336
200 03797 12810 0.7243 03667 0.1870 03328
500 0.3847 1.3049 0.7571 03517 0.1909 03343
1000 0.3900 13170 0.7738 03415 0.1880 03376
The chi-square distribution

n Tl 12 T3 T4 75 T6
15 03443 1.1783 04780 04780 03182 0.1933
20 03578 12161 04617 04617 0.1402 0.2890
25 0.3600 12143 0.5721 04507 0.1753 03197
30 03621 1.2290 0.6035 0.4425 0.1801 03274
40 03676 1.2500 0.6014 0.4089 0.1710 03161
50 03719 12585 0.6432 04057 0.1973 03410
100 03735 12633 0.6900 0.3860 0.1878 03343
200 03811 12933 0.7243 0.3706 0.1853 0.3420
500 0.3863 13113 0.7514 03517 0.1889 03335
1000 0.3890 1.3065 0.7647 03429 0.1855 03361

Table 2. The estimated upper 5% critical values of the exponential and uniform distributions

The exponential distribution
n TI 12 73 T4 75 76
15 0.3443 1.1783 04780 04780 0.1920 03253
20 03578 12129 04617 04617 0.1381 02913
25 0.3600 12105 0.5721 04507 0.1771 03195
30 03621 12290 0.6035 0.4425 0.1810 03252
40 03656 12486 0.6014 0.4089 0.1692 03235
50 03705 12585 0.6494 04057 0.1924 03289
100 0.3740 12681 0.6901 03860 0.1879 03389
200 03794 1.2869 0.7271 03667 0.1860 03299
500 0.3853 1.3076 0.7657 0.3503 0.1902 03330
1000 03924 13276 0.7837 03429 0.1922 03439
The uniform distribution

n TI 2 73 T4 75 T6
15 0.3443 1.2002 04780 04780 0.1928 03257
20 03578 12161 04617 04617 0.1398 0.2883
25 0.3600 1.2306 0.5721 04507 0.1793 03129
30 03621 12246 0.6035 0.4425 0.1814 03251
40 0.3656 12362 0.6135 04310 0.1733 03213
50 03691 12470 0.6432 04057 0.1915 0.3406
100 03770 1.2804 0.6979 0.3860 0.1887 03294
200 03774 1.2803 0.7269 03667 0.1877 03359
500 03839 12997 0.7515 03517 0.1872 03350
1000 03864 13092 0.7705 03429 0.1874 03514

161
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6.2. Simulation 2

The aim of this simulation study is to estimate the power
of'the tests (23) - (28) assuming there is one change point in
the mean. A sample of fixed size is generated fromeach
distribution. The sample sizes are fixed at 20, 50, and 100
units, to cover small, moderate and large sample size. The
samples are generated from the normal distribution, the
chi-square distribution, the exponential distribution and the
uniformdistribution. The change point positions are fixed at
the first tail (/5%n) of the sample and in the middle (50%n)
of the sample. Different change shifts have been used,
namely A=0.5, A=1.0and A= 1.5. The replications number
is 10000. The percentage of times the test statistic exceeds
the estimated critical values is reported for each change, test
statistic,and samp le size. The results are displayed in Table 3
and Table 4.

The simulation results show that the estimated power of
each test undereach distribution increase as the change
position moves to the middle of the sample. The estimated
powers of all tests increase as the change shift increases and
the sample size increases.

From the results we can see that the fourth test has the
highest powerfollowed by the sixth test for all distributions
in the different settings. The third test has the lowest power
in the different setting. The estimated powers of the first and
the second tests are comparable in the different settings. The
powers under the uniform distribution has the highest values,
whereas the lowest powers are under the chi-square
distribution. This is not surprising because any change in the
mean of the uniform random variable affect the distribution
boundaries too. However, the chi-square distribution will
change its shape very slowly with such minor location
changes.

Table 3. The estimated powers ofthe normal and chi-square distributions (change in the mean)

The normal distribution
n A position Yol 12 T3 T4 75 76
20 0.5 0.15 63 6.7 04 66.4 6.6 7.0
0.50 14.6 15.9 1.7 71.4 84 12.7
1.0 0.15 92 92 0.6 78.8 10.4 13.1
0.50 44.6 47.7 10.5 90.0 19.4 38.6
1.5 0.15 13.9 13.6 1.0 90.5 15.2 21.1
0.50 79.6 82.1 353 98.6 38.1 69.7
50 0.5 0.15 10.8 10.7 6.8 92.9 7.7 11.9
0.50 33.7 35.1 7.1 95.9 13.2 26.0
1.0 0.15 30.6 27.9 15.4 98.8 20.2 35.6
0.50 87.0 88.5 18.1 99.8 41.9 76.7
1.5 0.15 63.7 58.6 31.5 99.9 40.1 67.3
0.50 99.8 99.8 60.5 100.0 78.9 98.5
100 0.5 0.15 16.0 14.8 14.2 98.0 16.3 21.6
0.50 59.1 60.7 10.9 99.3 24.7 49.3
1.0 0.15 57.8 529 45.7 99.9 53.3 69.1
0.50 99.3 994 56.2 100.0 81.3 97.8
1.5 0.15 94.7 92.6 81.9 100.0 87.0 95.8
0.50 100.0 100.0 98.8 100.0 99.6 100.0
The chi-square distribution
n A position Yol 12 T3 T4 75 76
20 0.5 0.15 43 44 02 61.6 49 54
0.50 4.7 5.1 03 61.8 5.1 52
1.0 0.15 49 5.1 03 63.0 57 6.3
0.50 6.8 72 0.7 63.2 5.6 73
1.5 0.15 4.8 50 03 64.1 63 69
0.50 94 99 1.1 67.0 6.5 95
50 0.5 0.15 55 54 55 89.0 4.5 5.1
0.50 63 64 5.0 89.0 4.6 57
1.0 0.15 5.8 55 53 89.7 5.6 6.7
0.50 10.7 11.2 4.8 90.8 6.1 94
1.5 0.15 7.8 74 6.8 91.9 7.0 94
0.50 18.7 19.5 5.8 92.7 79 14.9
100 0.5 0.15 5.8 57 5.8 94.4 6.6 6.0
0.50 8.1 8.1 54 94.3 6.6 75
1.0 0.15 75 74 79 95.6 89 89
0.50 18.5 19.3 63 96.4 10.0 15.7
1.5 0.15 10.9 10.4 11.1 96.7 12.6 14.4
0.50 354 37.0 8.3 98.0 15.5 28.5
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Table 4. The estimated powers ofthe exponential and the uniform distributions (change in the mean)
The exponential distribution

n 4 position Tl 12 73 T4 5 76
20 0.5 0.15 69 70 0.5 72.6 10.1 12.4
0.50 25.5 27.2 45 80.9 12.5 24.4

1.0 0.15 11.1 10.7 08 82.8 16.2 22.2

0.50 62.2 65.5 24.0 95.6 29.0 56.4

1.5 0.15 13.7 13.4 12 90.6 20.5 31.1

0.50 85.8 88.0 49.3 99.4 46.2 80.3

50 0.5 0.15 18.3 16.2 16.7 96.8 19.2 25.9
0.50 60.0 61.2 98 98.4 24.8 50.9

1.0 0.15 46.9 42.3 36.3 99.5 41.9 57.1

0.50 96.7 97.2 35.3 100.0 65.9 93.3

1.5 0.15 71.5 65.8 54.0 99.9 61.4 77.6

0.50 100.0 100.0 76.5 100.0 90.6 99.6

100 0.5 0.15 34.0 31.6 33.2 99.5 34.5 42.1
0.50 89.2 9.1 23.5 100.0 49.4 80.2

1.0 0.15 19.7 77.1 11.0 100.0 71.6 83.4

0.50 100.0 100.0 88.6 100.0 96.3 99.9

1.5 0.15 96.2 95.2 86.6 100.0 90.1 96.5
0.50 100.0 100.0 99.8 100.0 100.0 100.0

The uniform distribution

n A position Tl 172 73 T4 5 T6
20 0.5 0.15 13.2 12.2 1.0 93.4 16.7 25.0
0.50 85.3 87.2 43.2 99.7 42.2 77.8

1.0 0.15 21.4 19.4 1.7 100.0 28.1 48.2
0.50 100.0 100.0 100.0 100.0 81.1 100.0

1.5 0.15 214 19.5 1.7 100.0 28.4 48.8
0.50 100.0 100.0 100.0 100.0 81.7 100.0

50 0.5 0.15 69.7 63.8 32.8 100.0 45.4 73.3
0.50 99.9 100.0 73.2 100.0 85.9 99.4
1.0 0.15 100.0 100.0 98.5 100.0 96.6 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0
1.5 0.15 100.0 100.0 98.2 100.0 96.3 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0

100 0.5 0.15 98.2 97.0 86.0 100.0 92.9 98.3
0.50 100.0 100.0 99.7 100.0 99.9 100.0
10 0.15 100.0 100.0 100.0 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0
1.5 0.15 100.0 100.0 100.0 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0

6.3. Simulation 3

The aim of this simulation is to estimate the power of the
proposed testassuming that there is change point in the
distribution rather than only the distribution mean. A
subsample is simu lated froma given distribution augmented
by another sub-sample of another distribution. This means
that there is a change in distribution. The change positions
are the first 15% point of the sample and the middle of the
sample. The sample sizes are fixed at n =20, n = 50 and n=
100. Four different distributions have been used; namely the
normal distribution, the chi-square distribution, the
exponential distribution and the uniform distribution. The
results in Table 6 show the estimated power of the tests for
the normal distribution against the other three distributions
(the chi-square distribution, the exponential distribution and
the uniform distribution). Also, the table shows the estimated
power of the tests assuming the chi-square distribution

against the exponential and the uniform distribution in
addition to the exponential distribution against the uniform
distribution.

From the results we can notice that the fourth test has the
highest powerfollowed by the sixth test. Generally, the third
test has the lowest estimated powers. The highestpowers are
obtained for the chi-square distribution against the rest of the
distributions.

7. Discussion and Conclusions

In this paper we presented new non-parametric weighted
type test statisticsfor a change in the cumulative distribution
function of a set of data. These proposed test statistics are
based on the empirical processes. The asymptotic
distributions of these test statistics are unknown and
intractable to be studied theoretically.
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We conducted a simulation study to estimate the critical
values and powersof the proposed tests in the at most one
change point. Our weighted proposed tests have good
performance in all settings; different distributions, different

Weighted Tests for Change in Distribution Function

sample sizes and different change positions. The difficulty of
tracing the limiting distributions of the proposed weighted
test statistics encouragethe search for a simple new weighted
test statistics.

Table 5. The estimated powers of a distribution change

The normal distribution against the chi-square distribution |

n position Tl 12 73 T4 75 76
20 0.15 25.3 223 19 100.0 28.2 47.0
0.50 100.0 100.0 100.0 100.0 80.8 100.0
50 0.15 100.0 100.0 98.0 100.0 95.7 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0
100 0.15 100.0 100.0 100.0 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0
The normal distribution against the exponential distribution
n position Tl 12 73 T4 75 76
20 0.15 94 94 0.5 78.0 12.9 16.2
0.50 46.6 49.7 11.3 91.0 20.6 388
50 0.15 33.0 30.3 24.1 98.4 26.6 39.0
0.50 88.0 89.1 19.8 99.7 41.8 76.4
100 0.15 57.6 53.4 50.4 99.9 53.0 66.6
0.50 99.4 99.5 57.3 100.0 82.2 97.6
The normal distribution against the wmiform distribution
n position Tl 12 73 T4 75 76
20 0.15 7.7 74 04 71.9 13.1 14.2
0.50 27.5 29.1 56 80.0 11.5 225
50 0.15 19.8 18.6 21.8 97.7 21.9 27.1
0.50 55.4 57.0 99 98.2 20.2 44.1
100 0.15 31.3 29.0 38.4 99.4 34.7 41.0
0.50 82.9 83.8 21.7 99.8 44.7 73.5
The chi-square distribution against the exponential distribution
n position Tl 12 73 T4 75 76
20 0.15 20.8 18.6 13 100.0 26.7 483
0.50 100.0 100.0 99.9 100.0 79.1 100.0
50 0.15 100.0 100.0 94.7 100.0 94.1 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0
100 0.15 100.0 100.0 100.0 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0
The chi-square distribution against the uniform distribution
n position Tl 12 73 T4 75 76
20 0.15 21.1 18.8 1.6 100.0 26.9 48.0
0.50 100.0 100.0 100.0 100.0 78.9 100.0
50 0.15 100.0 100.0 982 100.0 95.0 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0
100 0.15 100.0 100.0 100.0 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0
The exponential distribution against the uniform distribution
n position Tl 12 73 T4 75 76
20 0.15 5.7 6.0 04 67.6 9.8 9.6
0.50 13.3 14.6 1.8 72.2 79 13.6
50 0.15 11.0 9.8 12.8 94.9 14.2 16.4
0.50 31.0 31.9 7.0 95.0 12.4 25.0
100 0.15 16.7 15.3 22.1 98.3 20.8 234
0.50 55.2 57.1 11.3 99.0 23.0 44.4
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